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The evolution of method comparison studies has 
occurred through a series of fits and starts, the most 
notable of which occurred in the early 1980s as the 

shortcomings of the traditional, linear regression approach 
to method comparisons were described and a comple-
mentary, “agreement”-based methodology proposed.1–3 
However, the evolution did stop there. As clinicians began 
to deemphasize absolute values and focus on trend monitor-
ing (cynics argue that the latter is easier, advocates suggest it 
is more useful), additional techniques were developed, the 2 
most notable of which are the 4-quadrant and polar plotting 
techniques developed by Perrino et al.4 and Critchley et al.5

In this issue of Anesthesia & Analgesia, Saugel et al.6 
describe, step by step, how these plots are produced and, 
most importantly, how they differ. By “transforming” trend-
ing data from Cartesian to polar coordinate systems, Saugel 
et al.6 demonstrate, both visually and mathematically, how 
the selection of a particular analytical technique can impact 
the results. The fact that highly discordant measurements 
in which the average change is 0 are excluded from the 
quantitative estimate of agreement when using the polar 
technique, but not the 4-quadrant technique, is essential to 
proper interpretation of these tests.

Why does the polar plotting technique do this? The rea-
son is because the polar plotting technique does not make 
any assumptions about which technique is better. Ironically, 
most published studies that use the polar plotting technique 
compare a new method of measurement with an accepted 
reference standard, and in these instances, an agnostic 
approach may not be appropriate.7–9 This question of “what 
is truth” may sound philosophical on the surface but in real-
ity has significant mathematical implications. For instance, 
if changes in cardiac output (∆CO) are measured by a pul-
monary artery catheter and a magic 8 ball, and the pulmo-
nary artery catheter estimates that ∆CO is −2 L/min but the 

magic 8 ball estimates that ∆CO is 2 L/min, the polar analy-
sis will exclude that data point because “true” ∆CO is 0 L/
min. This is, in essence, information loss. The 4-quadrant 
technique, by contrast, will place this point in quadrant 2, 
which will negatively affect the estimate of concordance.

Interestingly, the Bland-Altman technique, as it was 
originally described, takes the same approach to the rela-
tive value of data.1–3 In some sense, this is appropriate. As 
Altman pointed out, clinicians are not particularly inter-
ested in the probability that the slope of a best fit line 
between 2 outputs is not 0 “when the two variables are 
obviously associated by their very nature… What we really 
want to know in these studies is how well the two measures 
agree.”1 However, this assumes that 2 variables are actually 
related. A key element to the agreement strategy, which is 
often overlooked, is that “good” agreement does not nec-
essarily imply any correlation if the range of data tested is 
small. From the viewpoint of the clinician, performance of 
an agreement analysis makes the a priori assumption that a 
correlation actually exists.

Take, for instance, 2 monitors, X and Y, which estimate 
cardiac output (Θ). If the slope of the best fit line relating X 
and Y is m, estimates of Θ can be described as

X  i i X i= + ,Θ ε

and

Y m  i i Y i= + ,Θ ε

where Θ represents the true value of stroke volume and ε 
represents normally distributed measurement errors. Now 
let us assume that m = 0, that is, that there is absolutely no 
statistical correlation between the 2 devices (i.e., they are 
completely independent of one another). If X and Y are 
“tested” over a narrow range of values (i.e., the distribution 
of Θ is small [Fig. 1, upper left quadrant]), it is possible for 
a random number generator to produce limits of agreement 
approaching what would be deemed clinically “ acceptable” 
by Critchley and Critchley,10 who in 1999 stated that “Bias 
and precision statistics has now replaced correlation and 
regression as the accepted statistical technique of  comparing 
two techniques measuring the same physiological  variable, 
such as cardiac output.”

Clearly, many in the anesthesia community agree, 
because some investigators have stopped publishing cor-
relation coefficients and even basic scatterplots altogether, 
relying exclusively on limits of agreement and/or trending 
analysis to compare methods of measurement,7,8,11–15 yet this 
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was not the intent of Bland or Altman. Indeed, in their 1983 
manuscript, they stated “The first step, one which should 
be mandatory, is to plot the data… For the purposes of com-
paring the methods the line of identity is much more infor-
mative, and is essential to get a correct visual assessment of 
the relationship.”2 Three years later, in their oft-cited Lancet 
paper, they reemphasized that “The first step is to exam-
ine the data… A simple plot of the results of one method 
against those of the other though without a regression line 
is a useful start.”3

Thus, when making method comparison studies, we 
suggest that the following steps are taken:

1. The authors explicitly state whether or not 1 device is 
being used as a reference standard.

2. The authors state, a priori, the acceptable range of 
clinically acceptable values for each statistical test 
used. For instance, the acceptable limits of agreement 
for blood pressure monitoring are likely to be nar-
rower during cerebral aneurysm surgery than place-
ment of ear tubes.

3. Data are initially presented in a scatterplot to allow 
visual assessment of the relationship, as suggested by 
Bland and Altman.2,3 This will reduce the probabil-
ity that the limits of agreement between measures, 
which have no meaningful relationship, are deemed 
clinically acceptable. Preiss and Fisher16 described a 
random permutation technique, which estimates the 

probability that a paired data set arose from unasso-
ciated measurements, which some investigators may 
want to consider using.

4. The limits of agreement are calculated and plotted, 
as described by Bland and Altman, with allowances 
made for repeated measures when necessary.2,3,17,18 
For repeated measures, Bland and Altman base the 
estimate of the limits of agreement on both within-
subject variances and the variance of the differences 
between-subject means.17 Myles and Cui18 recommend 
calculating the mean of repeated measures and using 
a random effects model to account for the reduced 
variation that occurs with averaging. When the resid-
uals are not normally distributed, a transformation 
may be appropriate. For instance, some data may be 
distributed log-normally. In these instances, Dexter 
et al.19 have suggested both a nonparametric (based on 
ranking the observations and selecting cutoff values 
that remain within the desired percentiles [taking into 
account sample size and degrees of freedom]) and a 
parametric approach (based on the Student t distribu-
tion) for the calculation of prediction limits, either of 
which is acceptable. Last, confidence intervals around 
these limits should be calculated and displayed graph-
ically, ensuring that the limits are interpreted properly 
(i.e., that the sample size is sufficient to draw mean-
ingful conclusions from the data).3,17
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Figure 1. Limits of agreement, 
correlation coefficient, and limits 
of agreement-based P value for 4 
cardiac output data sets of vary-
ing sample distribution (the distri-
bution of the data is displayed on 
the lower aspect of each figure) 
and in whom there is no correlation 
between X and Y. This data set dem-
onstrates that if σΘ is decreased, 
the limits of agreement will also 
decrease despite the fact that the 
intrinsic error has not changed. By 
contrast, the correlation coefficient 
is relatively insensitive to σΘ.



