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Traumatic brain injury (TBI) remains a major cause of morbidity and mortality, particularly in

young people. Despite encouraging animal studies, human trials assessing the use of pharmaco-

logical agents after TBI have all failed to show efficacy. Current management strategies are

therefore directed towards providing an optimal physiological environment in order to mini-

mize secondary insults and maximize the body’s own regenerative processes. Modern neuro-

critical care management utilizes a host of monitoring techniques to identify or predict the

occurrence of secondary insults and guide subsequent therapeutic interventions in an attempt

to minimize the resulting secondary injury. Recent data suggest that the use of protocolized

management strategies, informed by multimodality monitoring, can improve patient outcome

after TBI. Developments in multimodality monitoring have allowed a movement away from

rigid physiological target setting towards an individually tailored, patient-specific, approach. The

wealth of monitoring information available provides a challenge in terms of data integration and

accessibility and modern software applications may aid this process.
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Pathophysiology of traumatic brain injury
and the role of monitoring

The pathophysiology of TBI is usually described in terms

of primary and secondary events and has been discussed in

detail elsewhere in this issue. In summary, primary brain

injury was originally defined as physical brain injury sus-

tained at the moment of impact and secondary injury as

injurious events, which occur at any later stage. Primary

injuries were initially believed to be immediate and irre-

versible, but there is a growing body of evidence to suggest

that a substantial component of cell death as a result of

primary injury occurs hours after the injury and that its

time-course overlaps with secondary, or additional, injury

processes44. Secondary insults consist of a wide range

of ischaemic, ionic, neurochemical, and immunological

insults visited on a susceptible brain and the additional

cerebral injury caused by these insults is known as second-

ary injury. The aetiology of secondary insults can be

systemic, e.g. hypotension, hypoxaemia, anaemia, and

acid–base or glucose disturbances, or intracranial, e.g.

intracranial hypertension, cerebral oedema, seizures,

regional cerebral blood flow (CBF) disturbance, metabolic

and ionic derangement, excitotoxicity, free radical-induced

damage, and mitochondrial dysfunction.5 6 10 59 Secondary

insults are common after TBI and have been reported to

occur, at some point, in as many as 91% of patients requir-

ing treatment in the neurointensive care unit.30 Despite

several encouraging animal studies, human TBI trials asses-

sing pharmacological neuroprotective agents, such as gluta-

mate antagonists, steroids, free radial scavengers, calcium

channel antagonists, bradykinin antagonists, and growth

factors, have all failed to show efficacy.40 Current manage-

ment strategies are therefore directed towards providing an

optimal physiological environment in order to minimize

secondary insults and maximize the body’s own regenera-

tive processes.

The goal of monitoring the injured brain is to enable the

detection of harmful physiological events before they

cause irreversible damage to the brain, thereby allowing

diagnosis and effective treatment and providing ‘on-line’

feedback to guide therapy.22 Through these interventions,

the clinician aims to minimize secondary injury in an

attempt to optimize patient management and outcome.18 43

On the other hand, it has recently been suggested that

monitoring and management of intracranial perfusion

pressure (ICP) and cerebral perfusion pressure (CPP) after

TBI may merely increase therapy intensity without

improving outcome.9
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Monitoring systemic physiological variables

As secondary insults to the injured brain can be either sys-

temic or cerebral in origin, monitoring to detect these

insults must have both systemic and cerebral components.

Systemic variables routinely monitored during neurointen-

sive care include electrocardiogram morphology, arterial

oxygen saturation, arterial blood pressure (ABP), central

venous pressure, cardiac output, systemic temperature,

arterial blood gases, and serum electrolytes. These moni-

toring modalities will not be discussed further and this

review will focus on invasive and non-invasive cerebral

monitoring.

Invasive cerebral monitoring

Intracranial pressure

Measurement of ICP is central to the application of both

ICP- and CPP-directed therapy, and ICP monitoring has

become integral to the management of TBI in most units.

Despite this, the use of ICP monitoring is not universal4

and there exists no Class I evidence supporting its efficacy.

