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The operation of the century: total hip replacement 
Ian D Learmonth, Claire Young, Cecil Rorabeck

In the 1960s, total hip replacement revolutionised management of elderly patients crippled with arthritis, with very 
good long-term results. Today, young patients present for hip-replacement surgery hoping to restore their quality of 
life, which typically includes physically demanding activities. Advances in bioengineering technology have driven 
development of hip prostheses. Both cemented and uncemented hips can provide durable fi xation. Better materials 
and design have allowed use of large-bore bearings, which provide an increased range of motion with enhanced 
stability and very low wear. Minimally invasive surgery limits soft-tissue damage and facilitates accelerated discharge 
and rehabilitation. Short-term objectives must not compromise long-term performance. Computer-assisted surgery 
will contribute to reproducible and accurate placement of implants. Universal economic constraints in healthcare 
services dictate that further developments in total hip replacement will be governed by their cost-eff ectiveness. 

Palaeopathologists have diagnosed osteoarthritis of the 
hip in ancient skeletons,1 and prevalence and distribution 
of the disease then seems no diff erent from today.2 
However, little more than 100 years ago, the fi rst attempt 
was made to treat hip arthritis surgically. Interpositional 
arthroplasty, off ered in the late 19th and early 20th 
centuries, entailed replacing various tissues—including 
fascia lata, skin, and even the submucosa of pig’s bladder—
between the articulating surfaces of the hip. Interposition 
of a vitallium cup, which covered the reshaped femoral 
head, by Smith-Peterson in 1938 heralded a new era of 
arthroplasty.3

Wiles developed the fi rst prosthetic total hip replacement 
in 1938,4 and this implant is regarded as the precedent of 
the modern genre. Subsequent attempts at reconstruction 
of destroyed arthritic joints are testimony to the ingenuity 
of surgeons of that time. These early endeavours were 
largely betrayed by poor design, inferior materials, and 
mechanical failure. Charnley revolutionised management 
of the arthritic hip with the introduction of low friction 
arthroplasty (fi gure 1).5 He made three major contributions 
to the evolution of total hip replacement: 1) the idea of low 
friction torque arthroplasty; 2) use of acrylic cement to fi x 
components to living bone; and 3) introduction of 
high-density polyethylene as a bearing material. Reviewing 
fi rst-generation results of Charnley’s low friction 
arthroplasty, Berry and colleagues6 and Callaghan and 
co-workers7 reported 81% and 77% survivorship, 
respectively, at 25-year follow-up, with revision of any 
component as the endpoint. Similar data have been 
reported by other researchers.8–10 These fi ndings lend 
support to Coventry’s observation in 1991 that “Total hip 
arthroplasty, indeed, might be the orthopaedic operation of 
the century”.11

Fender and colleagues reviewed 5-year outcomes of 
1198 patients who underwent Charnley’s low friction 
arthroplasty across one health region in England.12 They 
recorded a failure rate of nearly 9% and noted that although 
this proportion was higher than those published from 
specialist centres, it was probably more representative of 
the norm. The surgical technique in this series did not 
adhere uniformly to contemporary cementation philosophy. 
Failure mechanisms of early total hip replacement included 

fracture of the implant,13 aseptic loosening as a result of 
mechanical failure of the fi xation interface,14 infection,15 
polyethylene wear,16 and dislocation.17 Furthermore, high 
failure rates were reported in young patients.18–20

Indications for total hip replacement were initially 
largely restricted to either elderly and infi rm people or 
individuals with locomotor limitations associated with 
other comorbidities. However, today, an unacceptable 
compromise in quality of life constitutes a valid indication 
for total hip replacement, and patients seek so-called 
high-performance hips to deliver their expectations and 
aspirations. Developments in total hip arthroplasty have 
been directed at reduction of the rate of failure while 
accommodating the high-activity profi le and increased 
longevity of the modern patient. Components must, 
therefore, provide durable fi xation in the face of high 
stresses, whereas bearing surfaces need to be resilient and 
show low wear. This Review describes developments of 
total hip arthroplasty designed to provide a stable and 
durable implant tailored to meet specifi c requirements of 
the individual patient.

