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Platelets help to maintain blood circulation by controlling 
hemorrhage after an injury to the blood-vessel wall that causes physical or bio-
chemical disruption of the endothelium. The development of an activated plate-

let plug at the site of trauma seals the vascular lesion and brings about hemostasis. 
The membrane-oriented processes of subendothelial adhesion of platelets, granule re-
lease, cohesion, aggregation, and plug stabilization involve several well-characterized 
ligand–receptor interactions1 and will not be discussed further in this review.

Instead, we will focus on other functional contacts between platelets and endothe-
lial cells. The most important of these is the maintenance of vascular integrity by the 
constitutive release of proangiogenic cytokines and growth factors (which we are 
calling trophogens) from platelets. These molecules, which platelets store within gran-
ules, bind to specific receptors on the surface of endothelial cells, thereby eliciting 
intracellular signaling that stabilizes the vascular-endothelium cadherin complex at 
intercellular adherens junctions (see Glossary).

One clinical aspect of the platelet–endothelial cell interaction can be seen in pa-
tients with thrombocytopenia. When platelets fall precipitously below critical levels 
(usually under 10,000 to 20,000 per cubic millimeter), molecular disassembly opens 
the zippers formed by adjacent intercellular endothelial junctions, causing extrava-
sation of erythrocytes into the surrounding tissues. The characteristic microscopic 
feature of petechiae, the clinical hallmark of thrombocytopenia, is postcapillary venu-
lar extravasation of red cells at interendothelial junctions or gaps in the absence of 
overt trauma.2 Marked thinning and attenuation of the endothelium with separation 
at the gap junctions has been noted in animals with thrombocytopenia.3

THE END O THELI A L CELL –MEG A K A R YO C Y TE –PL ATELE T A X IS

Endothelial cells and megakaryocytes jointly participate in a number of physiological 
functions. They are the only cells that synthesize von Willebrand factor,4,5 and they 
define a specific vascular niche in the bone marrow, where hematopoietic precursors 
and sinusoidal endothelium interact directly.6 The process of platelet production 
through the formation of proplatelets and shedding of platelets occurs in mega-
karyocytes that have direct contacts with sinusoidal endothelial cells.7 In vitro, mega-
karyocytes support the survival of bone marrow–derived sinusoidal endothelial cells, 
and marrow sinusoidal endothelial monolayers promote the ex vivo expansion of 
megakaryocytes.8,9 Megakaryocytes produce an abundance of proangiogenic cyto-
kines and synthesize or transport a number of key endothelial-cell trophogens, 
including vascular endothelial growth factor A (VEGF-A), stromal cell–derived fac-
tor 1, angiopoietin 1, epidermal growth factor, and brain-derived neurotrophic 
factor, all of which mediate cross-talk between megakaryocytes and endothelial cells. 
In a reciprocal manner, endothelial cells release an array of trophic cytokines that 
support megakaryocyte development and platelet production (Fig. 1).10-13
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Platelets also influence the development and 
fate of endothelial-cell progenitors. In addition to 
promoting the migration and adherence of bone 
marrow–derived cells to sites of angiogenesis, 
platelets also induce differentiation of endothe-
lial-cell progenitors into mature endothelial cells. 
Under the influence of platelets, endothelial-cell 
progenitors down-regulate expression of c-kit (a 
growth-factor receptor on immature cells) and in-
crease the synthesis of CD31 (platelet–endothelial 
cell adhesion molecule, or PECAM1) and other 
markers of mature endothelial cells. These mature 
cells contain Weibel–Palade bodies, the organelles 
that store von Willebrand factor and P-selectin.14 
Aggregation and activation of platelets at sites of 
exposed subendothelium cause them to release 
stromal cell–derived factor 1, a potent angiogenic 
trophogen, which supports the recruitment and 
retention of bone marrow–derived endothelial-cell 
progenitors in focal areas of new blood-vessel for-
mation (neoangiogenic niches). In this way, plate-
lets contribute to the revascularization of ischemic 
tissue, tumor growth, and progression of athero-
sclerotic plaques.10,15 Recent studies indicate that 

platelets participate not only in the recruitment of 
dendritic cells to such plaques but also in the dif-
ferentiation of CD34+ hematopoietic stem cells 
into foam cells (lipid-laden macrophages) within 
these plaques.16

