Acid Base in ITU

"Life is a struggle, not against Sin, nor against Money nor Power .. but against Hydrogen ions."

H.L. MENCKEN

ACID BASE IN ITU - OUTLINE

- Why worry?
- Acid base traditional methods
- Acid base modern Stewart's physicochemical method
- Clinical examples

ACID BASE IN ITU - OUTLINE

- Why worry?
- * Acid base traditional methods
- Acid base modern Stewart's physicochemical method
- Clinical examples

Acid-base - why does it matter ?

Metabolic acidosis - base deficit > 5			
Cause Risk of death			
Increase of unmeasured anions (lactate)	Doubled		
Hyperchloraemic acidosis	No change		

"Base deficit does not predict mortality when secondary to hyperchloremic acidosis"

Shock Vol 17, No 6. pg 459-462, 2002

Consider [H+] disturbance as a symptom of an underlying disease

Acid-base - why does it matter?

"Apneic oxygenation was carried for 15-55 minutes.

Severe respiratory acidosis (without anoxia) lasting > 30 minutes, can be well tolerated in normal subjects."

Frumin et al Anesthesiology 1959; 20:789-98

ACID BASE IN ITU - OUTLINE

- * Why worry?
- Acid base traditional methods
- Acid base modern Stewart's physicochemical method
- Clinical examples

Definitions

pH:

Quantification of [H+] expressed as a negative logarithm

Acidic:

A solution is acidic if $[H^+] > [OH^-]$

Basic: A solution is basic if [H⁺] < [OH⁻]

Strong electrolyte: Completely dissociates in water

No molecules of the parent compound are present.

Weak electrolyte: Partially dissociates in water Molecules of the parent compound and products of dissociation all exist together.

Traditional approaches to Acid-base

"Bicarbonate centered"

"Base deficit/excess" approach

Traditional approaches to Acid-base

"Bicarbonate centered"

views the pH as a function of the concentration of bicarbonate and pCO2 (Henderson-Hasselbach)

Davenport Diagram

Metabolic acidosis / alkalosis

Respiratory acidosis / alkalosis

Respiratory compensation of metabolic acidosis

Metabolic compensation of respiratory acidosis

Traditional approaches to Acid-base

"Base deficit/excess" approach (Sigaard-Andersen)

"Base deficit / excess" approach

Base deficit - amount of strong alkali required to return pH to 7.4 when pCO2 is normalised

Base deficit is an "average" of often <u>opposing influences</u> it does not explain cause(s): ex. ketones, hyperchloraemia, nor water excess/deficit.

Multiple trauma, ARDS, Sepsis

pO2	14.5
pH	7.32
pCO2	5.5
HCO3 ⁻	21
Base deficit	4

Diagnosis?

Multiple trauma, ARDS, sepsis

Clinical

Case

рН	7.32	Na ⁺	131
pCO2	5.5	CI-	86
HCO3-	21	Albumin (g/L)	8
Base deficit	4	Lactic acid	18

the severity of the acidosis is greatly underestimated

Both traditional approaches were derived from large populations of patients and abstracted "back" to produce nomograms

Inductive reasoning

"Data trawling"

Problems with traditional approaches

Clinicians struggle with acid-base because traditional methods do not teach **understanding** of the underlying biophysical chemistry.

- Little quantitative data on patient's acid base status
- * Protein and electrolytes \Rightarrow not considered
- No diagnostic information

Major disturbances may be "hidden" within normal ABGs.

Problems with traditional approaches

BJA

Strong ion and weak acid analysis in severe preeclampsia: potential clinical significance⁺

"...in critically ill patients simultaneous acid/base derangements may offset each other and ultimately lead to a minimally deranged pH, HCO3, BE and AG "

"A quantitative physicochemical approach analyses the difference in strong plasma cations and anions, the concentration of weak acids (mainly albumin and phosphate), and the PC02."

"multiple <u>severe acid-base disorders</u> have been demonstrated in various disease processes, <u>despite normal pH and BE</u>."

British Journal of Anaesthesia 115 (2): 275-84 (2015)

ACID BASE IN ITU - OUTLINE

- * Why worry?
- Acid base traditional methods
- Acid base modern Stewart's physicochemical method
 Clinical examples

Stewart's physicochemical approach

Considers the physical chemistry of :

- * pure Water
 - * add strong ions
 - * add weak acid
 - * add CO2

Uses sound **deductive** mathematical reasoning

Acid-base - Let's get some perspective

Compared to [Na+], [Cl-] [H+] is orders of magnitude smaller

1 L Plasma contains :

[H+] - 40 nano Moles/L (=pH 7.40)
[Na+] - 140,000,000 nano Moles/L - 140 mMol/L
[H₂0] - 55.000,000,000 nano Moles/L - 55 Mol/L

"biological impact of [H+] is out of all proportion to it's magnitude" Stewart

Fundamental Principles

Conservation of mass:

The amount of substance in an aqueous solution remains constant (unless added or removed from outside) The product of [H⁺] and [OH⁻] is **constant** an increase in one leads to a decrease in the other

Electroneutrality:

An aqueous solution contains the **same** number of negative and positive charges

.....otherwise we would become a battery!