Two main methods exist for the invasive measurement of

ICP. The ‘gold standard’ technique is a catheter positioned

with its tip in the lateral ventricle connected to a standard

pressure transducer. This method measures global pressure

and has the additional advantages of allowing periodic

external calibration and therapeutic cerebrospinal fluid

(CSF) drainage. However, placement of the ventricular

catheter may be difficult in cases of severe brain swelling

and there is a significant risk of developing ventriculitis

with its attendant increased morbidity and mortality.33

Transducer-tipped systems can be placed in the brain par-

enchyma or subdural space, either through a skull bolt on

the neurointensive care unit (NICU) or by an open tech-

nique during a neurosurgical procedure with minimal

infection and complication rates.35 Measured pressure,

however, may not be representative of true CSF pressure

as transtentorial and interhemispheric pressure gradients

may exist after TBI.48 While these systems perform well

during bench testing,12 drift may occur during long-term

monitoring and in vivo calibration is not possible. ICP

monitoring allows measurement of absolute ICP concen-

trations, calculation of CPP and identification and analysis

of pathological ICP waveforms. Cerebrovascular pressure

reactivity and pressure–volume compensatory reserve may

also be calculated.14

Oxygenation

Monitoring jugular venous oxygen saturation (Svo2
) is a

technique, which can be used to estimate the balance

between global cerebral oxygen delivery and utilization. A

catheter is inserted into the dominant internal jugular vein

(IJV) and advanced to the jugular bulb, thereby

minimizing contamination from extracerebral venous

return, which is around 3% if the catheter is correctly

placed. Jugular Svo2
monitoring accurately reflects global

cerebral oxygenation only if the dominant jugular bulb is

cannulated32 and the right side is often chosen because it

is usually dominant.47 However, the correct side can be

identified more accurately by ultrasound examination of

the IJV, by identifying the largest ICP increase caused by

manual compression of each IJV or by identification of the

larger jugular foramen on the computed tomography (CT)

scan. Once catheter positioning has been checked on a

lateral cervical spine radiograph, measurement of jugular

Svo2
can be made either continuously using a fibre-optic

catheter or directly by aspirating blood samples and using

a co-oximeter. Reduction in jugular Svo2
below physiologi-

cal levels (,55%) indicates that cerebral oxygen delivery

is inadequate to meet demand. In the context of TBI, this

is most often related to reduced CBF secondary to

decreased CPP or hyperventilation-associated vasocon-

striction. Conversely, raised jugular Svo2
indicates luxury

perfusion caused by either raised CBF or reduced oxygen

demand secondary to mitochondrial dysfunction or

cell death.11 Reduction in jugular Svo2
to ,50% after TBI

is associated with poor outcome,46 and jugular Svo2
is

responsive to changes in CPP.39 There is some evidence to

suggest that the use of jugular Svo2
monitoring may

improve outcome after TBI,11 however jugular venous oxi-

metry is limited by its lack of sensitivity to regional

changes. It provides a flow-weighted average of cerebral

Svo2
and has been shown to correlate poorly with regional

tissue oxygenation in areas of focal pathology.24

Furthermore, positron emission tomography (PET) evi-

dence suggests that jugular Svo2
does not decrease by

,50% until �13% of the brain becomes ischaemic.8 It is

also possible that significant arteriovenous shunting, after

TBI, might reduce the usefulness of this measurement.

Invasive probes have been developed to monitor focal

tissue oxygen tension (pBrO2). Currently, only one pBrO2

monitor is commercially available for use in humans

(Licox, GMS, Kiel-Mielkendorf, Germany). This pBrO2

probe utilizes a closed polarographic (Clark-type) cell

with reversible electrochemical electrodes. Oxygen, which

has diffused from the brain tissue across a semi-permeable

membrane, is reduced by a gold polarographic cathode

and produces a flow of electrical current directly pro-

portional to the oxygen concentration and related to the

brain temperature.42 Measured pBrO2 represents the

balance between oxygen delivery and cellular oxygen con-

sumption, but is also affected by changes in diffusion dis-

tance from capillary to probe and the proportion of

arterioles and venules in the region of interest. It remains

a matter of debate whether measured pBrO2 more closely

relates to CBF or oxygen extraction fraction.50 pBrO2

probes provide a highly focal measurement and while this

offers the potential of selectively monitoring critically per-

fused tissue, it means that probe positioning is crucial and
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that global changes may be missed. Normal pBrO2 values

are in the region of 35–50 mm Hg.25 38

After TBI, pBrO2 increases with CPP and the ceiling of

this effect is higher in the areas of focal ischaemia.56

Comparative studies have also shown correlation between

pBrO2 and regional CBF,50 and between changes in pBrO2

and changes in regional Svo2
measured using PET.23

Although it has been demonstrated that reduced pBrO2

is associated with poor outcome after TBI, the threshold

for hypoxia has proved more difficult to identify and is

likely to be related to both the duration and level of

hypoxia. Ischaemic thresholds of between 5 and 20 mm

Hg have been suggested.60 62 It is clear that pBrO2 can be

altered using clinical intervention, and that measured

levels relate to outcome. What is less clear is whether the

manipulation of this variable can affect outcome. Recent

evidence, however, suggests that pBrO2-directed therapy

may improve outcome and this possibility merits further

investigation.55

Cerebral microdialysis

Cerebral microdialysis (MD) is a well-established labora-

tory tool and is being increasingly used as a bedside

monitor to provide on-line analysis of brain tissue bio-

chemistry during neurointensive care. Cerebral MD has

recently been reviewed in depth.58 Placement of the MD

catheter in ‘at-risk’ tissue, such as the area surrounding

a mass lesion after TBI allows biochemical changes to

be measured in the area of brain most vulnerable to sec-

ondary insult (Fig. 1). Commercial assays are available to

measure dialysate concentrations of glucose, lactate, pyru-

vate, glycerol and glutamate, and tentative normal values

for these variables have been described.45

In the human brain, severe hypoxia/ischaemia is

typically associated with marked increases in the lactate:

