
Acid Base in ITU

“Life is a struggle, not against Sin, nor against 
Money nor Power .. but against Hydrogen ions.” 

H.L. MENCKEN 
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Acid-base - why does it matter ?

Consider [H+] disturbance as a symptom of an underlying 
disease 

“Base deficit does not predict mortality when 
secondary to hyperchloremic acidosis”

Shock Vol 17, No 6. pg 459-462, 2002

 Metabolic acidosis - base deficit > 5
Cause Risk of death

Increase of unmeasured 
anions (lactate) Doubled

Hyperchloraemic 
acidosis No change



Acid-base - why does it matter ?
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“Apneic oxygenation was carried for 15-55 minutes. 


Severe respiratory acidosis (without anoxia) lasting > 30 minutes, 
can be well tolerated in normal subjects.”
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Acidic: 
A solution is acidic if  [H+] > [OH-]

Definitions

Basic: 
A solution is basic if  [H+] < [OH-]

Strong electrolyte: 
Completely dissociates in water 

No molecules of the parent compound are present.

Weak electrolyte: 
Partially dissociates in water 
Molecules of the parent compound and products of dissociation all exist together.

pH: 
Quantification of [H+] expressed as a negative logarithm  



❖  “Bicarbonate centered”

Traditional approaches to Acid-base

❖  “Base deficit/excess” approach



“Bicarbonate centered” 

views the pH as a function of the concentration 
of bicarbonate and pCO2 
(Henderson-Hasselbach)

 Traditional approaches to Acid-base
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Metabolic acidosis / alkalosis
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“Base deficit/excess” approach 
(Sigaard-Andersen)

 Traditional approaches to Acid-base



“Base deficit / excess” approach

Base deficit - amount of strong alkali required to 
return pH to 7.4 

when pCO2 is normalised

Base deficit is an “average” of often opposing influences 
it does not explain cause(s): 

 ex. ketones,  hyperchloraemia, nor water excess/deficit.



pO2 14.5

pH 7.32

pCO2 5.5

HCO3- 21

Base deficit 4

Clinical 
Case

Diagnosis ?

Multiple trauma,  ARDS, 
Sepsis



Multiple trauma,  ARDS, sepsis

pH 7.32 Na+ 131

pCO2 5.5 Cl- 86

HCO3- 21 Albumin (g/L) 8

Base deficit 4 Lactic acid 18

the severity of the acidosis is greatly underestimated

 4

Base deficit

7

sodium-chloride
 effect

8.5

albumin 
effect

-18

lactic acid
 effect

unmeasured ion
 effect
-1.5

Clinical 
Case

Alkaline
(BD -)

Base 
deficit

Acid
(BD +)



Both traditional approaches were derived 
from large populations of patients and 

abstracted “back” to produce 
nomograms

Inductive reasoning

“Data trawling”



❖ Little quantitative data on patient’s acid base status 

❖ Protein and electrolytes ⇒ not considered 

❖ No diagnostic information 

Major disturbances may be “hidden” within normal ABGs. 

Clinicians struggle with acid-base because traditional methods do 
not teach understanding of the underlying biophysical chemistry.

Problems with traditional approaches
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“…in critically ill patients simultaneous acid/base derangements may 
offset each other and ultimately lead to a minimally deranged pH, 
HCO3, BE and AG “

“A quantitative physicochemical approach analyses the difference in 
strong plasma cations and anions, the concentration of weak acids 
(mainly albumin and phosphate), and the PC02.” 

“multiple severe acid-base disorders have been demonstrated in 
various disease processes, despite normal pH and BE. “
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Stewart’s physicochemical approach

Considers the physical chemistry of : 
❖ pure water 

❖ add strong ions 
❖ add weak acid 

❖ add CO2 

Uses sound deductive mathematical 
reasoning



Compared to [Na+], [Cl-]  
 [H+] is orders of magnitude smaller

Acid-base - Let’s get some perspective

“biological impact of [H+] is out of all proportion to it’s magnitude” 
Stewart

1 L Plasma contains : 

[H+]   -                   40 nano Moles/L (=pH 7.40) 
[Na+] -    140,000,000 nano Moles/L - 140 mMol/L 

[H20] - 55.000,000,000 nano Moles/L - 55 Mol/L



Conservation of mass: 
The amount of substance in an aqueous solution remains 
constant (unless added or removed from outside) 

The product of [H+] and [OH-] is constant  
an increase in one leads to a decrease in the other

Electroneutrality: 
An aqueous solution contains the same number 
of negative and positive charges 

.......otherwise we would become a battery!