Pl atele t s a nd the V EGF S ys tem

The language of platelet–endothelial cell cross-talk 
is written in glyphs of specific trophogens that the 
cells release in particular microenvironments. Site-
specific deployment by platelets of angiogenic or 
antiangiogenic factors packaged in separate sets 
of alpha granules influences multiple pathologic 
states, from wound healing to diabetic retino-
pathy.17-19 The angiogenic family of VEGFs is an 
important mediator of platelet–endothelial cell in-
teractions in both steady and nonsteady states and 
accounts for much of the role of platelets in angio-
genesis and maintenance of vascular integrity.20

A global understanding of vascular homeosta-
sis must take into account how the platelets and 
endothelial cells orchestrate the expression of mul-
tiple members and isoforms of the VEGF family 
and other trophogens during the life cycle of the 
blood vessel, from vasculogenesis in the early em-
bryo to vascular regression in adult tissues (Fig. 2). 
Stabilization of blood vessels and preservation of 
platelet-supported vascular integrity in the steady 
state are important features of this cycle.

VEGF, discovered 25 years ago, was initially 
referred to as vascular permeability factor.21 In 
mammals, there are at least four members of the 
VEGF family: VEGF-A, VEGF-B, and the VEGF-C–
VEGF-D pair, which has a common receptor, VEGF 
receptor 3 (VEGF-R3).22

VEGF-A, the most studied of the group, inter-
acts with two tyrosine kinase receptors, VEGF 
receptor 1 (VEGF-R1) and VEGF receptor 2 (VEGF-
R2), to promote angiogenesis. VEGF-A also con-
tributes to vascular integrity: selective knockout of 
VEGF-A in endothelial cells increases cell death 
(apoptosis), which compromises the integrity of 
the junctions between endothelial cells.23 VEGF-A 
is a proangiogenic cytokine during embryogene-
sis. In mice, deletion of a single VEGF allele leads 
to hemorrhage and death of the embryo, thus em-
phasizing the importance of VEGF gene dosage 
during development.24

VEGF-B, which can form heterodimers with 
VEGF-A, occurs predominantly in brown fat, 
myocardium, and skeletal muscle.25 VEGF-C and 

Glossary

α-Catenin: An intracellular catenin that binds to β-catenin and links the com-
plex to the actin cytoskeleton.

Adherens junction: Complex of intercellular-adhesion transmembrane vascu-
lar-endothelium cadherin molecules coupled to members of a family of 
intracellular catenins linked to the cytoskeleton.

Angiopoietin 1 (ANG1): A protein expressed primarily by perivascular and 
mural cells for vessel stabilization.

β-Catenin: An intracellular catenin that binds to the cytoplasmic domain of 
vascular-endothelium cadherin; when not bound, acts as a transcription 
factor.

Brain-derived neurotrophic factor receptor (BDNF-R): Serves as a neurotro-
phin receptor on the endothelium.

CD148: A component of the adherens complex, also known as density- 
enhanced phosphatase; dephosphorylates vascular endothelial growth 
factor receptor 2 (VEGF-R2).

Endothelial differentiation gene 1 (EDG1): A sphingosine-1-phosphate  
receptor.

P120: An intracellular catenin that participates in stabilization of the intracel-
lular complex.

Platelet-activating factor (PAF): A bioactive proinflammatory phospholipid.

Platelet-activating factor receptor (PAF-R): A G-coupled receptor induced by 
shear stress.

Sphingosine-1-phosphate (S1P): A bioactive lysophospholipid of which plate-
lets are the major source.

Vascular-endothelium cadherin: A vascular endothelial intercellular-adhesion 
protein that forms calcium-dependent homodimers.
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VEGF-D seem to regulate lymphangiogenesis, pri-
marily through interaction with their tyrosine ki-
nase receptor VEGF-R3.