Copyright © 2015 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.

E EDITORIAL

266   www.anesthesia-analgesia.org ANESTHESIA & ANALGESIA

5. When trending data are analyzed, they should be 
performed using either the 4-quadrant (when an 
accepted standard is being used) or a polar plot-
ting techniques (when there is no accepted refer-
ence standard).4,5 If the polar plotting technique is 
used, particular attention must be paid to the exclu-
sion zone, because the polar plotting technique 
may exclude important data points that are highly 
discordant.6

Saugel et al.6 have pointed out a subtle but extremely 
important and underappreciated difference in 2 frequently 
used statistical techniques. They have also helped clarify a 
concept that has clearly confused many (the original paper 
describing the polar plotting technique states that “agree-
ment is shown by the angle the vector makes with the line 
of identity [y x] and magnitude of change by the length of 
the vector (Fig. 4),” yet in the fifth published figure, and 
the Appendix, the average value is used, not the length of 
the vector).5 It is our hope that standardizing the presenta-
tion of data will improve the inferences derived from these 
important studies. E
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Because cardiac output (CO) is an important hemo-
dynamic parameter in caring for hemodynamically 
unstable patients, studies describing novel technolo-

gies for CO assessment are of high interest in the fields of 
perioperative and critical care medicine. In these studies, 
an innovative method for CO determination (i.e., studied 
technology) is usually compared with an established refer-
ence technology using different statistical methodologies. 
Methods for the assessment of the accuracy and precision of 
a studied technology (e.g., Bland-Altman analysis1,2 and cal-
culation of the percentage error3) have been described and 
discussed in detail elsewhere.4,5

Besides describing its absolute accuracy and precision, 
it is important to assess the ability of a novel technology 
designed to measure CO to adequately track changes in CO 
in comparison with the gold standard method. This means 
that the technologies detect changes in the same direction. 
Several methods for the evaluation of this trending ability 
have been described.6

Although the Bland-Altman analysis can provide 
insights within a trending analysis, 2 of the most frequently 
used graphical statistical methods in trending analysis 
are the 4-quadrant plot and the polar plot. We therefore 
restrict ourselves to the analysis of these 2 methods in this 
article. (For readers interested in the Bland-Altman analy-
sis, we provide additional treatments in Appendix 1.) The 
4-quadrant plot was first used for the description of trend-
ing capabilities in studies comparing one CO measurement 

technology with another by Perrino et al.7,8 The polar plot 
was proposed by Critchley et al.6 in 2010 as a new alterna-
tive method. In their review article published in 2010 and 
in another article published later,9 Critchley et al. described 
the derivation of the polar plot from the 4-quadrant plot. 
In their important articles, Critchley et al. demonstrated the 
importance, and also the complexity, of CO-trending analy-
sis compared with precision analysis and in doing so drew 
attention to the problem of quantifying the ability of a tech-
nology to track CO changes. Since its introduction, numer-
ous studies have used the polar plot analysis to describe the 
ability of a CO-monitoring device to follow changes in the 
true CO measured with a gold standard technique.

We argue that a profound understanding of the statistical 
methods used is a prerequisite for the correct assessment 
of the trending ability of a CO measurement technology. 
Whereas the 4-quadrant plot provides a relatively intui-
tive picture of the analyzed data at hand, the more sophis-
ticated polar plot demands a higher level of insight into 
its construction to adequately interpret the characteristics 
of the analyzed data. Therefore, the primary scope of the 
present article is to describe the computation of the 4-quad-
rant plot and the polar plot in detail and to derive the rela-
tion between these statistical methods. Furthermore, we 
describe the basic properties of both plots and, in particular, 
cite possibly dangerous pitfalls when analyzing polar plots. 
We briefly review the problem of measuring CO and assess-
ing the trending ability of measurement technologies. We 
then discuss the 4-quadrant plot and the polar plot as pro-
posed by Critchley et al. in detail. Finally, we summarize the 
advantages and disadvantages of both methods.

MEASURING CO—THE PROBLEM OF  
TRACKING CHANGES
Pulmonary artery thermodilution,10,11 single-indicator 
transpulmonary thermodilution,12–14 and lithium indicator 
dilution15–17 are thought to represent clinical gold standard 
methods for CO determination and are therefore used as 
reference technologies in method comparison studies.

Various novel, less invasive, and noninvasive technolo-
gies have been described in recent years including pulse 

When comparing 2 technologies for measuring hemodynamic parameters with regard to their 
ability to track changes, 2 graphical tools are omnipresent in the literature: the 4-quadrant plot 
and the polar plot recently proposed by Critchley et al. The polar plot is thought to be the more 
advanced statistical tool, but care should be taken when it comes to its interpretation. The 
polar plot excludes possibly important measurements from the data. The polar plot transforms 
the data nonlinearily, which may prevent it from being seen clearly. In this article, we compare 
the 4-quadrant and the polar plot in detail and thoroughly describe advantages and limitations 
of each. We also discuss pitfalls concerning the methods to prepare the researcher for the 
sound use of both methods. Finally, we briefly revisit the Bland-Altman plot for the use in this 
context.  (Anesth Analg 2015;121:514–24)
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contour analysis (both calibrated and autocalibrated),18–25 
esophageal Doppler,25,26 thoracic electrical bioimpedance 
and bioreactance,27–32 and technologies based on the vascu-
lar unloading technique,33–36 pulse wave transit time, and 
radial artery applanation tonometry.37

When applying different CO measurement technologies, 
one has to keep in mind that CO can be measured intermit-
tently (e.g., intermittent pulmonary artery thermodilution), 
continuously (e.g., pulse contour analysis providing a real-
time beat-to-beat report), or semicontinuously (e.g., bioreac-
tance-derived CO readings averaged over 60 seconds).

CO is a hemodynamic variable that changes over time and 
is modified by a variety of factors closely related to oxygen 
supply and consumption, such as cardiac preload, cardiac 
afterload, and cardiac contractility. When performing vali-
dation studies for CO-monitoring technologies, it has there-
fore to be kept in mind that both the studied technology and 
the reference technology are aiming to hit a moving target.