All acid-base states result from alterations in the dissociation of water

Pure Water

Solution	Temp	K'w	[H+]	рН
Pure water	° 25	1.0 x 10 -14 (Eq/L)	1.0 x 10 -7 (Eq/L)	7
Pure water	。 37	4.4 x 10 ⁻¹⁴ (Eq/L)	2.1 x 10 ⁻⁷ (Eq/L)	6.7
Plasma	。 37	_	40 nM/L	7.4

Physiological pH for ECF is 7.4, which is alkaline.

Conventionally we refer to relative acidity/alkalinity from this starting

point

Add NaCl - a fully dissociated strong ion

Biological fluids - $[Na^+] > [Cl^-]$

Strong Ion Difference

* Normal SID $\Rightarrow \sim 40$

* <u>Decreased</u> SID \Rightarrow <u>acidosis</u>

- Hyperchloraemic acidosis
 - large volumes of saline
- Free water excess
 - ✤ G5%, mannitol, alcohols

★ Increased SID ⇒ alkalosis

- Chloride loss
 - Diuretics
 - Gastric suctioning
- Free water deficit

Strong ion difference after adding saline to ECF

Hyperchloraemic acidosis

Strong ion difference after adding water to ECF

Strong ion difference affected by:

- Sodium bicarbonate
 - * makes solution alkaline by adding [Na⁺] without accompanying strong anion
 ⇒ increased SID

 \Rightarrow alkalotic

* KCI

If wish to acidify, KCI adds [CI⁻] without K⁺ (goes intracellular)

- \Rightarrow decreased SID
 - \Rightarrow acidotic

Clinical Case

Severe asthma

рН	6.75	pCO2	22
HCO3-	21	Base deficit	0.9
Na ⁺	144	CI-	106
Albumin (g/L)	37		

200 mls NaBicarb 8.4%

рН	6.84	pCO2	Unrecordable
HCO3-	Unrecordable	Base deficit	0.9

Frusemide 10 mg/hr \Rightarrow 200 mL/hr

рН	7.23	pCO2	10.13
HCO3-	24	Base deficit	l I

Add weak acid

Weak anions (= "ATot")

◆ Decreased ATot ⇒ alkalosis
 ◆ Hypoalbuminaemia
 Common in the critically ill
 ◆ Hypophosphataemia

Increased ATot ⇒ acidosis
 Hyperphosphataemia

Add CO2

CO2

* CO2 (independent variable) \Rightarrow [HCO₃⁻] (dependent)

- * Increased pCO2 \Rightarrow Respiratory acidosis
- * Decreased pCO2 \Rightarrow Respiratory alkalosis
- * Metabolic acidosis \Rightarrow respiratory compensation $\Delta pCO_2 = \Delta$ base excess/deficit

* Metabolic alkalosis \Rightarrow respiratory compensation $\Delta pCO_2 = 0.6 \times \Delta$ base excess/deficit

◆ Care if metabolic acidosis and IPPV ⇒
 must hyperventilate to compensate

3 Independent variables determining acid base status

Strong Ion Difference
Weak Anions
pCO2

Other variables are <u>dependent</u> (ex. pH, [H⁺], [HCO3⁻])

To calculate using Stewart's method

you need to answer the following polynomial equations:

water dissociation : $[H^+] \times [OH^-] = K'w$ weak acid dissociation : $[H^+] \times [A^-] \rightleftharpoons Ka \times [HA]$

weak acid conservation of mass : $[ATot] = [H^+] + [A^-]$ bicarbonate ion formation equilibrium : $[H^+] \times [HCO_3^-] = Kc \times PCO2$ carbonate ion formation equilibrium : $[H^+] \times [CO_3^{2^-}] = K_3 \times [HCO_3^-]$ electric neutrality : ($[SID] + [H^+]$) – ($[HCO_3^-] - [A^-] - [CO_3^{2^-}] - [OH^-]$) = 0

 $[SID] + [H^+] - Kc \times PCO2/[H^+] - Ka - [ATot] / (Ka + [H^+]) - K_3 \times Kc PCO2/[H^+]^2 - K'w/[H^+] = 0$

Or

Simplified approach to Stewart Derivation

Four variables are determined:

- (1) standard base deficit from a blood gas machine
- (2) sodium-chloride effect (SID) = $([Na^+] [Cl^-]) 40$
- (3) **albumin** effect = 0.25 X [42- albumin]
- (4) **lactic** acid = measured lactate
- (5) unmeasured ion effect
 - = base deficit (sodium-chloride effect) albumin effect- lactate

Quantifies the metabolic effects of Stewart's independent variables.