The expression of VEGF-R3 in adults is re-
stricted to the lymphatics and fenestrated endo-
thelium.26,27 Neuropilin 1 and neuropilin 2 are 
receptors that bind specific VEGF family members 
and are important in neuronal development and 
embryonic vasculogenesis.28

The multiplicity of VEGF ligands and recep-
tors probably reflects the heterogeneity of the 
numerous vascular beds in embryos and adults. 
It is clear that the VEGF system operates under 
different regulatory constraints in the nonsteady 
state of the developing embryo and the physio-
logic steady state of the adult. Pregnancy, the 
female reproductive cycle,29,30 inflammatory re-
actions,31 and tumor development and growth re-
capitulate the proangiogenic signaling pathways 
of the embryo.18

Megakaryocytes and platelets contain the three 
major isoforms of VEGF-A — VEGF121, VEGF165, 
and VEGF189 — and after exposure to thrombin 
in vitro, they release VEGF-A.8 VEGF-A alters the 
endothelial-cell phenotype by markedly increasing 
vascular permeability, up-regulating expression of 
urokinase, tissue plasminogen activator, connex-
in, osteopontin, and the vascular-cell adhesion 
molecule.32,33 Cell-death pathways in endothelial 
cells respond to VEGF-receptor signaling with in-
creases in the prosurvival factor Bcl-2 and modu-
lation of the mitogen-activated protein kinase 
pathway, which regulates a variety of cellular 
functions.34,35

BIOL O GIC CH A R AC TER IS TICS  
OF J UNC TIONS

The major anatomical sites of bleeding in patients 
with thrombocytopenia are the intercellular gaps 
in the postcapillary venular bed.3,36 Key molecules 
in junctions in this region include transmembrane 
adhesion proteins and associated intracellular 
binding components.37,38 The diverse vascular beds, 
each with specific functional requirements, require 
different types of junctions, each with specialized 
protein constituents and relations among macro-
molecules. The regulatory controls of postcapil-
lary venular permeability in the skin and mucosal 
surfaces, for example, are completely different from 
those of the microvasculature in the brain.39 Cap-
illaries in the brain contain intercellular tight 

junctions composed of several specialized trans-
membrane proteins associated with specific intra-
cellular kinases and phosphatases. Tight regu-
lation of capillary permeability in the brain is 
essential, and intercellular leakage must be held 
to an absolute minimum. Thus, even in patients 
with severe acute thrombocytopenia, nontraumat-
ic intracerebral bleeding is relatively rare.40

Adherens junctions are abundant in the post-
capillary venular bed. They consist of clusters of 
the highly specialized membrane-spanning vas-
cular-endothelium cadherin molecules that form 
the bridge across adjacent cell membranes (Fig. 3). 
Vascular-endothelium cadherins are coupled in-
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Figure 1. Megakaryocyte–Endothelial Cell Cross-Talk.

The megakaryocyte, through platelet production and release of key en-
dothelial trophogens, directly determines the integrity and viability of the 
microvascular bed of bone marrow. In a reciprocal manner, in the “vascular 
niche” microenvironment, the endothelium directly influences megakaryo-
cyte integrity by releasing a number of megakaryocyte trophogens. ANG1 
denotes angiopoietin 1, BDNF brain-derived neurotrophic factor, EGF epi-
dermal growth factor, FGF fibroblast growth factor, FGF4 fibroblast growth 
factor 4, GM-CSF granulocyte–macrophage colony-stimulating factor, PAF 
platelet-activating factor, PDGF platelet-derived growth factor, SCF stem-
cell factor–c-kit ligand, SDF-1 stromal cell–derived factor 1, TPO thrombo-
poietin, and VEGF-A vascular endothelial growth factor A.
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tracellularly to catenins, a family of proteins that 
form signaling complexes with downstream ki-
nases and phosphatases.41-43 The typical tight 
junctions of brain capillaries are primitive or ab-
sent in postcapillary venular beds.44

VEGF-A–induced signaling directly controls the 
interactions of the junctional machinery. The cy-
toplasmic domain of VEGF-R2 is a part of a mac-
romolecular cytoplasmic vascular-endothelium 
cadherin–β-catenin complex.45,46 Shear stress ap-
pears to enhance the formation of the complex, 
thereby converting the adherens junction into a 
mechanical transducer that initiates “outside–
inside” signaling.47 The binding of intracellular 
β-catenin to vascular-endothelium cadherin is 
increased by as much as a factor of 700 after 
phosphorylation of specific cadherin-serine resi-
dues.48,49 By contrast, phosphorylation of β-catenin 
at specific tyrosine residues destabilizes the adhe-
rens junction.50,51 Thus, the architectural integrity 
of the junctional intracellular and extracellular 
machinery is controlled by the state of phospho-
rylation of key components of the cytoplasmic as-
sembly.