Considering the dynamic nature of CO, evaluating the 
ability of a technology for CO assessment to trend changes, 
in addition to assessing its accuracy and precision, is essen-
tial for the sound interpretation of the measurement per-
formance of a novel CO-monitoring device. However, 
adequately describing the ability of a CO-monitoring 
method to timely track decreases and increases in CO is sta-
tistically complex. Several statistical approaches have been 
described previously.6

A direction of change analysis can be performed by calcu-
lating the concordance rate, that is, the ratio (percentage) of 
CO measurements assessed by the studied technology and 
the reference technology that change correctly in the same 
direction (decrease or increase) to the sum of all changes. 
However, although this direction of change analysis provides 
information whether the studied technology qualitatively 
follows CO changes assessed by the reference technology, 
it does not provide information on the magnitude of the 
changes in CO or the degree of agreement between the stud-
ied technology and the reference technology.6

Therefore, alternative and more sophisticated methods 
for trend analysis in clinical studies have been described. In 
recent years, the most widely used methods to illustrate the 
trending ability of CO-monitoring devices are the 4-quad-
rant plot and the polar plot.

FOUR-QUADRANT PLOT ANALYSIS
For the computation of a 4-quadrant plot, ∆CO values (i.e., 
differences between consecutively obtained CO values) for 
both the studied technology and the reference technology 
are calculated and plotted in a scatter plot. Figure 1 shows 
an example for a 4-quadrant plot with 9 artificial data 
points. The values on the horizontal axis (usually called 
the x-axis) refer to ∆CO values of the reference technology, 
whereas the vertical axis (the y-axis) refers to the ∆CO val-
ues of the studied technology. From visual inspection of the 
resulting scatter plot, one can see the distribution of data 
points lying within 1 of the 4 quadrants. When both the 
studied technology and the reference technology indicate 
an increase in CO, the respective data point will appear in 
the upper right quadrant of the 4-quadrant plot. Similarly, 
the lower left quadrant contains data points resulting from 

concordant CO measurements indicating a decrease in CO. 
Therefore, the upper right and the lower left quadrants of 
the 4-quadrant plot represent concordant measurements of 
the studied technology and the reference technology with 
regard to direction of changes. In Figure 1, these quadrants 
are therefore marked by green areas. From the coordi-
nates of 1 data point within the quadrant, the magnitude 
of change in CO measured by the studied technology and 
the reference technology can directly be read off. This is an 
appealing property of the 4-quadrant plot. Data point 8, for 
example, means that the reference device detected a CO 
change by 0.5 L/min, whereas the studied device showed a 
change by 2 L/min. Although these measurements are con-
cordant, in the sense that both devices indicated a positive 
change in the CO, the numerical values are not equal. Points 
with equal numerical values are located on the 45° diagonal 
within the quadrant (the dotted line in the green quadrants 
in Fig. 1). In data point 5, for example, both devices detect a 
CO change by 1 L/min.

When measurements of ∆CO obtained with the devices 
disagree with regard to the direction of change (i.e., the 
studied technology indicates an increase in CO while the 
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Figure 1. Four-quadrant plot showing 9 artificial ∆cardiac output 
(∆CO) values for both the studied technology (ST) and the reference 
technology (RT). The values on the horizontal axis refer to ∆CO val-
ues of the RT (∆CO-RT), whereas the vertical axis refers to the ∆CO 
values of the ST (∆CO-ST). When both the ST and the RT indicate 
an increase in CO, the respective data point will appear in the upper 
right quadrant of the 4-quadrant plot. In contrast, the lower left quad-
rant contains data points resulting from concordant CO measure-
ments, indicating a decrease in CO (concordant measurements = 
green areas). From the coordinates of 1 data point within the quad-
rant, the magnitude of change in CO measured by the ST and the 
RT can be read off directly. Points with equal numerical values are 
located on the 45° diagonal within the quadrant (the dotted line in 
the green quadrants). When measurements of ∆CO-RT and ∆CO-ST 
disagree with regard to the direction of change, the respective data 
points will appear in the upper left or lower right quadrant of the 
plot (red areas). The higher the number of data points in the green 
quadrants compared with those in the red quadrants, the higher the 
concordance between the measurement devices.
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reference technology indicates a decrease in CO or vice 
versa), the respective data points will appear in the upper 
left or lower right quadrant of the plot. These quadrants are 
therefore marked by red areas in Figure 1. Again, values of 
the points on the horizontal axis refer to changes indicated 
by the reference device, and the values on the vertical axis 
refer to changes indicated by the studied device. Data point 
9 reflects a detected change by the reference device of −0.3 
and of 2 L/min by the studied device. Situations in which 
both devices show changes of the same absolute values but 
in opposite directions are reflected by points on the decreas-
ing 45° diagonal within the red quadrants (the dotted line in 
the red quadrants in Fig. 1). In data point 1, for example, the 
reference device measured a change of −2.5 L/min, whereas 
the studied device showed a positive change by 2.5 L/min.

The higher the number of data points in the green quad-
rants compared with the number of data points in the red 
quadrants, the higher is the concordance between the mea-
surement devices. The simplest way to further quantify the 
level of concordance is to calculate the proportion of data 
points in the quadrants representing direction of change 
agreement (green quadrants) in all data points. However, 
many other concordance measures have been proposed. 
(We refer to Nelsen38 for an overview.)

Because no clinically applicable CO measurement sys-
tem is perfectly accurate and precise, very small changes in 
CO readings may be attributed to noise and are supposed to 
not contribute sufficiently to or even disturb trending analy-
sis. Therefore, it was suggested that an exclusion zone be 
defined at the center of the 4-quadrant plot to remove mea-
surements driven by noise and increase the signal-to-noise 
ratio. Points of this zone that are also considered to represent 
clinically insignificant changes are excluded from further 
analysis. In Figure 1, an exclusion zone for absolute changes 
below 0.5 L/min is marked by the gray area. Data points 6 
and 7 fall in this area and should therefore not be used in the 
assessment of the trending ability of CO-monitoring tech-
nologies. In this example, both points would indicate non-
concordant measurements. However, because of their small 
absolute values, it is not clear whether they represent real 
changes in the measurements or are mainly driven by noise.

In summary, the 4-quadrant plot is an intuitive tool to 
illustrate the trending ability of measurement devices that 
allows for fast visual assessment of the characteristics of 
the studied technology and the reference technology. It is 
important to note that not only the quadrant of a point is 
important. From the x and y coordinates of a data point, we 
also obtain information about the magnitude and direction 
of CO changes of both technologies.

For example, Figure 2 shows 4-quadrant plots for 4 differ-
ent situations. Clearly, Figure 2A shows a situation with low 
trending ability. The measurements in this example are, in 
fact, completely independent of each other. Figure 2B shows 
a better trending ability, whereas Figure 2D shows a quite 
good trending ability with only very few discordant mea-
surements. Figure 2C shows a large number of discordant 
measurements. Here, the studied device tends to indicate 
changes in the opposite direction of the reference device.