pyruvate ratio (LPR),54 which correlates with the PET-

measured oxygen extraction fraction.27 An increase in

LPR above established thresholds (20–25) is associated

with poor outcome in TBI,68 and has traditionally been

assumed to indicate tissue ischaemia. However, it has

proved difficult to establish the hypoxic threshold associ-

ated with raised LPR29 and it is increasingly apparent that

anaerobic glycolysis may occur as a result of the failure of

effective utilization of delivered oxygen because of mito-

chondrial failure and hypoxia/ischaemia.64 Failure of cel-

lular metabolism eventually leads to degradation of cell

membrane phospholipids and release of glycerol into the

brain extracellular fluid (ECF). Glycerol is therefore a

useful MD marker of cell damage after TBI7 and the

degree of the hypoxia/ischaemia-induced elevation of MD

glycerol may be dramatic, with 4- or 8-fold increases

recorded in severe or complete ischaemia, respectively.51

Cerebral MD glycerol concentrations are typically ele-

vated in the first 24 h after severe TBI, presumably as a

result of the primary injury, and then exponentially

decline during the ensuing 3 days.7 Subsequent increases

in MD glycerol concentration are associated with adverse

secondary events45 and seizure activity.63 Increased con-

centrations of excitatory amino acids31 and reduced brain

ECF glucose concentrations66 may also predict or be

associated with metabolic catastrophes occurring after

acute brain injury. MD is becoming established as a tool

to assist clinical decision-making during neurointensive

care, such as management of CPP,41 guidance of

hyperventilation,34 and the appropriateness of extensive

surgical procedures.3

Cerebrovascular autoregulation

Cerebrovascular autoregulation is frequently impaired

after TBI and is associated with poor outcome.17

Continuous monitoring of cerebral autoregulation may

predict patients at risk of secondary injury and may help

to define individual treatment targets. Several techniques

have been developed for monitoring indices of autoregu-

lation and those relating to ICP16 and pBrO2
28 show prog-

nostic ability. These techniques calculate a continuous

correlation between ABP and either ICP or pBrO2, and

thus assess the cerebral response to spontaneous fluctu-

ations in ABP.

Non-invasive cerebral monitoring

Cerebral imaging

Cerebral imaging techniques can provide detailed haemo-

dynamic and metabolic information over multiple regions

of interest and have been reviewed elsewhere in this issue.

In terms of clinical management of patients, they are all

limited by two serious disadvantages. First, they are only

able to provide snapshot images of the brain and therefore

cannot be used to track the course of brain injury over time

or guide neuroprotective treatment strategies in real-time.

Second, they require the transfer of critically ill patients to

specialized imaging facilities and prolonged scanning time,

Fig 1 Components of clinical MD catheter and schematic representation

of an MD catheter in brain tissue. A, Pump connector; B, inlet tube;

C, MD catheter; D, MD membrane; E, outlet tube; F, microvial holder;

G, microvial for collection of microdialysate (adapted from Tisdall and

Smith58).
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both of which can be detrimental to the patient’s condition.

Only bedside techniques are considered in this review.

Transcranial Doppler ultrasonography

Transcranial Doppler (TCD) is a non-invasive technique,

which uses ultrasound waves to derive CBF velocity from

the Doppler shift caused by red-blood cells moving

through the field of view. A low-frequency (2 MHz) pulsed

wave probe is used to insonate a basal cerebral vessel

through an acoustic cranial window, an area of the skull

with sparse, or no cancellous bone that causes little attenu-

ation and scattering of the signal. The TCD flow velocity

waveform resembles an arterial pulse wave and may be

quantified into peak systolic, end diastolic and mean flow

velocities. TCD is not able to provide absolute measure-

ments of CBF but, if the angle of insonation and the diam-

eter of the insonated vessel remain constant, changes in

TCD-measured CBF velocity will reflect changes in

CBF.61 TCD has also been used to test autoregulatory

reserve by monitoring changes in CBF velocity in response

to changes in mean arterial pressure, and this technique

may have a role in providing individual-specific CPP

targets.15 TCD is also widely used to diagnose and monitor

cerebral vasospasm after subarachnoid haemorrhage52 and

has also been used to estimate ICP non-invasively.13

Continuous electroencephalography

Seizures are a source of secondary insult to the injured

brain, tend to occur in the first few days after TBI and are

associated with higher injury severity and worse outcome.