Fundamental Principles



[H20] ⇄ [H+] + [OH-]

 Kw x [H20] = [H+] x [OH-]

Electric neutrality must be maintained

All acid-base states result from  
water and its dissociation

constant = [H+] x [OH-]

OH-H+ OH-
H+OH-

H+

[H+] and [OH-] adjust to outside influences

Independent variables control acid base by influencing  
water dissociation



Positive
charges

H2O

Negative
charges

H2O

OH-H+
H20 ⇄ [H+] + [OH-]

 Kw x [H20] = [H+] x [OH-]

[H+] = [OH-]

OH-H+

Electric neutrality must 
be maintained, so:

All acid-base states result from alterations in the 
dissociation of water



Pure Water 

Solution Temp K’w [H+] pH

Pure water 25
∘ 1.0 x 10-14 

(Eq/L)
1.0 x 10-7 

(Eq/L) 7

Pure water 37
∘ 4.4 x 10-14 

(Eq/L)
2.1 x 10-7 

(Eq/L) 6.7

Plasma 37
∘

- 40 nM/L 7.4

Physiological pH for ECF is 7.4, which is alkaline. 
Conventionally we refer to relative acidity/alkalinity from this starting 

point



Add NaCl - a fully dissociated strong ion

Positive
charges

H2O

Negative
charges

H2O

Cl-Na+
H+ OH-

[Na+] + [H+] = [Cl-] + [OH-]

OH-H+

Electric neutrality must 
be maintained



Biological fluids -  [Na+] > [Cl- ]

Positive
charges

H2O

Negative
charges

H2O

Cl-Na+

H+
OH-

OH-
H+

SID

Electric neutrality must 
be maintained, 

so :



❖ Increased SID ⇒ alkalosis 
❖ Chloride loss 

❖ Diuretics 
❖ Gastric suctioning 

❖ Free water deficit

Strong Ion Difference

❖ Decreased SID ⇒  acidosis 
❖ Hyperchloraemic acidosis 

❖ large volumes of saline 
❖ Free water excess 

❖ G5%, mannitol, alcohols

❖ Normal SID ⇒ ~ 40



Strong ion difference after adding saline to ECF

Na+=140
Cl- =100
SID = 40

1 Litre ECF

Na+=154
Cl- =154
SID = 0

1 Litre saline

Na+=147
Cl- =127
SID = 20

1 Litre ECF

Hyperchloraemic acidosis



Na+=140
Cl- =100
SID = 40

1 Litre

Na+= 0
Cl- = 0
SID = 0

1 Litre water

Na+ = 70
Cl- = 50
SID = 20

2 Litre

Strong ion difference after adding water to ECF



Strong ion difference affected by: 

❖ Sodium bicarbonate 
❖ makes solution alkaline by adding [Na+] without 

accompanying strong anion  
⇒ increased SID 

⇒ alkalotic 

❖ KCl 
❖ If wish to acidify, KCl adds [Cl-] without K+ (goes 

intracellular) 
⇒ decreased SID 

⇒ acidotic



Severe asthma

pH 6.75 pCO2 22

HCO3- 21 Base deficit 0.9

Na+ 144 Cl- 106

Albumin (g/L) 37

200 mls NaBicarb 8.4%

pH 6.84 pCO2 Unrecordable

HCO3- Unrecordable Base deficit 0.9

Frusemide 10 mg/hr ⇒ 200 mL/hr

pH 7.23 pCO2 10.13

HCO3- 24 Base deficit 1

Clinical 
Case



ATot

Add weak acid

Positive
charges

Negative
charges

Strong 
anions

H+ OH-

OH-
H+

SID

Electric neutrality 
must be maintainedStrong

cations



❖ Increased ATot ⇒ acidosis

❖ Hyperphosphataemia 

Weak anions (= “ATot”)

❖ Decreased ATot ⇒ alkalosis
❖ Hypoalbuminaemia 

Common in the critically ill 
❖ Hypophosphataemia 



Negative
charges

Strong 
anions

H+ OH-

ATot

HCO3-

Add CO2

SID

Electric neutrality 
must be maintained

OH-
H+

 Kc × PCO2 ⇄ [H+] × [HCO3-] 

Strong
cations

Positive
charges



❖ Decreased pCO2 ⇒ Respiratory alkalosis

CO2

❖ Increased pCO2 ⇒ Respiratory acidosis

❖ CO2 (independent variable) ⇒ [HCO3-] (dependent)

❖ Metabolic acidosis ⇒ respiratory compensation  
∆ pCO2 = ∆ base excess/deficit

❖ Metabolic alkalosis ⇒ respiratory compensation 
∆ pCO2 = 0.6 X ∆ base excess/deficit