A limitation of the 4-quadrant plot and concordance 
analysis is the lack of clearly defined cutoff values for the 
definition of good, acceptable, and poor agreement. Many 

such values have been suggested previously, but there are 
no generally accepted thresholds to describe the trending 
ability of CO measurement technologies. Also, because the 
results of the 4-quadrant plot analysis depend on the time 
interval between consecutive measurements, the plot can 
be influenced by choosing different time intervals for the 
analysis.

As described above, very small ∆CO values should not 
be included in the trending analysis, and, thus, a central 
exclusion zone should be applied. Authors normally use 
a ∆CO exclusion zone of 0.5 L/min or 10%. However, the 
exclusion zone should be adapted considering the range of 
∆CO values observed in the study population and the time 
interval between CO readings used for the calculation of 
∆CO.

Further, it should be remembered that, in addition to 
small ∆CO values, very large ∆CO values also might limit 
the validity of trending analysis. Whether zones excluding 
very high ∆CO values should be used in the 4-quadrant plot 
analysis is still a matter of debate.6

POLAR PLOT ANALYSIS
Basically, the polar plot by Critchley et al. is methodologi-
cally derived from a 4-quadrant plot and is supposed to be a 
more advanced statistical method for the description of the 
trending ability of a CO monitor. In the following section, 
we provide a detailed and critical analysis of this statisti-
cal approach by using worked examples. While explaining 
the individual steps of derivation of the polar plot from the 
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Figure 2. Four-quadrant plots for 4 different situations. Artificial ∆car-
diac output (∆CO) values for both the studied technology (ST) and the 
reference technology (RT) are shown. The values on the horizontal 
axis refer to ∆CO values of the RT (∆CO-RT), whereas the vertical 
axis refers to the ∆CO values of the ST (∆CO-ST). A, Shows a situ-
ation with low trending ability. The measurements in this example 
are in fact completely independent of each other. B, Shows a better 
trending ability, whereas (D) shows a quite good trending ability with 
very few discordant measurements. C, Shows a large number of dis-
cordant measurements. Here, the studied device tends to indicate 
changes in the opposite direction of the reference device.
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4-quadrant plot, we simultaneously point out some criti-
cal aspects of the polar plot methodology that have not yet 
been previously described.

In general, the polar plot is based on polar coordinates. 
This means that every point is addressed by (a) an angle and 
(b) a radius instead of horizontal and vertical coordinates 
(x, y). The angle (a) is the angle between the horizontal axis 
and the line from the point of interest to the central point  
(0, 0). The radius (b) is the distance of the point of interest 
to the central point (0, 0). In contrast, in the usual Cartesian 
coordinate system, points are addressed by their coordinates 
(x, y) on the horizontal and vertical axes. It is important to 
notice that both ways of addressing the points are mathemat-
ically equivalent and do not affect the position of the points. 
For example, for data point 5 in Figure 1, the angle between 
the horizontal axis and the line between (1, 1) and (0, 0) is 
45°, and its distance to the point (0, 0) may be calculated 
by using the formula of Pythagoras to 1 1 22 2+ = . Thus, 
this point can either be described by the coordinates (x = 1,  
y = 1), where x and y refer to the horizontal and verti-
cal  coordinates, respectively, or by the tuple (angle = 45°, 
radius = 2) of angle and radius. Given any of the two, one 
would find the same point in the plot.

The innovation of the polar plot by Critchley et al. is  
not only to use the angle and radius to address the points 
(which would not change the points), but also to transform 
the points: (a) the angle in the polar plot by Critchley et 
al. coincides with the angle between the (x, y) to (0,0) line 
with the 45° diagonal (instead of the horizontal axis) in the 
4-quadrant plot, (b) the radius in the polar plot by Critchley 
et al. is calculated as x y+

2
. The variables x and y refer to the 

horizontal and vertical coordinates in the 4-quadrant plot 
again. Figure 3 illustrates the transformation of data points 
from the 4-quadrant plot to the polar plot by Critchley et 
al. The left graph is a 4-quadrant plot with the same 9 data 
points as shown in Figure 1. We did not color the 4 quadrants 

of the plot as in Figure 1 but added some markings that will 
be explained later. The right graph of Figure 3 is a polar plot 
as proposed by Critchley et al.6 The numbers around the 
graph denote the values of angles measured from the hori-
zontal axis. The dotted circles mark the radius measured 
from the center of the plot with values r = 1, 2, and 3 in the 
plot. Every data point of the 4-quadrant plot is also shown 
in the polar plot. For example, data point 5 with coordinate 
(x = 1, y = 1) in the 4-quadrant plot has an angle of 0 with the 

45° diagonal line (it happens to lie on this line) and it holds 
1 1

2
1

+
= . The point is therefore drawn at angle 0 and radius 

r = 1 in the polar plot. To better illustrate how points trans-
form between the plots, in addition to the blue data points, 
the 4-quadrant plot shows colored data points that lie in 
a circle. Transformed to the polar plot by Critchley et al., 
these points mark 2 circles. The yellow and dark blue points 
(which lie in the concordance quadrants in the 4-quadrant 
plot) are transformed to points near the horizontal axis in 
the polar plot. The red and light blue data points (which 
lie in the discordance quadrants in the 4-quadrant plot) are 
transformed to the center of the polar plot. Critchley et al. 
define an exclusion zone in the polar plot that is marked 
by the gray circle in the middle of the plot. Points within 
this area are removed from the analysis. The intention of 
the exclusion zone is to increase the signal-to-noise ratio. 
The gray area marked in the 4-quadrant plot on the left 
side denotes the set of points that would be transformed 
to the exclusion zone of the polar plot. It is very important 
to notice that this area not only contains points referring to 
small changes in the original measurements, but also, the 
contrary may be true. Points like data point 1, which show 
a clear discordant behavior of the devices, are mapped to 
the exclusion zone and are therefore removed from the 
analysis (also data points 6 and 7 are transformed to this 
zone). Thus, the exclusion zone of the polar plot excludes 
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Figure 3. Illustration of the transformation of artificial ∆cardiac output (∆CO) values from the 4-quadrant plot to the polar plot. Left: 4-quadrant plot 
with 9 data points. The values on the horizontal axis refer to ∆CO values of the reference technology (RT) (∆CO-RT), whereas the vertical axis refers 
to the ∆CO values of the studied technology (ST) (∆CO-ST). Right: polar plot as proposed by Critchley et al.6 Every data point in the 4-quadrant plot 
is also shown in the polar plot indicated by the same number. Additionally, the 4-quadrant plot shows colored data points that lie in a circle and 
correspond to the points with the same color in the 2 circles within the polar plot. The exlusion zone defined by Critchley et al. is marked by the 
gray circle in the polar plot. The gray area marked in the 4-quadrant plot on the left side denotes the set of points that would be transformed to the 
exclusion zone of the polar plot. The bold horizontal lines in the polar plot mark an area of points with a high degree of trending capacity. These lines 
are transformed to the 4-quadrant plot. The areas outside (i.e., above and under) the horizontal lines in the polar plot correspond to the areas in the 
North, East, South, and West of the bold lines in the 4-quadrant plot, respectively. Note that point 1 (representing a strongly discordant measure-
ment) falls in the exclusion zone of the polar plot.
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all measurements from the data where either both changes 
are small (=the noisy measurements) or the changes are of 
similar absolute value but contrary in direction (=the most 
discordant measurements).