Cemented total hip replacement
Glück, a German surgeon, was the fi rst researcher to use 
cement “for a better fi xation” of both components of an 
ivory total knee replacement in 1891.21 However, Charnley 
introduced and popularised use of polymethyl methacrylate 
bone cement for fi xation of total hip prostheses in the 
late 1950s.22 Although cemented fi xation includes both 
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Search strategy and selection criteria

We searched PubMed and Medline from 1966 to April, 2006, 
with the terms: “total hip arthroplasty”, “cemented femoral 
stems OR acetabular cups”, “cementless femoral stems OR 
acetabular cups”, “bearing surfaces in hip replacement”, 
“metal-on-metal”, “ceramic bearings in hip replacement”, 
“outcomes OR survivorship in hip replacement”, and 
“minimally invasive hip surgery”. Websites of arthroplasty hip 
registries and the National Institute for Clinical Excellence 
were searched, and, when possible, results were included 
from randomised trials.
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bone-cement and cement-implant interfaces, the bone-
cement surface is the one that provides the foundation for 
durable fi xation. Cemented total hip replacement is highly 
technique-dependent because the surgeon manufactures 
the bone-cement-implant composite at the time of surgery.

Although the chemical composition of bone cement has 
essentially remained the same over the years, the 
cementation technique has changed greatly. Early methods 
entailed limited, if any, preparation of the bone bed; cement 
was introduced antegrade; and little attempt was made 
at pressurisation beyond fi nger-packing. This technique 
resulted in poor penetration into cancellous bone, inade-
quate cement mantles, and lamination of the cement. 
Cement is a grout not a glue: fi xation is achieved by 
mechanical inter lock rather than adhesion. Two groups of 
researchers23,24 have shown that increased pressurisation of 
cement enhanced penetration into bone interstices, which 
was associated with raised tensile and shear strengths at 
the bone-cement interface. Furthermore, in two separate 
reports, workers noted that cleaning the endosteal surface 
contributed to augmented cement intrusion into bone and 
enhanced the interface shear strength.25,26 Contemporary 
cementation techniques include cleaning of the endosteal 
bone with pulsed lavage, retrograde insertion, and 
sustained pressurisation to optimise micro-interlock. 
Proximal and distal centralisers facilitate reproducible 
creation of a complete, uniform, cement mantle.27 The 
benefi ts of contemporary cementing techniques have been 
shown in the Swedish hip register,28 and very good 
mid-to-long-term results have been published.29

Design of the cemented stem embraces two broad ideas: 
a taper-slip or force-closed design, and a composite-beam 
or shape-closed design. The taper slip is a highly polished 
tapered stem designed to settle within the cement mantle 

and re-engage the taper. Optimisation of load distribution 
to surrounding bone and cement is achieved by conversion 
of shear stresses to radial-hoop stresses. By contrast, 
fi xation of the composite beam relies on the shape of the 
implant and the composite fi xation of stem to cement and 
cement to bone. In the Swedish hip register, 
98% survivorship was reported for both the Spectron 
(Smith & Nephew, Memphis, TN, USA)—a shape-closed 
design—and the Exeter (Stryker, Newbury, UK)—a 
taper-slip design—at 9 and 7 years, respectively.19 Williams 
and colleagues reported 100% survivorship of the Exeter 
stem at 10-year follow-up, with aseptic loosening as the 
endpoint.30 After noting that good results over a lengthy 
follow-up period were needed to identify long-term 
complications, Wroblewski introduced a third taper from 
lateral to medial in the C-stem (DePuy, Leeds, UK) 
believing that it would improve loading and thus bone 
preservation in the calcar over time (fi gure 2). He reported 
100% survivorship of the C-stem at 7-year follow-up, with 
aseptic loosening as the endpoint.31

The above two fi xation ideas demand an adequate and 
complete cement mantle. In France, the notion evolved 
of inserting the largest stem possible, by which the 
rectangular cross-section would provide rotational 
stability even in the absence of cement. This strategy 
resulted in the so-called French paradox, whereby good 
results were reported with oversized stems when the 
cement mantle was excessively thin or defi cient.32

Charnley was concerned at the fairly high rate of fracture 
of his fi rst-generation stems. He recognised that this risk 
was the result of cantilever bending of a distally well-fi xed 
stem.33 Changing the cross-sectional geometry and 

Figure 1: Radiograph of 26-year follow-up of fi rst-generation Charnley low 
friction arthroplasty

Figure 2: Radiograph of highly polished triple-tapered cemented C-stem and 
uncemented cup
Note the enhanced cementation of the stem compared with fi gure 1.
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dimensions not only produced a much stiff er stem but 
also changed the design from a taper slip to a composite 
beam. This alteration introduced diff erent failure 
mechanisms.34 Although the frequency of stem fracture 
was reduced, aseptic loosening rose, with an overall 
increase in rate of failure.