British Journal of Anaesthesia 92 (1): 54±60 (2004)

ACID BASE IN ITU - OUTLINE

* Why worry?
* Acid base - traditional methods
* Acid base - modern Stewart's physicochemical method
* Clinical examples

Clinical	Multiple trauma, ARDS, Sepsis				
Case	рН	7.32	pCO2	5.5	
	HCO3-	21	Base deficit	undoresti	nated
	Na^+ of the	acidos	is is greatly		
	Albumin (g/L)	8	Lactate	18	

- (1) standard base deficit = 4
- (2) sodium-chloride effect = ($[Na^+] [Cl^-]$) 40 = (133-86) 40 = 7
- (3) albumin effect = 0.25 X [42- albumin] = 0.25 X [42 8] = 8.5
- (4) lactic acid effect = -18
- (5) unmeasured ion effect
 - = base deficit (sodium-chloride effect) albumin effect lactate = -4 (7) 8.5 (-18) = -1.5

(1) standard base deficit = 6.7

(2) sodium-chloride effect = $([Na^+] - [Cl^-]) - 40 = (144 - 115) - 40 = -11$

(3) albumin effect = $0.25 \times [42 - albumin] = 0.25 \times [42 - 28] = 3.5$

(4) lactic acid effect = 0.8

(5) unmeasured ion effect = 0

= base deficit - (sodium-chloride effect) - albumin effect - lactate = -6.7 - (-11) - 3.5 - (-0.8) = 0

Alkaline (BD -)

(1) standard base deficit = 16

- (2) sodium-chloride effect = $([Na^+] [Cl^-]) 40 = (142 112) 40 = -10$
- (3) albumin effect = $0.25 \times [42 albumin] = 0.25 \times [42 28] = 3.5$
- (4) lactic acid effect = 1.0

(5) unmeasured ion effect = -1

= base deficit - (sodium-chloride effect) - albumin effect - lactate = -16 - (-10) - 3.5 - (-1.0) = -8.5

Postoperative multiple organ failure

This acidosis is exactly matched by the alkalinizing hypoalt uninemia, so that both BD and [HCO3-] are within normal limits, a severe metabolic acidosis missed

(1) standard base deficit = 0

Clinical

Case

(2) sodium-chloride effect = $([Na^+] - [CI^-]) - 40 = (139-102) - 40 = -3$

(3) albumin effect = 0.25 X [42- albumin] = 0.25 X [42 - 6] = 9

(4) lactic acid effect = measured lactate = -5

(5) unmeasured ion effect

= base deficit - (sodium-chloride effect) - albumin effect - lactate = 0 - (-3) - 9 - (-5) = - 1

Recap - Stewart's model

- Alterations in the dissociation of water lead to all acid-base abnormalities
- * 3 independent variables affect acid-base balance
 - Strong ion difference (SID)
 - Weak acids (ATOT)
 - * PaCO2
- * Metabolic acidosis is caused by:
 - Decreased SID
 - accumulation of metabolic anions
 - free water excess
 - Increased ATOT
- * Metabolic alkalosis is caused by :
 - SID increases
 - Decreased ATOT (ex. hypoalbuminemia)

Did you know.....

Some interesting facts

Control of acid base

Lungs \Rightarrow CO2 (~17,000 mEq/day) Kidney \Rightarrow CI (~60 mEq/day) Liver \Rightarrow Albumin

* Kidney maintains ECF's SID \Rightarrow [CI⁻] excretion (accompanied by NH4⁺)

Diuretics \Rightarrow alkalosis (chloride loss) \Rightarrow increased SID

NaHCO3 corrects acidosis by supplying only [Na⁺]

 \Rightarrow increasing SID (not [HCO₃⁻] a dependent variable)

- * Saline (SID = 0) \Rightarrow hyperchloremic metabolic acidosis
 - Its not the absolute value of chloride
 - it's the strong ion difference between Na and CI
- ✤ Hypotonic NaCl solutions (SID = 0) ⇒ acidosis
- ♦ Water (SID=0) ⇒also acidosis

Some interesting facts

What can the body use to regulate H⁺

- Na⁺ must be kept constant to regulate volume
- Proteins concentration is important for oncotic pressure
- pCO2 can be altered for rapid adjustment
- * CI⁻ can be altered for longer term changes

Thus CI⁻ is the major factor for long term Acid Base regulation

Conclusions

Cause of acid base disturbance influences prognosis

- * Uncomplicated cases \Rightarrow traditional methods
- In complex cases ⇒ Stewarts method
- Acid-base determined by independent variables acting on water dissociation
- Independent variables
 - Strong ion difference
 - Weak anions (albumin)
 - * CO₂
- * pH, [H⁺], [HCO₃⁻], are <u>dependent</u> variables

???

Download at

http://www.jvsmedicscorner.com (Mallory / Everest2013)