Critchley et al. define points under and above certain 
horizontal lines in the polar plot as reflecting a low degree of 
trending capacity and the points between these lines as reflect-
ing a high degree of trending capacity. Such horizontal lines 
are shown in the polar plot in Figure 3. These lines are trans-
formed to the 4-quadrant plot. The areas outside (i.e., above 
and under) the horizontal lines in the polar plot correspond 
to the areas in the North, East, South, and West of the black 
lines in the 4-quadrant plot, respectively. Data points 8 and 9, 
and 2 and 4 lie within these areas. From the 4-quadrant plot, 
we can understand what these areas stand for better than we 
can understand what they stand for from the polar plot: they 
refer to the cases when one of the devices shows a relatively 
large change, whereas the other device shows a rather small 
change. It is again important to notice that the cases of oppo-
site or nearly opposite changes do not fall into these regions 
but, rather, into the exclusion zone of the polar plot and are 
therefore removed from the analysis instead of classified as 
data points reflecting low trending ability.

Critchley et al. propose further refinements of the polar 
plot methodology. First, they propose not to use horizontal 
lines as separators between points standing for high and 
low trending ability, but, rather, lines with angles of +30° 
and −30° to the horizontal axis. These are shown in Figure 4 
together with transformations of these lines into the 4-quad-
rant plot. It can be seen that these straight lines also cor-
respond to straight lines now and that the angle between 
them is also 2 × 30° = 60°. Points that are classified to indi-
cate low trending ability are those lying in the North or the 
South of the polar plot (corresponding to North-West and 
to South-East in the 4-quadrant plot). Note, however, that 
the points in the gray area of the 4-quadrant plot fall again 
into the exclusion zone of the polar plot and are therefore 
removed from the analysis. Similar to the bias and limits 

of agreement that are used in the Bland-Altman method,39 
Critchley et al. propose the angular bias and the radial lim-
its of agreement to assess trending ability.9 The angular bias 
is the mean of all polar angles from a set of data points and 
the radial limits of agreement is described as the radial sec-
tor that contains 95% of the data points.

To set guidelines for good trending ability, clinical data 
from different CO measurement method comparison stud-
ies were analyzed. Based on these analyses, Critchley et al. 
defined an angular bias <±5° and radial limits of agreement 
<±30° for good trending ability. The idea of radial limits 
may lead to the misunderstanding that all points with the 
same angle in a polar plot reflect the same trending abil-
ity. Note, however, that this is not the case and that points 
with the same angle in the polar plot but different radii may 
indeed represent very different levels of trending abilities.

A further refinement of the polar plot is to turn all data 
points that lie on the left-hand side of the graph by 180° 
(half-circle polar plot). This is shown in Figure 5, where the 
circle of colored points in the 4-quadrant plot is transformed 
to 2 circles lying on the right-hand side of the polar plot 
(for convenience, we use 2 half-circles with different radii 
to avoid overlapping of the circles in the polar plot). Again, 
data points between the 30° lines in the East of the polar plot 
are classified to denote high trending ability, whereas data 
points outside this area are classified to reflect low trending 
ability. Again, all points of the gray area in the 4-quadrant 
plot are transformed to the exclusion zone of the polar plot 
and are therefore removed from further analysis.

FOUR-QUADRANT PLOT OR POLAR PLOT 
ANALYSIS—WHICH METHOD SHOULD BE USED?
The aim of this article is to contribute to a better under-
standing of the 4-quadrant plot and polar plot as statistical 
methods referring to tracking changes in CO. For a better 
overview, the advantages and drawbacks of the 2 tech-
niques are summarized in Table 1. Therefore, the awareness 
of the major critical aspects of the newer polar plot method 

1

2

3

30

210

60

240

90

270

120

300

150

330

180 0

Data Points Transformed to Polar Plot

1

2

3

4

56
7

89

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Original Data Points in Quadrant Plot

∆ CO−RT

∆ 
C

O
−S

T

1

2

3

4

5

6

7

89

Figure 4. Illustration of the transformation of artificial ∆cardiac output (∆CO) values from the 4-quadrant plot (left) to the polar plot (right). 
Every data point in the 4-quadrant plot is also shown in the polar plot indicated by the same number or color. The exlusion zone defined by 
Critchley et al. is marked by the gray circle in the polar plot. The gray area marked in the 4-quadrant plot on the left side denotes the set of 
points which would be transformed to the exclusion zone of the polar plot. A further refinement of the polar plot methodology is to use lines 
with angles of +30° and −30° to the horizontal axis to mark an area of points with a high degree of trending capacity. These straight lines 
correspond to straight lines in the 4-quadrant plot. The angle between them is also 2 × 30° = 60°. Points that are classified to reflect low 
trending ability are those lying in the North or South of the polar plot (corresponding to North-West and to South-East in the 4-quadrant plot). 
RT = reference technology; ST = studied technology.
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is crucial. To sum up these aspects, the polar plot transforms 
the original data points in a nonlinear way, which makes 
identification of the actual situations leading to single data 
points difficult. In addition, the nonlinear transformation 
leads to the exclusion of parts of the data by mapping them 
into the so-called exclusion zone: the exclusion zone of the 
polar plot excludes all measurements from the data not only 
where both changes are small (=the noisy measurements), 
but also where the changes are of similar absolute value 
but contrary in direction, which means the most discordant 
measurements that correspond to the low trending ability of 
the 2 technologies.