Ideas should not be exported from one design to 
another. In the late 1970s, an Exeter stem was produced 
with a matt surface. This device had a threefold higher 
failure rate (10% at 8 years) than its otherwise identical 
highly polished predecessor.35 Similarly, the design of the 
Capital Hip (3M Healthcare, Loughborough, UK) was 
based on the Charnley range but the prescribed surgical 
technique produced a thin cement mantle. The stainless 
steel monobloc component worked reasonably well but 
the modular implant made of titanium was associated 
with early osteolysis and a high frequency of loosening.36 
Even a small change in design can have a substantial 
eff ect on long-term outcome.

Improvement in cemented fi xation of the acetabular 
component also entails cleaning and drying of the reamed 
acetabulum and sustained pressurisation of cement. The 
design of the polyethylene cemented cup has changed 
little over the decades, although addition of a fl ange has 
enhanced pressurisation. Havelin and colleagues,37 
analysing the Norwegian arthroplasty register, noted that 
hydroxyapatite-coated uncemented cups did not perform 
better than the Charnley cup. Their data should be 
interpreted with some caution because quality of fi xation 
of the diff erent cementless cups varied greatly.

Encouraging long-term results of Charnley’s low 
friction arthroplasty have been reported.6,7 Refi nements 
in stem design that exploit the visco-elastic properties of 
cement and enhanced cementation techniques have 
delivered good mid-term results with modern implants. 
Long-term follow-up of the Exeter device38 suggests that 
there is no reason why results should not be sustained 
over time. Recognising the bone-preserving potential of 
contemporary cemented tapered stems, Spitzer noted 
that “Cement should not be relegated as an inferior 
fi xation option, but rather should be the fi xation of choice 
in most patients undergoing total hip arthroplasty”.39

Uncemented total hip replacement
Early failure of cemented stems implanted by fi rst-
generation cementation techniques was frequent. These 
failures were associated with localised areas of bone 
destruction and resorption (osteolysis). Their cause was 
initially believed to be infection40 but was subsequently 
attributed to a local infl ammatory response initiated by 
cement particles. In the 1970s, histological examination of 
tissue taken from these localised areas of osteolysis showed 
the presence of polymethyl methacrylate debris,41 and as a 
result, researchers assumed that premature loosening of 
cemented components was related to so-called cement 
disease.42–44 Because of this occurrence, several investigators 
thought that the future of total hip replacement should be 

directed towards development of prostheses that could be 
implanted without use of cement on either the femoral or 
the acetabular side. Thus, by removing the apparent cause 
of cement disease (polymethyl methacrylate debris), the 
primary mechanism of failure of cemented implants might 
be eliminated.

Cementless femoral and acetabular components were 
designed to provide adequate initial stability and to 
encourage bone to osseointegrate onto or into the 
implant. Stems had to be made with either a porous 
coating of some description or, at the very least, a 
roughened surface that would allow intimate bony 
apposition to anchor the implant. Once the implant was 
biologically stabilised in bone, which could take several 
months, the femoral component would allow normal 
transmission of biomechanical forces across the joint.

Early designs of femoral porous-coated implants were 
cylindrical, with extensive coating of the length of the 
implant. As a result, good diaphyseal bone ingrowth took 
place, but unfortunately many of these designs were 
associated with a high rate of cortical atrophy, proximal 
stress-shielding, and bone loss. Furthermore, patients 
sometimes complained of thigh pain, presumably due to 
elastic mismatch between the rigid stem and the 
biologically fl exible femur.45,46

In an attempt to provide enhanced physiological 
proximal loading of the femur, cementless femoral 
components were designed that were still cylindrical in 
shape distally but had a porous ingrowth surface located 
proximally, in the metaphyseal region. Researchers hoped 
that biological ingrowth in this area would enhance 
physiological loading and protect against proximal stress, 
shielding osteopenia of the femur.47 Some of the early 
stems did not have circumferential porous coating but 
rather had patches of this coating located anteriorly and 
posteriorly as well as medially or laterally. These designs, 
however, had a high frequency of failure, with large 
amounts of osteolysis recorded distally. The cause of this 
osteolysis was believed to be polyethylene particles, which 
gained access to the distal femur through channels 
between the areas of porous coating.48 This theory led to 
development of implants with circumferential proximal 
porous coating in an attempt to eliminate access channels 
for particulate debris. 