Recent data from continuous electroencephalography

(cEEG) studies demonstrate that seizures occur in �20%

of patients with TBI on the NICU.67 Many of these sei-

zures are of the non-convulsive variety and cannot be

detected clinically and some occur despite the use of

prophylactic phenytoin at adequate serum concentrations.

cEEG generates large quantities of data and systems

must be developed, which are able to reduce the data

volume and flag up potential abnormalities.49 One method-

ology, which has shown potential, is the use of alpha

variability in cEEG recordings to predict outcome

after TBI.65

Near infrared spectroscopy

Near infrared spectroscopy (NIRS) is a non-invasive tech-

nique based on the transmission and absorption of near infra-

red light (700–1000 nm) as it passes through tissue.

Oxygenated and deoxygenated haemoglobin have different

absorption spectra and cerebral oxygenation and haemo-

dynamic status can be determined by their relative absorp-

tion of near infrared light. Earlier methodology was limited

to measuring changes in concentrations of these tissue

chromophores,36 but recent advances have allowed measure-

ment of absolute haemoglobin oxygen saturation57 and

absolute concentrations of oxy- and deoxy-haemoglobin.19

Techniques have been described for the calculation of

regional CBF20 and cerebral blood volume,26 but are not

well validated. It is also possible to measure changes in the

concentration of the terminal complex of the electron trans-

fer chain, cytochrome c oxidase. This measurement has been

validated in animal studies as a measure of changes in cellu-

lar energy status and offers the potential to assess intramito-

chondrial redox and the adequacy of oxygen delivery.53

NIRS has the potential to provide continuous non-invasive

measurement of cerebral haemodynamic and metabolic par-

ameters over multiple regions of interest with high temporal

resolution. Spatially resolved spectroscopy has high sensi-

tivity and specificity to intracranial changes2 and has been

compared with jugular venous oximetry and brain oxygen

tension in patients with TBI.37 Tentative ischaemic thresholds

for NIRS variables have recently been described,1 but clinical

data on the application of NIRS after TBI are limited. Issues

also remain concerning the influence of extracranial tissues

and the distribution of the transmitted light and NIRS cur-

rently remains a research technique on the NICU.

Recent developments

The last decade has seen increases in the quantity of cerebral

monitoring data available to the clinician and a patient being

treated for TBI in the modern NICU is surrounded by moni-

toring and medical devices (Fig. 2). This trend is set to con-

tinue, driven by further technological advances. The

miniaturization of devices continues at an unprecedented rate

and this paves the way for development of implantable and

diagnostic devices. On a larger scale mobile CT and single

photon emission computed tomography imaging equipment,

which can be used at the bedside on the NICU, is now avail-

able. The search for biomarkers of secondary cerebral injury

continues and cerebral MD may have an important role to

play in this process as it offers great flexibility in the range

of metabolites that can be sampled.

The real challenge however may be the development of

systems that are able to integrate this vast array of data and

present them to the clinician in a digestible format and suit-

able systems are being developed.21 ‘Intelligent’ software

is required in order to identify trends and associations

between the monitored variables and highlight patients at

risk of deterioration at an early stage. Complex analysis of

monitoring data sets might also identify monitoring modal-

ities which are most efficacious for prognostication and

treatment target setting and therefore aid the establishment

of core monitoring requirements.

Conclusion

Many of the cerebral monitoring techniques currently

available have drawbacks when considered in isolation.

Invasive hyperfocal techniques provide continuous infor-

mation relating to a single region of the brain, and carry an
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attendant risk of complications, whereas non-invasive

imaging techniques provide high spatial resolution at

multiple sites, but with greatly reduced temporal resolution

and necessitate the transfer of critically ill patients to

remote sites. cEEG and NIRS can provide multisite

measurements with high temporal resolution, but at the

cost of reduced spatial resolution. The challenge therefore

is to integrate monitoring systems in order to combine their

strengths, improve artifact rejection, and allow greater

confidence in decision-making. Modern multimodality

monitoring systems provide the clinician with a diverse

range of data, but techniques are required to assist in the

analysis and integration of these data. Multimodality moni-

toring may allow greater understanding of individual patho-

physiology and allow delivery of tailored treatment

strategies rather than strict adherence to universal physio-

logical targets. Individualized treatment informed by multi-

modality monitoring has the potential to improve patient

outcome after TBI.
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