To further illustrate, 2 simultaneously measured ∆CO 
data points with the same absolute value (or a close absolute 
value) but changing in opposite directions (e.g., device 1: +1 
L/min and device 2: −1 L/min) are set to 0 (or fall in the 
exclusion zone) and are therefore ignored in the polar plot 
analysis, although they might be of high relevance for eval-
uating the trending ability of a CO monitor. This becomes 
obvious because there are no data points on or close to the 
90° or 270° line, respectively, in the polar plot. (To further 
illustrate these properties and limitations, a number of stud-
ies are available to the interested reader that evaluate the 
trending ability of 2 CO measurement technologies and 
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Figure 5. Illustration of the transformation of artificial ∆cardiac output (∆CO) values from the 4-quadrant plot (left) to the polar plot (right). 
Every data point in the 4-quadrant plot is also shown in the polar plot indicated by the same number or color. The exlusion zone defined by 
Critchley et al. is marked by the gray circle in the polar plot. The gray area marked in the 4-quadrant plot on the left side denotes the set of 
points which would be transformed to the exclusion zone of the polar plot. A further refinement of the polar plot is to turn all data points that 
lie on the left-hand side of the graph by 180° (half-circle polar plot). The 2 half-circles of colored points in the 4-quadrant plot are transformed 
to 2 circles lying on the right-hand side of the polar plot. Data points between the 30° lines in the East of the polar plot are classified as 
reflecting high trending ability, whereas those outside this area are classified as indicating a low trending ability. RT = reference technology; 
ST = studied technology.

Table 1.  Comparison Between the 4-Quadrant Plot and the Polar Plot Methodology
Four-quadrant plot Polar plot

Interpretability  Intuitive picture of the analyzed data
 The magnitude and direction of changes of both CO 

measurement technologies can directly be read off and 
compared

 Determination of the level of concordance is possible 
by calculating the proportion of data points in the 
quadrants representing the direction of change 
agreement

 Demands a high level of insight into its construction 
to adequately interpret the characteristics of the 
analyzed data

 With the refinement to turn all data points on 
the left-hand side of the polar plot by 180°, 
interpretability becomes more difficult

Exclusion zone  Increases signal-to-noise ratio
 Measurements where both changes are small are 

excluded (noisy measurements)

 Increases signal-to-noise-ratio
 In addition to measurements where both 

changes are small (noisy measurements), also 
measurements where the changes are of similar 
absolute value but contrary in direction are 
excluded (=the most discordant measurements)

Time-series analysis  Only changes between consecutively measured data 
points are considered

 Only changes between consecutively measured data 
points are considered

Measures that can be derived 
from the plot

 Concordance
 Angular bias (see Appendix 2)
 Radial limits of agreement (see Appendix 2)

 Angular bias
 Radial limits of agreement

Cutoff values  Up to now, lack of clearly defined cutoff values for the 
definition of good, acceptable, and poor agreement in 
the existing literature

 The existing cutoff values9 for the angular bias (<±5°) 
and radial limits of agreement (<±30°) can be used

 Cutoff values for the angular bias (<±5°) and radial 
limits of agreement (<±30°) have been suggested 
before9

CO = cardiac output.
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apply both the 4-quadrant plot and the polar plot method-
ology.40) Furthermore, adequate interpretation of the trend-
ing ability of a CO monitor by using a polar plot is highly 
demanding. With the refinement to turn all data points on 
the left-hand side of the polar plot by 180°, interpretability 
becomes even more difficult. With regard to the relatively 
simple applicability and interpretability of the 4-quadrant 
plot, the question arises as to whether the complexity of the 
polar plot is justifiable.

EXTENSIONS AND PERSPECTIVES
In this section, we address the challenge of trending analysis 
in patient groups with inhomogeneous levels of CO values.

An important consideration when evaluating the trend-
ing ability of the studied CO measurement technology is the 
fact that the levels of CO values within the studied patient 
population might lie in a broad range (e.g., between 2 and 
15 L/min). If the range of CO values of the different patients 
within the studied patient group is small, it is perfectly 
appropriate to use absolute values of CO changes to compare 
the reference and the studied CO measurement technologies. 
However, if the range of CO values within the studied patient 

population is broad, it might be more appropriate to use rela-
tive CO changes in the comparison analysis. For example, an 
absolute decrease in CO of 2 L/min has more importance for 
a patient with CO values around 3 L/min than for a patient 
with CO values around 12 L/min. Therefore, if the range of 
CO values of the different patients within the studied patient 
group is broad, the CO changes are more comparable if one 
uses relative CO changes.

Such proportional analyses have also been applied on dif-
ferent topics dealing with inhomogeneous patient data.41–43

Next, we would like to address 2 possible extensions of 
the 4-quadrant plot method. First, we show that measures 
usually derived from the polar plot (the angular bias and 
the radial limits of agreement) may as well be derived from 
the 4-quadrant plot. Second, we apply the 4-quadrant plot 
method for the case of delayed trending ability, that is, 
when one of the CO measurement devices reacts faster to 
CO changes than the other.

The angular bias (<±5°) and radial limits of agreement 
(<±30°) are useful measures to rate and compare the trend-
ing ability of different CO measurement technologies and 
different studies. However, we do not necessarily need the 
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Figure 6. Illustration of the approach to correct for 
a time delay between 2 cardiac output (CO) mea-
surement technologies using artificial ∆CO values. 
A, Shows a 4-quadrant plot for the original data. B 
and C, Show analyses in which the ST is delayed by 
2 and 4 time units, respectively. Clearly, in (B), the 
concordance rate and, therefore trending capacity, 
is highest. RT = reference technology; ST = studied 
technology.

Figure 7. Illustration to exemplarily describe the 
Bland-Altman analysis in the context of trending anal-
ysis, using artificial cardiac output (CO) values. A, 
Shows CO measurements, both RT and ST derived, 
done every 5  minutes. Four-quadrant plots based 
on absolute (B) and relative (F) numbers are shown. 
The data points in the 4-quadrant plots indicate an 
almost perfect linear relation of the RT and ST. The 
corresponding polar plot is given in (D). However, 
the directions of the changes cannot be seen from 
the Bland-Altman plots (C and E). The black dashed 
horizontal line in (C) and (E) shows the mean of the 
differences (=bias) between the 2 methods, the red 
dashed horizontal lines show the upper and lower 
95% limits of agreement (1.96 × SD), and the dotted 
horizontal lines show the confidence bands for the 
limits of agreement. RT = reference  technology; ST 
= studied technology.
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complexity and the drawbacks of the polar plot methodology 
to calculate the 2 measures. Angular bias is the mean of the 
angles in the polar plot. Because the angles in the polar plot 
correspond basically to the angles of the (0, 0; x, y) line to the 
45° line in the 4-quadrant plot, this number can also be calcu-
lated from the points of the 4-quadrant plot. The radial limit is 
the symmetric angle around the 45° line in which 95% of the 
data points fall and can also be calculated from the points of 
the 4-quadrant plot. A detailed description of the calculation 
of the 2 measures is provided in Appendix 2.