In addition to type and location of surface texturing, 
femoral components vary in shape and by material and 
mechanical properties. All uncemented femoral stem 
designs rely on metaphyseal fi xation, metaphyseal-
diaphyseal junction fi xation, diaphyseal fi xation, or a 
combination of the three. Although many stem designs 
are currently on the market, all fall into three broad 
designs: anatomic, tapered, or cylindrical.

Anatomic stems, as the name implies, incorporate an 
anteroposterior curve to match the natural bow of the 
patient’s femur. These devices were designed around the 
idea that a curved stem in a curved bone would provide 
good initial stability and thus subsequently increase bony 
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ingrowth. Researchers hoped that the anatomic design 
would allow for enhanced physiological loading of the 
femur and thus reduce stress-shielding and distal thigh 
pain. Regrettably, however, this outcome was not the case 
and, indeed, data for most published studies on 
anatomically shaped stems indicate a higher frequency of 
thigh pain than with other traditional designs (tapered or 
cylindrical).49,50

Tapered stems use proximal cancellous bony ingrowth 
and three-point stem fi xation to obtain immediate 
stability. Clinical results of straight tapered stems with at 
least 10-year follow-up have been good, with stem 
survivorship reported between 92% and 100% 
(fi gure 3).51–53 Thigh pain, although occasionally encoun-
tered with tapered designs, was largely eliminated when 
compared with anatomic or cylindrical stems.

Cylindrical stems need distal cortical support to gain 
immediate stabilisation. Moreover, distal fi xation and 
osseointegration allow for a greater lever arm to resist 
torsional forces compared with proximally coated stems. 
To achieve distal fi xation, the prosthesis must be 
canal-fi lling, generally needing an implant of large 
diameter. Stem stiff ness depends on the elastic modulus 
of the material and is proportional to the fourth power of 
the diameter. Thus, increasing the stem diameter boosts 
stem stiff ness, a factor that has been linked to distal thigh 
pain and proximal stress-shielding. The frequency of 
thigh pain has been reported between 1·9% and 40%. The 
cause of this pain is related to large stem size, distal 
porous coating, and material composition.45,46 In a further 
attempt to lessen stem stiff ness, implants have been 
designed with coronal slots within the distal third of the 
stem and longitudinal grooves that can enhance stem 
strength without increasing the diameter.

Although most fully porous-coated tapered stems are 
made of cobalt chrome, no diff erence has been recorded 
in survivorship of stems made of titanium. Titanium has 
a lower modulus of elasticity—closer to that of host 
bone—and is more biocompatible than cobalt chrome. 
On the other hand, titanium is notch-sensitive, which 
predisposes it to cracks if the stem is not well supported.

Cementless acetabular cups were introduced to alleviate 
the diffi  culty with fi xation failure of cemented polyethylene 
sockets. At 12–15 years, Charnley reported continuous 
radiolucent demarcation around cemented cups in 14% of 
patients.40 The failure rate was greatest in young patients, 
and Barrack and colleagues reported 44% loosening of 
cemented sockets at 12 years in individuals younger than 
50 years.54 Cementless acetabular cups are hemispherical 
in shape and most are entirely porous-coated for bone 
ingrowth. Initial stability and fi xation can be achieved by 
press-fi t of the component; additional attachment can be 
provided by pegs, spikes, screws, or a threaded-cup design. 
Several research groups have noted early failure of the 
threaded-cup design.55,56

Press-fi t components avoid the need for screw 
placement, which carries the added risks of neurovascular 

injury and fretting wear between screw and shell. Press-fi t 
devices have shown good intermediate results.57 
Components inserted with additional screw fi xation have 
96% survivorship at 10 years.58