Interactions involving VEGF receptors have 
been assumed to entail a multicellular signaling 

pathway in which the ligand (VEGF) secreted by 
one or more cells activates the receptor (VEGF-R2) 
on an adjacent target cell. In this paracrine ar-
rangement, platelet-derived VEGF can induce the 
phosphorylation and activation of endothelial 
VEGF-R2. Recent data strongly suggest that endo-
thelial VEGF-A activates the cell’s own VEGF-R2.23 
This autocrine pathway was discovered in mice, in 
which the VEGFA gene was deleted (knocked out) 
only in endothelial cells. Such mice had a marked 
hemorrhagic phenotype, with microinfarctions 
and a diffusely abnormal, disrupted vasculature.23 
Phosphorylation of VEGF-R2, present in wild-type 
endothelium in the absence of exogenous (para-
crine) VEGF, was undetectable in endothelial cells 
that lacked the VEGFA gene. Thus, this autocrine 
pathway of VEGF-triggered signaling is obligatory 
for normal steady-state endothelial function.23 We 
suggest that the phosphorylation of VEGF-R2 by 
endogenous VEGF, and subsequent “inside-out” 
signaling of the catenin–vascular-endothelium 
cadherin complex, stabilizes the ectodomain zip-
per structure of the endothelial lining of blood 
vessels (Fig. 3). This autocrine loop appears to 
constrain vascular permeability in the steady state, 
whereas the paracrine pathway seems paramount 
in promoting vascular permeability in the non-
steady states of embryogenesis, inflammation, and 
pregnancy.

The paracrine and autocrine activation path-
ways that VEGF-A triggers have different end 
points (Fig. 4). The two pathways also have differ-
ent effects on the vascular-endothelium cadherin–
β-catenin macromolecular complex. In nonsteady 
states, the paracrine pathway causes disassembly 
of the complex, whereas in the steady state, auto-
crine activation stabilizes the complex.23 Paracrine 
stimulation, which increases vascular permeabil-
ity, is an absolute requirement for vasculogenesis 
in the embryo and in the angiogenesis of cancer, 
inflammation, pregnancy, and the female repro-
ductive cycle. Autocrine stimulation, which de-
creases vascular permeability, does not support 
angiogenesis but is essential for maintaining the 
integrity of endothelial-cell junctions in the steady 
state.23 Hematopoiesis depends on endogenous 
VEGF-A; the generation of committed stem cells 
requires little or no exogenous VEGF-A.52

How does the platelet influence these two 
pathways? Multiple platelet-driven signals acting 
synchronously or sequentially appear to activate 
the autocrine pathway (Fig. 3). In nonsteady 
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Figure 2. Vascular Homeostasis.

Stages in the life cycle of the vasculature are shown, 
from developmental vasculogenesis to non–steady-
state angiogenesis in adult tissues to physiologic re-
gression. Angiostability in the physiologic steady state 
is dependent on constitutive endogenous production 
of vascular endothelial growth factor A (VEGF-A), stim-
ulated by platelets. Multiple angiogenic trophogens 
also participate in these stages. The black arrows indi-
cate the major influences on maintenance of vascular 
integrity.
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states, VEGF-A released by platelets activates the 
paracrine pathway and contributes to increased 
permeability and proliferation. There are other 
contributors to microvascular stability. Among 
these is Bcl-xL, an antiapoptotic cell-survival fac-
tor. In endothelial cells, Bcl-xL up-regulates 
VEGF-A pro duction,53 and in platelets, Bcl-xL is 
a major determinant of the life span.54 Moreover, 
platelet-derived epidermal growth factor increas-

es production of Bcl-xL by endothelial cells.53 Para-
crine VEGF-A, delivered to the vascular lining by 
platelets and other cells, increases endothelial-
cell production of Bcl-2, another inhibitor of the 
cell-death pathway,34,55 and platelet-activating fac-
tor, a phospholipid proinflammatory mediator, 
induces expression of VEGF-A by endothelial cells.56 
It is likely that these complex platelet–endothelial 
cell interactions go on continuously under physi-
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Figure 3. Adherens Junction at the Postcapillary Venular Bed.