❖ Care if metabolic acidosis and IPPV ⇒ 
must hyperventilate to compensate



❖ Strong Ion Difference 
❖ Weak Anions 
❖ pCO2

Other variables are dependent 
(ex. pH, [H+], [HCO3-])

3 Independent variables determining acid 
base status  



water dissociation :  [H+] x [OH-] = K’w 
weak acid dissociation :  [H+] x [A-] ⇄ Ka x [HA] 

weak acid conservation of mass :  [ATot] = [H+] + [A-] 

 bicarbonate ion formation equilibrium : [H+] × [HCO3-] = Kc × PCO2  

carbonate ion formation equilibrium : [H+] × [CO32-] = K3 × [HCO3-]  

electric neutrality : ( [SID] + [H+] ) − ( [HCO3-] − [A-] − [CO32-] − [OH-] ) = 0

Or ....

To calculate using Stewart’s method

 [SID] + [H+]  - Kc x PCO2/[H+] - Ka - [ATot] / (Ka + [H+]) - K3 x Kc PCO2/[H+]2 - K’w/[H+] = 0

you need to answer the following polynomial equations:



Simplified approach to Stewart Derivation

Four variables are determined:  

(1) standard base deficit from a blood gas machine 
(2) sodium-chloride effect (SID) = ([Na+] - [Cl-]) - 40 

(3) albumin effect = 0.25 X [42- albumin] 

(4) lactic acid = measured lactate 
(5) unmeasured ion effect  

= base deficit - (sodium-chloride effect) - albumin effect- lactate

British Journal of Anaesthesia 92 (1): 54±60 (2004)

Quantifies the metabolic effects of Stewart’s independent variables.
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Multiple trauma,  ARDS, Sepsis
pH 7.32 pCO2 5.5

HCO3- 21 Base deficit 4
Na+ 133 Cl- 86

Albumin (g/L) 8 Lactate 18
(1) standard base deficit  = 4

(2) sodium-chloride effect = ([Na+] - [Cl-]) - 40 = (133-86) - 40 = 7

(3) albumin effect = 0.25 X [42- albumin] = 0.25 X [42 - 8] = 8.5

(4) lactic acid effect = -18

(5) unmeasured ion effect 


= base deficit - (sodium-chloride effect) - albumin effect  - lactate = -4 - (7) - 8.5 - (-18) = -1.5

Alkaline

(BD -)

Acid

(BD +)

Base 
deficit

4

Base deficit

7

sodium-chloride
 effect

8.5

albumin 
effect

-18

lactic acid
 effect

the severity of the acidosis is greatly underestimated

unmeasured ion
 effect
-1.5

Clinical 
Case



Assessment of a patient 2 hours post operatively. 

Patient was given 4 l of normal saline.

(1) standard base deficit  = 6.7

(2) sodium-chloride effect = ([Na+] - [Cl-]) - 40 = (144-115) - 40 = -11 

(3) albumin effect = 0.25 X [42- albumin] = 0.25 X [42 - 28] = 3.5

(4) lactic acid effect = 0.8

(5) unmeasured ion effect = 0


= base deficit - (sodium-chloride effect) - albumin effect - lactate = - 6.7 - (-11) - 3.5 - (-0.8) = 0

pH 7.28 pCO2 5.3

HCO3- 21 Base deficit 6.7

Na+ 144 Cl- 115

Albumin (g/L) 28 Lactate 0.8

6.7

Base deficit

3.5

albumin 
effect

Explained by a decrease in the strong ion difference, partly offset 

by a decrease in total albumin.

sodium-chloride
 effect

-11

unmeasured ion
 effect

lactic acid
effect

0.8 0

Clinical 
Case

Alkaline

(BD -)

Base 
deficit

Acid

(BD +)



52 yr old man with acute pancreatitis after fluid 
resuscitation with saline.

(1) standard base deficit  = 16

(2) sodium-chloride effect = ([Na+] - [Cl-]) - 40 = (142-112) - 40 = -10

(3) albumin effect = 0.25 X [42- albumin] = 0.25 X [42 - 28] = 3.5

(4) lactic acid effect = 1.0

(5) unmeasured ion effect = -1


= base deficit - (sodium-chloride effect) - albumin effect - lactate = -16 - (-10) - 3.5 -( -1.0) = -8.5

pH 7.205 pCO2 3.47

HCO3- 10 Base deficit 16

Na+ 142 Cl- 112

Albumin (g/L) 28 Lactate 1.0

16

Base deficit

3.5

albumin 
effect

Explained by a decrease in the strong ion difference and 

unmeasured anions,  partly offset by a decrease in total albumin.