Failures of cementless cups include accelerated 
polyethylene wear, malfunction of the locking 
mechanism of the polyethylene liner in the metal-backed 
shell,59–62 and extensive periacetabular osteolysis.63 Screw 
holes in the shell enable debris to access the 
periacetabular cancellous bone, a further extension of 
the eff ective joint space. Modifi cations to acetabular 
shells with polished internal surfaces and better locking 
mechanisms should reduce these complications. Many 
uncemented components have predominantly fi brous 
tissue at the fi xation interface instead of bony ingrowth.64 
Hydroxyapatite has been used to enhance bone ingrowth 
and stimulate bony gap closure.65–67

Long-term results for uncemented total hip arthroplasty 
are poor compared with its cemented counterpart.68 
Medium-term data for patients younger than 50 years are 
inferior to those for people older than 60 years at time of 
surgery (fi gure 4). Data for uncemented stems are 
good.51,53,69–71 Acetabular component survival is poor: a high 
proportion of failures is due to polyethylene wear and 
osteolysis (fi gure 5).70,71

Implant stability and fi xation are crucial for durability. 
Research is currently focused on creation of an osteogenic 
stimulus to enhance bone ongrowth or heal bony defects.72–74 
Work in nanotechnology to investigate the eff ectiveness of 

Figure 3: Radiograph of bilateral uncemented tapered stems at 10-year follow up
These stems are designed to obtain fi xation in the metaphysis to reduce the frequency of thigh pain and of 
stress-protection osteopenia.
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incorporating biologically active proteins onto implants to 
enhance fi xation is in its infancy, but if successful it could 
provide the implant coating of the future.

Bearing surface
The issue of osteolysis has not been resolved by implantation 
of uncemented components. Lytic defects have been 
reported with both stable and loose uncemented 
prostheses.75 In the late 1970s, several researchers76,77 made 
important initial contributions to knowledge about the role 
of particles generated by joint prostheses in the pathogenesis 
of osteolysis and aseptic loosening. Further histological 
assessment of tissue from these defects indicated that 
osteolysis was related to the macrophage response to 
polyethylene debris.48,78–80 Fragments from polyethylene 
wear, rather than cement particles, were then recognised as 
the major limitation to conventional total hip arthroplasty.

Polyethylene wear and debris formation result in 
synovitis, joint instability, osteolysis, and prosthesis 
loosening. Alternative bearing surfaces—such as metal on 
cross-linked polyethylene and hard-on-hard bearings 
(metal-on-metal or ceramic-on-ceramic)—have been 
assessed in an attempt to reduce wear and improve 
longevity of total hip arthroplasty procedures, especially in 
young, high-demand, active patients. The introduction of 
cross-linking of ultrahigh-molecular-weight polyethylene 
was intended to address the issue of wear and osteolysis by 
reducing the number of submicron particles generated. 
Gamma irradiation of polyethylene causes cross-linking, 
which greatly improves wear resistance compared with 
conventional polyethylene.81,82 Short-term clinical results 
for cross-linked ultrahigh-molecular-weight polyethylene 
suggest a reduction in wear versus conven tional 
polyethylene.83

Metal-on-metal bearing surfaces were fi rst used widely 
in the 1960s.84–86 Poor materials and designs with equatorial 
(edge of head diameter) bearing combined with inferior 
fi xation condemned these prostheses to early failure. 
However, long-term follow-up of implants with polar 
(central head) bearing showed good survival and little 
wear without the diffi  culties associated with polyethylene-
induced osteolysis.87 This fi nding led to a resurgence of 
interest in the in-vitro and in-vivo wear properties of 
metal-on-metal articulations.88–90 Metal bearing surfaces 
have low wear rates—in the region of 0·004 mm per year 
compared with 0·1 mm per year for polyethylene. Metal 
is not brittle, unlike ceramic, and components therefore 
do not have to be as thick as ceramic ones do. Thus, for a 
given acetabular shell size, a large head diameter can be 
used (fi gure 6), which provides enhanced joint stability 
and a large range of movement before the neck impinges 
on the socket. It also produces a fast sliding speed of the 
bearing, contributing to better lubrication. Metal-on-metal 
bearings are self-polishing, allowing for self-healing of 
surface scratches. Although these bearings have the 
potential for low wear rates, there is concern about 
generation of metal ions (both cobalt and chromium), 
which are detectable systemically.91–93 Although raised 
amounts of cobalt and chromium ions can be recorded in 
blood and urine, no long-term adverse biological eff ects 
have yet been reported.94 
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Alumina ceramics were introduced in the 1970s. They 
have a low coeffi  cient of friction, superior wear rates,95 
are scratch-resistant, have no potential for ion release, 
and the particulate debris is not very biologically active.96 
However, ceramics do have the potential to fracture 
because of their brittle nature.97,98 Good short-term results 
have been reported99 for both alumina-on-alumina and 
alumina-on-polyethylene couplings.