In the steady state, transmembrane vascular-endothelium cadherin molecules form a calcium-dependent zipperlike structure across ad-
jacent cell membranes, through homophilic interactions. The cytoplasmic tails of the cadherin are part of an intracellular macromolecu-
lar complex including β-catenin, P120, α-catenin, vascular endothelial growth factor (VEGF) receptor 2 (VEGF-R2), and CD148 phos-
phatase. The platelet in the steady state maintains the molecular integrity of the adherens junction by constitutively releasing a panoply 
of endothelial trophogens including brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), platelet-activating factor 
(PAF), sphingosine-1-phosphate (S1P), angiopoietin (ANG), and VEGF A (VEGF-A), among others. These trophogens signal through 
their respective receptors (BDNF-R, which binds BDNF; EGF-R, which binds EGF; endothelial differentiation gene 1 [EDG1], which binds 
S1P; angiopoietin receptor specific to endothelial cells [TIE2], which binds ANG; and PAF-R, which binds PAF), induce endogenous 
VEGF-A production, and activate the autocrine VEGF-A loop, which in turn induces VEGF-R2 phosphorylation, which is required for 
maintenance of the stability of the zipper. Specific phosphorylation sites of the catenin and cadherin constituents in the complex control 
stability and integrity of the intercellular junction and facilitate cytoskeletal attachment through F-actin. The paracrine pathway of exoge-
nous VEGF-A signaling promotes survival in the steady state but proliferation in the nonsteady state. Shear stress at the luminal surface of 
the vessel wall and the platelet membrane may participate in the constitutive triggering of these platelet responses. PAF denotes platelet ac-
tivating factor, and VE vascular endothelial.
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ologic conditions. They are interrupted by marked 
thrombocytopenia or impaired platelet granule 
release caused by aspirin or clopidogrel.

END O THELI A L - CELL S TA BILI T Y

Still other molecules influence the stability of the 
microvasculature. Ceramide and sphingosine are 
important regulatory components in apoptotic 
pathways.57,58 Sphingosine released from dying 
cells is rapidly incorporated into platelets and phos-
phorylated.59 Phosphorylated sphingosine-1-phos-

phate released from platelets supports endothelial-
cell integrity and survival, inhibits apoptosis, and 
stabilizes endothelial-cell junctions by remodel-
ing the actin cytoskeleton.59,60 Fluid shear stress 
induces the release of sphingosine-1-phosphate 
from platelets,61 and thus rheologic events affect-
ing platelets in the postcapillary venular bed can 
contribute to the stability of endothelial cells. The 
cytoprotective effect of activated protein C also 
involves sphingosine-1-phosphate through the 
activation of the endothelial-cell receptor for sphin-
gosine-1-phosphate and actin cytoskeletal reor-
ganization.62 The antiapoptotic effect of sphin-
gosine-1-phosphate on the microvasculature may 
constitute a mechanism for radiation resistance, 
since radiation has been shown to activate sphin-
gomyelinase in brain, intestine, and lung vascu-
lature.63

Platelet sphingosine-1-phosphate regulates the 
N-cadherin contacts between endothelial cells and 
pericytes. Pericytes derived from smooth-muscle 
cell precursors surround the microvasculature by 
extending long cytoplasmic processes around the 
abluminal endothelial surface. Membrane-span-
ning N-cadherin molecules form contacts between 
adjacent pericytes and endothelial cells. Pericytes 
support vessel stability by forming a matrix and 
releasing growth factors that bind to endothelial 
cells.64,65 A single pericyte interacts with several 
endothelial cells and can thus modulate the in-
tegrity of a capillary and venular bed.

CLINIC A L IMPLIC ATIONS

Platelets and endothelial cells are intimately related 
and participate in cross-talk that has direct clini-
cal implications. In the physiologic steady state, 
normal numbers of functioning platelets establish 
a platelet mass that is necessary to maintain the 
stability of the vasculature. This process probably 
takes place through a number of different mech-
anisms, including constitutive expression of tro-
phogens on the surface of platelets or tonic release 
through mechanisms not yet fully understood. 
Regulated constitutive low-grade activation of 
platelets may be a normal rheologic event in the 
postcapillary bed.66 It is of interest that the bleed-
ing seen in patients who are receiving antiplatelet 
agents such as aspirin and clopidogrel is rarely as-
sociated with petechiae, such as occurs in throm-
bocytopenia, but instead manifests as easy bruis-
ing, gastrointestinal mucosal bleeding, and, rarely, 
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Figure 4. Paracrine and Autocrine Vascular Endothelial Growth Factor A 
(VEGF-A)–Induced Endothelial-Cell Interactions.