The second extension of the 4-quadrant plot methodol-
ogy considers the following scenario. Both the reference and 
the studied technologies detect the same changes in CO. 
However, the studied technology detects these changes with 
a time delay. If the time delay is small enough, it could be 
neglected with regard to clinical relevance. However, this 
clinically irrelevant time delay might have a serious impact 
on the concordance analysis and thus the measurement per-
formance of the studied technology might be misjudged. 
Similar to cross-correlation analysis with time delay that is 
used, say, by engineers in signal analysis, the 4-quadrant 
plot methodology can be adapted to this case. Therefore, 
we shift the time series of measurements derived from the 
studied technology by a certain time lag and again perform 
our analyses. That is, we calculate the corresponding con-
cordance rate and create the 4-quadrant plot for the shifted 
studied technology’s time series. Figure 6 illustrates this for 
artificial data. Figure 6A shows a 4-quadrant plot for the 
original data, that is, simultaneously recorded data pairs of 
CO values. Figure 6, B and C, show analyses in which the 
studied device is delayed by 2 and 4 time units, respectively. 
Clearly, in the second case (Fig. 6B), trending capacity is 
highest. The concordance coefficients are 0.65, 0.97, and 0.65.

Therefore, we suggest extending the trending analysis in 
CO measurement by accounting for a potential time delay. 

That is, we suggest defining a clinically acceptable range of 
time delays before the beginning of the clinical study com-
paring the trending ability of 2 CO measurement devices. 
When analyzing the obtained CO data, separate analy-
ses must be performed for each time lag within the previ-
ously defined range of time delays. The final evaluation 
of the measurement performance of the studied technol-
ogy should then be based on the time lag with the highest 
agreement.

CONCLUSIONS
In comparison with the 4-quadrant plot analysis, there is an 
absence of definite advantages combined with a complex 
interpretability of the polar plot method. Therefore, the 
polar plot analysis can currently not be recommended as the 
superior method for the statistical evaluation of trending 
ability of a CO monitor compared with the 4-quadrant plot. 
Furthermore, accounting for a potential time delay between 
2 CO measurement technologies is an important aspect in 
the field of trending analysis that needs to be addressed. E
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Figure 8. Illustration to exemplarily describe the 
Bland-Altman analysis in the context of trending 
analysis, using artificial cardiac output (CO) values. 
A, Shows CO measurements, both RT and ST derived, 
done every 5 minutes. Four-quadrant plots based on 
absolute (B) and relative (F) numbers are shown. The 
data points in the 4-quadrant plots indicate a poor 
trending ability. The corresponding polar plot is given 
in (D). C and E, Show Bland-Altman plots, demon-
strating that distinguishing the current scenario from 
the one shown in Figure 7 is not possible. The black 
dashed horizontal line in (C) and (E) shows the mean 
of the differences (=bias) between the 2 methods, the 
red dashed horizontal lines show the upper and lower 
95% limits of agreement (1.96 × SD), and the dotted 
horizontal lines show the confidence bands for the 
limits of agreement. RT = reference technology; ST = 
studied technology.
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APPENDIX 1
Bland-Altman Analysis in the Context of Trending 
Analysis
The Bland-Altman analysis is the leading method to assess 
the accuracy and precision between a reference and a stud-
ied technology in cardiac output (CO) measurement com-
parison studies. In its simplest form, the Bland-Altman plot 
quantifies how much the reference (e.g., the gold standard) 
and studied technology may deviate from each other. To 
this end, it provides boundaries such that 95% of the non-
systematic differences between measurements from refer-
ence and studied technology lie within these boundaries 
(the exact value of 95% holds only if the differences are 
normally distributed random variables, otherwise it holds 
only for approximately 95% of the data). If the calculated 
boundaries of possible differences between the methods are 
too large to be clinically negligible, the researcher decides 
that the 2 methods are not interchangeable. However, if the 
boundaries refer to differences between the methods that 
are clinically negligible, the Bland-Altman analysis rates 
them as equally good and thus interchangeable.

To address this mathematically, let 
g ,s ,j
i

j
i p

ii N j N, , , , ,∈ …{ } ∈ …{ }1 1 , be the values of the 
gold standard method (g) and the studied technology (s), 
respectively, where Np denotes the number of patients and 
Ni denotes the number of measurements per patient i. The 

Bland-Altman plot displays 
g +sj

i
j
i

2
 on the x-axis and g sj

i
j
i−  

on the y-axis for i N j Np
i∈ …{ } …{ }1 1, , , , , .∈  It is common 

in the scientific literature to use g +sj
i

j
i

2
 for the x-axis values 

in the Bland-Altman plot rather than only the gold standard  
g j
i . In their work published in 1995, Bland and Altman illus-

trate with an example why plotting the difference between 
g j
i  and s j

i  against the standard method instead of the aver-
age of g j

i  and s j
i  is misleading.44

One then considers the mean and SD of the differences 
g sj
i

j
i−  on the y-axis for i N j Np

i∈ …{ } ∈ …{ }1 1, , , , , .
Now it follows that if the differences are normally dis-

tributed random variables (which is a reasonable assump-
tion for measurement errors) and independent, 95% of the 
differences lie between mean (D

−
) minus 1.96 multiplied by 

SD and mean (D
−

) plus 1.96 multiplied by SD, which are 
the so-called limits of agreement (see Bland and Altman 
1986).39 Here, the mean refers to the systematic difference (if 
we know the mean, we could simply correct for this differ-
ence by subtracting it from the measurements of the stud-
ied technology) and 2 × 1.96 = 3.92 multiplied by the SD to 
the boundaries for nonsystematic differences, respectively. 
These numbers hold if the data are independent and the 

true SD is known. Having to estimate the SD from the data, 
however, one should provide confidence bands for the esti-
mates, that is, for the estimated limits of agreement. To this 
end, Bland and Altman estimate the variance of the limits 

of agreement by Var  1.96D s
n n

sd d

−
± ×⎛

⎝⎜
⎞
⎠⎟
= +

× −( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟×

1 1 96
2 1

2
2. , 

where sd
2 is the estimated variance of the differences above. 

Confidence bands for the limits of agreement will be t multi-

plied by Var D sd( . )
−

± ×1 96  to each side, where t is the 95% 
quantile of the t distribution with n – 1 degrees of freedom. 
Note that this formula holds only for independent data.