Oxidised zirconium metal (Oxinium, Smith & Nephew) 
has been developed, which has the wear resistance of 
ceramic without the brittle fracture risk.100,101 Findings of 
clinical studies have yet to provide in-vivo confi rmation 
of the laboratory wear rates achieved.

Bone-conserving femoral implants
Arthritis of the hip mainly aff ects articular surfaces of 
the joint and subchondral bone. Intuitively, resurfac-
ing of the joint is the logical conservative surgical 
option. Resurfacing prostheses that were popular in 
the early 1970s had a large diameter head articulating 
with a cemented polyethylene acetabular component. 
The polyethylene was very thin, and this aspect—
together with the high frictional torque generated by 
the large diameter head—produced catastrophic wear 
of the plastic, osteolysis, and implant failure. Early 
and mid-term failure rates of up to 33% were 
reported.102–105

After recognising the possible bone-conserving 
benefi ts of resurfacing arthroplasty, researchers looked 
into reduction of wear generated at the articular couple. 
Contemporary metal-on-metal bearings produce very 
low wear and more than 300 000 have been inserted 
worldwide over the past 10 years. Exploiting this 
technology, McMinn showed that acceptable mid-term 
results could be achieved with metal-on-metal 
resurfacing and hybrid fi xation (cementless cup and 
cemented femur).106 Treacy and colleagues107 reported 
98% survivorship of the Birmingham device (Midland 
Medical Technologies, Birmingham, UK) at a minimum 
of 5 years’ follow-up, with revision of either component 
as the endpoint. 

Fracture of the femoral neck remains a major cause 
for concern. Shimmin and Back108 recorded a 1·46% rate 
of neck fracture in 3497 Birmingham hips inserted by 
89 surgeons in Australia between 1999 and 2004. Factors 
predisposing to neck fracture included varus placement 
of the implant and notching of the femoral neck. 
Amstutz and co-workers109 noted a prevalence of femoral 
neck fracture of 0·83% in 600 metal-on-metal 
resurfacing arthroplasty procedures undertaken be-
tween 1996 and 2003. They identifi ed failure to cover all 
reamed bone with the femoral component as the most 
important factor leading to fracture.

Refi nement of implant design and tribological work 
to optimise the articular couple might further improve 
results of resurfacing arthroplasty (fi gure 7). Although 
this technique is a valuable addition to the surgeon’s 

repertoire in management of the young active patient 
with hip disease, early and mid-term results do not 
justify the unbridled enthusiasm with which the 
uncritical orthopaedic community has embraced this 
new technology. Narrowing of the femoral neck can 
arise, which Beaulé and co-workers110 believe probably 
indicates an as yet uncharacterised remodelling process 
that might place the hip at increased risk of fracture 
over time. Resurfacing is not suitable for all hips,111 and 
indications and limitations need to be recognised to 
reduce the number of technique-related failures.

A high rate of failure has been reported with primary 
cemented total hip replacements in young active 
individuals.112,113 This fi nding has led many surgeons to 
investigate use of cementless fi xation in this group of 
patients. However, fi xation or cortical contact of the stem 
in the diaphysis is associated with distal offl  oading, 
which predisposes to stress-shielding and loss of proximal 

Figure 7: Contemporary metal-on-metal resurfacing arthroplasty
This technique is a conservative option.

Figure 6: Radiograph of metal-on-metal articulation, using a large diameter head
The large diameter head provides increased mobility with enhanced stability and good lubrication.
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bone stock.114 Furthermore, ever younger cohorts of 
patients are presenting for total hip arthroplasty.115 These 
individuals are likely to need revision surgery, and the 
major challenge facing the surgeon will be loss of bone 
stock. These factors, together with the idea that minimally 
invasive surgery should spare both bone and soft tissue, 
have provided impetus for development of conservative 
hip implants.