sodium-chloride
 effect

-10

lactic acid
effect

-1

unmeasured ion
 effect

-8.5

Clinical 
Case

Alkaline

(BD -)

Base 
deficit

Acid

(BD +)



Postoperative multiple organ failure

(1) standard base deficit  = 0

(2) sodium-chloride effect = ([Na+] - [Cl-]) - 40 = (139-102) - 40 = -3 

(3) albumin effect = 0.25 X [42- albumin] = 0.25 X [42 - 6] = 9

(4) lactic acid effect = measured lactate = -5

(5) unmeasured ion effect 


= base deficit - (sodium-chloride effect) - albumin effect - lactate = 0 - (-3) - 9 -(-5 )= - 1

pH 7.40 pCO2 5.2

HCO3- 24 Base deficit 0

Na+ 139 Cl- 102

Albumin (g/L) 6 Lactate 5

9

albumin 
effect

This acidosis is exactly matched by the alkalinizing 

hypoalbuminemia, so that both BD and [HCO3-] are within 

normal limits; a severe metabolic acidosis is missed

sodium-chloride
 effect

-3

lactic acid
 effect

-5

unmeasured ion
 effect

-1

Clinical 
Case

Alkaline
(BD -)

Base 
deficit

Acid
(BD +)

0

Base deficit



pH 7.4 pCO2 5.2

HCO3- 24 Base deficit 0

Na+ 127 Cl- 94

Albumin (g/L) 13 lactate 0

Liver cirrhosis, bleeding varices

(1) standard base excess  -> 0

(2) sodium-chloride effect = ([Na+] - [Cl-]) - 40 = (127 - 94) - 40 = -7

(3) albumin effect = 0.25 X [42- albumin] = 0.25 X [42 - 13] = 7

(4) lactic acid effect = 0

(5) unmeasured ion effect 


= base deficit - (sodium-chloride effect) - albumin effect - lactate= 0 - (-7) - 7 - 0 = 0

-7

sodium-chloride
 effect

7

albumin 
effect

lactic acid
 effect

0

This low-SID acidosis is exactly matched by hypoalbuminemic 

alkalosis. BD and [HCO3-] are normal.

Both traditional diagnostic approaches miss this metabolic 

acidosis.

unmeasured ion
 effect

0

Clinical 
Case

Alkaline
(BD -)

Base 
deficit

Acid
(BD +)

0

Base deficit



Recap - Stewart’s model
❖ Alterations in the dissociation of water lead to all acid-base 

abnormalities 
❖ 3 independent variables affect acid-base balance 

❖ Strong ion difference (SID) 
❖ Weak acids (ATOT) 
❖ PaCO2 

❖ Metabolic acidosis is caused by: 
❖ Decreased SID  

❖ accumulation of metabolic anions  
❖ free water excess 

❖ Increased ATOT  
❖ Metabolic alkalosis is caused by : 

❖SID increases  
❖Decreased ATOT (ex. hypoalbuminemia )  



Did you know........



Some interesting facts
❖ Control of acid base 

Lungs ⇒ CO2 (~17,000 mEq/day) 
Kidney ⇒ Cl  (~60 mEq/day) 
Liver ⇒ Albumin 

❖ Kidney maintains ECF’s SID ⇒ [Cl-] excretion (accompanied by NH4+) 

Diuretics ⇒ alkalosis (chloride loss) ⇒ increased SID 

❖ NaHCO3 corrects acidosis by supplying only [Na+]  
⇒ increasing SID (not [HCO3-] a dependent variable) 

❖ Saline (SID = 0) ⇒ hyperchloremic metabolic acidosis  
❖ Its not the absolute value of chloride 
❖ it’s the strong ion difference between Na and Cl 

❖ Hypotonic NaCl solutions (SID = 0) ⇒ acidosis 
❖ Water (SID=0) ⇒also acidosis



Some interesting facts

❖ What can the body use to regulate H+ 

❖ Na+ must be kept constant to regulate volume 
❖ Proteins concentration is important for oncotic 

pressure 
❖ pCO2 can be altered for rapid adjustment 
❖ Cl- can be altered for longer term changes 

Thus Cl- is the major factor for long term Acid Base 
regulation



Conclusions
❖ Cause of acid base disturbance influences prognosis 
❖ Uncomplicated cases  ⇒ traditional methods 

❖ In complex cases ⇒ Stewarts method 

❖ Acid-base determined by independent variables acting on 
water dissociation 

❖ Independent variables  
❖ Strong ion difference 
❖ Weak anions (albumin) 
❖ CO2 

❖ pH, [H+], [HCO3-], are dependent variables
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