Exogenous VEGF-A in the physiologic steady state initiates signaling by 
phosphorylation of VEGF receptor 2 (VEGF-R2) and promotes cell survival. 
In nonsteady states, permeability is increased and proliferation is support-
ed. Paracrine signaling is obligatory for the vasculogenesis of embryonic 
development and the angiogenesis of inflammation, cancer, pregnancy, 
and the female reproductive cycle. Autocrine endogenous VEGF-A also sig-
nals through phosphorylation of VEGF-R2 and in the steady state decreases 
permeability by stabilizing the intercellular junction. Autocrine stimulation 
is supportive of vasculogenesis and is not required for angiogenesis. The 
phosphorylation sites on VEGF-R2 may involve different residues after 
paracrine exogenous stimulation and autocrine endogenous stimulation.
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hemorrhagic strokes, all of which presumably oc-
cur in focal regions with preexisting, quiescent 
lesions. These antiplatelet drugs interfere with 
platelet granule release and aggregation and thus 
modify the primary hemostatic response to injury. 
Physiologic low-grade activation of platelets, with 
its concomitant endothelial-nurturing effect, may 
reflect a quantitative difference in granule release 
— with a platelet “whisper” rather than a platelet 
“shout” required in a full-fledged hemostatic chal-
lenge.

The interruption of the normal interaction be-
tween platelets and endothelial cells is clinically 
visible in patients with severe thrombocytopenia, 
in whom platelet-membrane exposure and release 
of endothelial-cell trophogens is reduced to the 
point at which the multimolecular vascular-
endothelium cadherin complex disassembles, re-
sulting in the loss of the intercellular barrier and 
red-cell extravasation into the tissues (Fig. 5). 
Rapid falls in the platelet count, such as those seen 
in some patients with drug-induced thrombocy-
topenia, are associated with more severe bleeding, 
with showers of petechiae and extensive mucosal 
hemorrhages. In patients with complex clinical 
disorders, clinically significant thrombocytopenic 
bleeding may well reflect the compounding effect 
of low platelet numbers in addition to the under-
lying systemic effects of sepsis, cancer, inflamma-
tion, or associated immunologic processes that 
can directly injure the microvasculature, compro-
mising interjunctional endothelial integrity.

Bevacizumab (Avastin, Genentech), a human-
ized monoclonal antibody against VEGF, as well 
as VEGF-R2 tyrosine kinase inhibitors such as 
sorafenib and sunitinib, are antiangiogenic agents 
currently used in cancer therapy, with some suc-
cess. These drugs are potential inhibitors of 
platelet–endothelial cell interactions and thus may 
be associated with hemorrhagic side effects. Ma-
jor safety concerns with anti-VEGF agents to date 
include a small number of treatment-related deaths 
from bowel perforations, arterial thromboembo-
lic events, and hemorrhage.67,68 In most of these 
trials, clinically significant toxic effects occurred 
with the use of both bevacizumab and chemo-
therapy. The incidence of nonfatal bleeding in 
most bevacizumab trials ranged from 2 to 3%.69 
This relatively low incidence may reflect the in-
accessibility of the intracellular VEGF pool to the 
extracellular antibody, which results in preserva-
tion of the stabilizing intracellular autocrine VEGF 

pathway. Combination therapy consisting of be-
vacizumab and a low-molecular-weight tyrosine 
kinase inhibitor may well increase the potential 
for bleeding, owing to the ability of the tyrosine 
kinase inhibitor to interfere with intracellular sig-
naling. Approximately 40% of patients with met-
astatic renal-cell cancer had minor bleeding in a 
clinical trial involving both bevacizumab and er-
lotinib, a tyrosine kinase inhibitor of epidermal 
growth factor.70