Often the data are not independent and identically dis-
tributed, for example, when >1 measurement in 1 indi-
vidual is performed (see Bland and Altman 2012 for an 
overview).2 Extensions and improvements of the Bland-
Altman analysis therefore deal in particular with the cal-
culation of the SD and the limits above in such cases.45,46 
Usually, one distinguishes between repeated and nonre-
peated measurements. The term repeated measurements 
refers to a scenario in which we perform >1 measurement 
in the same patient. In this scenario, we have to further dis-
tinguish between cases in which the true value is constant 
and cases in which the true value varies over time (e.g., 
when measuring a patient’s CO). In the latter case, we are 
using the repeated measurements to monitor, the patient’s 
CO, for instance. If the true value is constant, repeating the 
measurement results in a higher precision of the measure-
ments because the measurement errors average out across 
the measurements. If the true value varies over time, we 
do not increase the precision with each measurement. 
Furthermore, it is important whether we perform measure-
ments in only 1 patient or in several patients. The variabil-
ity of the measurements may be different from 1 patient 
to another (so called fixed effect on the patient). Again, 
denote the measurements with the 2 methods by g (gold 
standard) and by s (studied technology) and note that we 
are interested in the variance of D = g − s. Partitioning of 
the variances of each method leads to Var g( ) = + +σ σ σt gI gw

2 2 2  
and )Var(s = + +σ σ σt sI sw

2 2 2 , where σt
2 is the variance due to 

changes in true value over time, σgI
2  and σsI

2  are variances 
due to different variations from patient to patient (fixed 
effects), and σgw

2  and σsw
2  are the variances of the measure-

ment errors. The estimation of the variances of g and s is 
based on estimating all these single terms.

For the sake of simplicity, we now focus on the case 
where we only monitor 1 patient (so σ σgI sI

2 2 0= = ). The true 
value, however, varies over time (so σt

2 is not equal to 0). 
Because we do not know the true value, we cannot estimate 
σt

2  without further information. But, if we look at the time 
series of the differences D = g − s instead, the variation of 
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the true value cancels out, and we find Var(g s− ) = +σ σgw sw
2 2 , 

which is the sum of the variances of the measurement errors 
without further effects. Bland and Altman assume for this 
case (see, e.g., Bland and Altman, 1999, section 5.347) that 
the single measurements are independent, so that we can 
estimate Var(g − s) by calculating the SD between the differ-
ences D = g − s of the measurements. Furthermore, we can 
calculate the confidence bands for the limits of agreement as 
stated above for the independence case.

Before applying the Bland-Altman plot for trending 
analysis, we should recall the essence of trending analysis. 
Two methodologies show a good trending if they react on 
changes in the same direction. The idea is that both methods 
could be used to monitor and stabilize a patient.

When applying Bland-Altman analysis in this con-
text, there are generally 2 different possibilities. First, one 
could apply it directly to the measurements as summarized 
above, and second one could apply the Bland-Altman plot 
to g g s sj

i
j
i

j
i

j
i− −− −1 1,  for i N j Np

i∈ …{ } ∈ …{ }1 2, , , , , , that is, 
to the changes measured by each methodology instead of 
the actual measurements.

In Figure  7, we visualize both ways for a simulation 
example. The data points are deliberately chosen to illus-
trate the challenges of the Bland-Altman plot in the context 
of trending analysis. Multiple measurements in 1 subject are 
shown. Figure 7A shows CO measurements done every 5 
minutes while monitoring a patient who has been stable in 
CO for longer. Suddenly, the patient’s CO decreases. The CO 
then increases again after some intervention. It can be seen 
from the graph that both CO measurement devices detect 
the CO change but react with different sensitivity. However, 
both devices are suitable for detecting a patient’s decrease 
in CO. This is illustrated in the 4-quadrant plot (Fig. 7B). All 
data points lie on a straight line in the first and third quad-
rant of the plot, indicating an almost perfect linear relation 
of the reference technology and the studied technology, 
which, therefore, always detect the same direction of CO 
change. We additionally plotted a polar plot by Critchley 
et al. (Fig. 7D) and a 4-quadrant plot based on relative num-
bers (Fig. 7F) as discussed in Extensions and Perspectives. 
Figure 7C shows a Bland-Altman plot. Figure 7E shows a 
Bland-Altman plot applied to changes of the measurement. 
Now, the x-axis refers to the average of the detected changes 
of both devices at the same time, whereas the y-axis refers 
to the difference of the detected changes. The directions of 
the changes cannot be seen from the Bland-Altman plot 
(Fig. 7C) and the 4-quadrant plot should be consulted.

Figure 8 emphasizes this point. In the figure, the patient’s 
decrease in CO is detected with the reference technology 

(gold standard method), whereas the studied technology 
always detects the changes in the opposite direction (Fig. 
8A). The 2 Bland-Altman plots (Fig. 8, C and E) report similar 
mean differences and 95% limits of agreement as before (and 
are thus not able to distinguish the current scenario from the 
one before), whereas the 4-quadrant plot clearly shows the 
poor trending ability of the devices (Fig. 8, B and F).

Overall, Bland-Altman analysis is an appealing concept for 
assessing the absolute agreement and precision of technolo-
gies. However, if the technologies show a good trending abil-
ity but deviate in absolute measures, Bland-Altman analysis 
cannot confirm trending ability. In these cases, the methods 
as discussed in this article should additionally be applied.

APPENDIX 2
Calculation of the Measures Angular Bias and 
Radial Limits of Agreement (Usually Derived 
from the Polar Plot) from the 4-Quadrant Plot
Let xi and yi denote the ∆CO values of the reference and stud-
ied device as before. Then the angle between the (0,0)-(xi,yi)-

line and the 45° axis is ϑ
πi

i

i

atan
x
y

=
⎛

⎝
⎜

⎞

⎠
⎟×2

180
45−

 where atan2 

is a common variation of the arctangent function to cope with 
the different orthants of the data.

The mean of all these thetas corresponds to the angular 
bias calculated from the polar plot. It may be depicted in the 
4-quadrant plot by a line.

Note that the numbers calculated this way do not necessar-
ily match the numbers as calculated from the polar plot. The 
reason is the exclusion zone of the polar plot, which excludes 
also most of the discordant pairs from the data. The draw-
backs of the exclusion zone in the polar plot are described 
in detail in Polar Plot Analysis. However, by excluding the 
same data points from the analysis, both the angular bias 
when applying the polar plot methodology and the angular 
bias derived from the 4-quadrant plot methodology coincide.

The radial limit of agreement is the symmetric angle 
around the 45° line in which 95% of the data points fall. It 
may be calculated from the theta values above. Therefore 
let α i i n, = …1  denote an ordered set of absolute values of 
the ϑ i calculated above beginning with the smallest value. 
Let m = ×⎢⎣ ⎥⎦ +0 95 1. n , that is, the 0.95 multiplied by the total 
number of points rounded to the next natural number. The 
angle of the radial limit is then the m-th smallest value of the 
absolute values of ϑ i as calculated above. Again, by exclud-
ing the same data points from the analysis both the radial 
limit of agreement when applying the polar plot method-
ology and the radial limit of agreement derived from the 
4-quadrant plot methodology coincide.