Although several diff erent conservative implants are 
currently available, few clinical results have been 
published. The Thrust plate prosthesis was fi rst 
implanted in 1978 and has subsequently evolved through 
three generations (fi gure 8).116 Buergi and colleagues117 
reported the clinical and radiological outcome of 
102 conservative total hip replacements in which the 
third generation of Thrust plate was used. Mean 
follow-up time was 58 months. Survivorship at 5 years 
was 98%, with revision for aseptic loosening as the 
endpoint.

The Mayo conservative hip is a wedge-shaped device 
that tapers in both the sagittal and coronal planes. It is 
curved distally to provide a fl at surface for contact with 
the lateral cortex (fi gure 9). Morrey and co-workers118 
described 162 total hip replacements in which this 
prosthesis was used, with a mean follow-up of 6·2 years. 
Survival without mechanical loosening was 98·2% at 
both 5 and 10 years.

Minimally invasive surgery
There is a current trend towards minimally invasive 
surgery, either through one mini-incision or with a 
two-incision technique. The claim is that mini-incision 
procedures reduce pain, blood loss, rehabilitation time, 
and hospital stay.119 Single-incision surgery—using the 
same surgical approach as conventional procedures but 
with a skin incision of less than 10 cm—has been approved 
by the UK’s National Institute for Clinical Excellence 
(NICE)120 based on data from two randomised controlled 
trials.121,122 The two-incision technique is more controversial 
than single-incision surgery. Proponents claim it reduces 
soft-tissue trauma.119,123 Compared with the single-incision 
procedure, the two-incision technique needs more 
technical expertise, fl uoroscopy in theatre, and is associated 
with a higher complication rate.124 NICE concluded that 
there was insuffi  cient evidence for the two-incision 
procedure to be used without special arrangements.125

Minimally invasive techniques reduce visualisation for 
implant positioning. Computer-assisted orthopaedic 
surgical strategies were developed to enhance placement 
of implants by conventional methods,126 but they are now 
used to improve outcome of minimally invasive 
surgery.127,128 Long-term follow-up is needed to show that 
the proven durability of total hip replacement is not being 
lost by compromised exposure.

Figure 8: Radiograph showing replacement of the femoral head with a 
Thrust plate prosthesis

Figure 9: Mayo conservative femoral prosthesis 
Note the consolidation of bone around the lower metaphyseal region of the 
implant. Illustration provided by B Morrey, Mayo Foundation.
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Outcome assessment
30 years ago, the main indications for total hip 
replacement were pain, disability, or both. Outcome 
assessment was surgeon-based with hip scores. 
Charnley’s modifi cation of the Merle d’Aubigné and 
Postel score129 and the Harris hip score130 remain two of 
the most widely used methods. An inherent diffi  culty of 
most surgeon-based scoring systems for assessment of 
outcomes is that they are composite scores, which 
include clinical and radiological data together with 
patient-based subjective information. Scores allocated 
within a criterion are not proportional and cannot then 
be added together in a meaningful way.

Survivorship analysis, fi rst used in orthopaedics by 
Dobbs in 1980,131 is a powerful strategy for long-term 
assessment of replacement arthroplasty. It uses a defi ned 
endpoint (revision of implant, etc) and is useful to assess 
and compare survivorship of diff erent types of implants. 
The Kaplan-Meier132 method is most frequently used to 
construct survival plots. Although revision is a 
reproducible endpoint, it can be aff ected by extraneous 
factors such as age or fi tness for surgery. Even inclusion 
of other endpoints such as presence of severe pain, low 
functional scores, and radiographic evidence of loosening 
gives no information about patient’s satisfaction or 
health-related quality of life. There is sometimes 
substantial disagreement between doctors and patients 
about health status.133

An unacceptable compromise in quality of life represents 
the main indication for total hip replacement in many 
individuals presenting today. Thus, only patient-based 
measures can be used to assess patient’s satisfaction with 
health-related quality of life postoperatively.

Traditionally, generic scales that measure general health 
status (eg, short form 12)134 and disease-specifi c scores that 
assess outcomes important to patients (eg, the Western 
Ontario and McMaster University osteoarthritis index)135 
are used in clinical trials of total hip replacements. 
Furthermore, site-specifi c measures have been used as a 
primary endpoint after surgery. Thus, the Oxford hip 
score136 is a short, practical, valid, and reliable questionnaire 
that is sensitive to clinically important changes and is well 
accepted by patients.