New low-molecular-weight inhibitors of spe-
cific intracellular signaling pathways being devel-
oped as targeting agents may interfere with the 
complex molecular machinery that the endothe-
lium uses to stabilize the adherens junction. This 
is particularly true of kinase inhibitors that re-
sult in alterations in the post-translational mod-
ification of vascular-endothelium cadherin–catenin 
complexes. In view of the marked heterogeneity 
of the microvascular bed in different organs and 
in different anatomical areas, it is likely that the 
specific signaling pathways generated in endothe-
lium by platelets may vary as a consequence of 
different microenvironmental influences. Thus, 
the potential side effect of bleeding induced by 
various targeting agents may occur in some or-
gans and not in others. It is reasonable to expect 
that direct delivery of some or a mixture of these 
trophogens with the use of liposomes or viral vec-
tors may be useful in treating severe thrombocy-
topenia or alveolar or brain hemorrhage induced 
by the targeted molecules.

CONCLUSIONS

Platelets and endothelial cells are intimately re-
lated. It is evident that in patients with pathologic 
events or trauma in which vessel damage and dis-
ruption occurs, platelets rapidly come to the res-
cue by initiating a sequence of potentially lifesav-
ing hemostatic steps that culminate in the arrest 
of bleeding and the subsequent repair of the blood-
vessel wall. When these hemostatic defense and 
reparative mechanisms occur at the wrong time 
or in the wrong place, the consequences include 
a thrombotic event.

In the physiologic steady state, platelets main-
tain the stability of the vasculature by means of 
several mechanisms, including constitutive expres-
sion of trophogens on the surface of platelets or 
tonic release of cytokine and growth factors that 
preserve the structural and functional integrity of 
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the vascular-endothelium cadherin zipperlike ma-
chinery at the intercellular gaps. Regulated, con-
stitutive low-grade activation of platelets may be 
the result of a normal rheologic event in the post-
capillary bed.66 Intact junctional assemblies also 
preserve the steady state and homeostasis by ac-
tively participating in bidirectional signaling as-
sociated with trophogen-receptor–induced complex 
formation as well as engagement of transcription 
factors such as β-catenin at the inner face of the 
membrane.51 Post-translational modifications of 
the vascular-endothelium cadherin–β-catenin com-
plexes, such as phosphorylation and dephospho-

rylation, are important for stabilization of the 
functioning adherens junction, and cytoskeletal 
attachment is a critical feature. With severe throm-
bocytopenia, platelet-membrane exposure and re-
lease of endothelial-cell trophogens are reduced 
to the point at which the vascular-endothelium 
cadherin multimolecular complex is disassembled, 
resulting in the loss of the zipperlike intercellu-
lar barrier, with red-cell extravasation into the 
tissues (Fig. 5). In view of the marked heteroge-
neity of the microvascular bed in different or-
gans and in different anatomical areas, it is not 
unexpected that a number of different endothe-
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Below a critical number of platelets, the steady-state trophic effects on the endothelium are impaired and the multimolecular vascular-
endothelium cadherin complex breaks down, with subsequent loss of the intercellular barrier, permitting extravasation of red cells into 
the surrounding tissues. The autocrine vascular endothelial growth factor A (VEGF-A) loop is interrupted, with resultant downstream al-
terations in the phosphorylated status of the constituents in the complex. VEGF receptor 2 (VEGF-R2) becomes internalized by the cell 
in endosomes. In most patients, disassembly of the vascular-endothelium cadherin complex manifests in the skin as petechiae and in 
mucosal surfaces as local hemorrhagic blisters. These trophogens signal through their respective receptors. BDNF-R denotes brain- 
derived neurotrophic factor receptor, EDG1 endothelial differentiation gene 1, EGF-R epidermal growth factor receptor, PAF-R platelet-
activating factor receptor, TIE2 angiopoietin receptor specific to endothelial cells, and VE vascular endothelial.
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lial-cell trophogens, stored in platelets, take part 
in the physiologic process. It remains to be de-
termined how much the induced signaling path-
ways overlap and whether the autocrine VEGF-
A–VEGF-R2 receptor loop is the final common 
pathway.

We view the platelet in steady-state physiologic 
circumstances as a biochemical reservoir that 
nourishes and stabilizes intact endothelium. The 
specific signaling pathways generated by platelets 

may vary in specialized vascular beds among vari-
ous organs as a consequence of different microen-
vironmental influences. Direct delivery of some 
or a mixture of these trophogens with the use of 
liposomes or viral vectors may be useful in pa-
tients with severe thrombocytopenia.
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