These patient-based assessment methods provide a 
numerical endpoint that defi nes clinical outcome. 
However, they are not patient-specifi c and do not provide 
information about what is important to the individual 
and whether their preoperative expectations have been 
met. For example, a 65-year-old golfer who remains 
unable to complete 18 holes after a primary hip 
replacement might well regard the operation as a failure 
despite a hip score that would categorise him as good or 
excellent. Patient’s satisfaction can therefore be poor if 
expectations are not met. Conversely, a 25-year-old 
juvenile idiopathic arthritis patient confi ned to bed or 
chair whose surgery has restored domestic independence, 
with commensurate improve ment in quality of life, 

would judge the surgery a great success, despite a very 
poor hip score. 

The personal impact health assessment questionnaire137 
was developed to assess the individual eff ect of disability in 
patients with rheumatoid arthritis. A similar personalised 
scoring system is being developed and validated for people 
with osteoarthritis.138 Wright and colleagues139 have used a 
somewhat cumbersome patient-generated questionnaire 
that identifi es the main concerns of the individual and 
how these are aff ected by surgery.

Methods to assess personal eff ect on disability will not 
only expose any adverse events or failures associated with 
surgery but also identify whether realistic expectations 
discussed preoperatively have been achieved post-
operatively. These procedures truly indicate the patient’s 
assessment of outcome.

Discussion
Biological resurfacing of the hip joint with engineered 
tissue is at present no more than a theoretical possibility. 
Total hip replacement will therefore remain the treatment 
of choice for arthritis of the hip for the foreseeable future. 
Both cemented and cementless implants can provide 
good fi xation with favourable long-term results. Today, 
uncemented prostheses are preferred globally, although 
this choice is not evidence based and might be less cost 
eff ective than cemented implants.

Ultrahigh-molecular-weight polyethylene has been 
the most widely used material for the acetabular 
bearing. Wear of the polyethylene counterface results in 
osteolysis and impingement, both of which culminate 
in aseptic loosening. Harris140 has described the 
unravelling of the biological process and the prevention 
of osteolysis. While this optimism is perhaps somewhat 
premature, durable low-wear articular couples are 
available today that permit use of large heads to deliver 
both mobility and stability. Moreover, new drugs are 
being developed that will prevent osteolysis and loss of 
bone. As noted, new materials such as Oxinium provide 
enhanced wear resistance and durability of the 
articulation. Lappalainen and Santavirta141 have predicted 
that novel coatings will further improve the longevity of 
total hip replacements.

The idea behind minimally invasive surgery embraces 
both soft-tissue sparing and bone conservation. 
Conservative femoral implants take less bone at surgery 
and preserve bone in the long term by providing more 
physiological loading of the proximal femur. The ability 
to revise these prostheses to primary standard stems 
introduces an additional option in the revision 
programme for the young patient. Furthermore, short 
stems are easy to insert with minimally invasive surgery, 
with reduced soft-tissue damage and accelerated 
rehabilitation. Despite reports of “catastrophic 
complications of minimally invasive hip surgery”,142 Berry 
has noted that “It remains diffi  cult to escape the 
commonsense logic that less invasive operative methods 
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can provide benefi ts for patients”.143 Short-term gains 
delivered by this strategy will hopefully not be achieved at 
the expense of long-term survivorship.

Computer-assisted orthopaedic surgery produces 
better component orientation than the best unaided 
eff orts of the skilled hip surgeon. This technique could 
reduce the rate of complications (dislocation) and 
enhance long-term survivorship. Advanced technology 
has made computer-assisted surgery user friendly.144 
Although prospective randomised trials are needed, the 
reproducible im provement in component orientation 
that has been shown is likely to lead to widespread use 
of computer assistance. Patients’ benefi t and the un-
wanted attentions of litigation lawyers are also likely to 
increase use of computer-assisted surgery in the 
foreseeable future.

Patients’ expectations after total hip replacement have 
changed. Today, quality of life issues, which sometimes 
include high-activity recreational interests, defi ne their 
aspirations. Modern technology can deliver high-per-
formance hips to accommodate these expectations—but 
at a cost. Ultimately, health economics will dictate what 
is both aff ordable and cost eff ective in any health-care 
system.
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