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Hyperoxia-induced Tissue Hypoxia

A Danger?
Ivy F. Forkner, B.S.,* Claude A. Piantadosi, M.D.,† Nicola Scafetta, Ph.D.,‡ Richard E. Moon, M.D.§

OXYGEN supplementation has traditionally been be-
lieved to increase blood and tissue oxygenation. How-
ever, hyperoxia induces bradycardia and a reduction in
cardiac output, which partly offsets the otherwise in-
creased oxygen delivery. Recently, an additional mech-
anism that could further reduce tissue oxygen delivery
has been propounded. Experiments in animals and nor-
mal humans have suggested that breathing very high
concentrations of oxygen can cause an increase in ven-
tilation.1–4 Proposed mechanisms for this include in-
creased production of reactive oxygen species directly
stimulating brain stem carbon dioxide chemoreceptors,5

oxygen disinhibition of an inhibitory input present dur-
ing normoxia,6 and increased brainstem partial pressure
of carbon dioxide (PCO2) secondary to the Haldane ef-
fect. As a result of the observed ventilatory effects of
oxygen, it has been speculated that hypocapnia ensuing
from hyperoxia-induced hyperventilation can reduce or-
gan blood flow sufficiently to cause hypoxia.7 This no-
tion is now being used by some clinicians for clinical
decision making and has been published in the clinical
literature.8

During hyperoxia, the solubility of carbon dioxide in
blood is reduced. This is known as the Haldane effect
and is a result of the displacement of carbon dioxide
from hemoglobin by oxygen. As a result, it has been
argued that this decrease in carbon dioxide solubility
causes PCO2 in both venous blood and tissue to increase.
Hyperventilation should ensue due to increased PCO2

and proton accumulation in the brainstem, causing stim-
ulation of the central chemoreceptors. It has been hy-
pothesized that this hyperventilation would lead to arte-
rial hypocapnia, and hence vasoconstriction in certain
vascular beds, including those in the brain. This hypoth-
esis has been used to suggest that oxygen supplementa-
tion can, through reduced tissue blood flow, create tis-
sue hypoxia.7

There are multiple flaws in this argument. First, during
hyperoxia blood flow is not reduced enough to offset
the higher oxygen content, and oxygen delivery is en-
hanced.9,10 Second, if carbon dioxide accumulates in
tissue, the resulting acidosis would tend to offset vaso-
constriction. Third, although the Haldane effect might
be responsible for clinically significant changes in PCO2

under hypoxic conditions, in normoxia and hyperoxia
modeling shows that it accounts for only very small
changes in PCO2 (fig. 1). Fourth, although several inves-
tigators have observed that hyperoxia can lead to hyper-
ventilation, the evidence is not at all compelling that this
hyperventilation leads to significant arterial hypocapnia
as has been suggested.7 In only one study cited in the
development of this hypothesis was arterial PCO2 (PaCO2)
actually measured.1 In that study, oxygen breathing was
associated with a decrease in PaCO2 in five of six subjects,
although the effect was small (mean decrease 2.5
mmHg).1 In several other published studies, 87–100% O2

administration caused no significant change in arterial
PCO2 by direct measurement.9–21 Even 100% O2 admin-
istration up to 3 atmospheres absolute (ATA) does not
cause arterial hypocapnia.10,22 In a study of normal vol-
unteers studied while breathing room air at 1 ATA and
100% O2 at 3 ATA, PaCO2 was 37 � 2.9 and 36 � 2.6
mmHg (mean � SD), respectively.22 In other studies at
3.5 ATA, mild hypocapnia (mean decrease 5 mmHg) has
been observed14; however, at such extreme oxygen par-
tial pressure (PO2) values (approximately 2,100 mmHg),
hyperventilation due to direct toxic effects is likely.5

The evidence for oxygen-induced hypocapnia is based
either on observations of increased ventilation only, or
on reduced end-tidal PCO2 (PETCO2).1,4 There are plausible
mechanisms that account for these findings that involve
the lung directly. For instance, exposure to high oxygen
concentrations causes atelectasis, which could cause a
decrease in lung compliance and a reflex increase in
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ventilation.23 Also associated with atelectasis is an in-
crease in the proportion of gas exchange units with low
ventilation/perfusion ratios (V̇A/Q̇) or shunt.24 This
would initiate an increase in ventilation to maintain
PaCO2 within the normal range. Indeed, in an investiga-
tion of ventilation/perfusion distributions in normal vol-
unteers using multiple inert gas elimination, 100% O2

breathing caused gas exchange abnormalities consistent
with an increase in physiologic dead space (fig. 2),17

which explained the observed increase in ventilation in
the face of unchanged PaCO2. Rehder et al.20 did not
observe any change in V̇A/Q̇ distribution during 100% O2

breathing, nor did they observe hyperventilation or hy-
pocapnia.

Although PETCO2 is a good estimate of PaCO2 under
some circumstances, when an intervention (e.g., in-
creased fraction of inspired oxygen) changes the relation
between arterial and end-tidal carbon dioxide, the as-
sumption of parity cannot be relied upon. For example,
in the setting of increased dead space, PETCO2 would
underestimate PaCO2.

During oxygen-induced increases in dead space, the
addition of carbon dioxide to “normalize” end-tidal car-
bon dioxide (“normocapnic hyperoxia”)25 is likely to

cause arterial hypercapnia, which will further increase
ventilation. In one study carbon dioxide was added to
high oxygen breathing mixtures to maintain constant
PETCO2, and not surprisingly, there was a twofold in-
crease in ventilation.1 As expected, the ventilatory re-
sponse to hypercapnia in that study correlated linearly
with the ventilatory response to “isocapnic” hyperoxia.

Tissue oxygenation in humans is difficult to measure in
vivo, but can be assessed by measurement of venous PO2

and oxygen content26,27 and by near-infrared tech-
niques. Direct measurements of both types indicate that
breathing high oxygen concentrations increases both
venous and tissue oxygenation. Arguments have been
proposed suggesting that oxygen breathing has detri-
mental effects in specific tissues and clinical scenarios.7

However, the evidence is unconvincing for the follow-
ing reasons.

Brain

Breathing 100% O2 increases arterial PO2 and jugular
bulb PO2. In a study of normal volunteers, jugular venous
PO2 and oxygen content measurements (indices of brain
PO2)27 have been made during air and 100% O2 breathing
under normal and hyperbaric conditions.14 During 100%
O2 breathing at 1 ATA, jugular venous PO2 increased
from 37 to 40 mmHg (5% increase in O2 content).14

Moreover, direct measurements of brain oxygenation
indicate that brain PO2 increases with arterial PO2.28

Several other studies demonstrate that oxygen breathing
increases cerebral oxygenation.28–31 The notion that ox-

Fig. 1. Haldane effect. Blood carbon dioxide content is drawn as
a function of partial pressure of carbon dioxide (PCO2) for three
different oxygen saturations, assuming a hemoglobin concen-
tration of 12 g/dl, cardiac output of 5 l/min, and an arterio-
venous carbon dioxide content difference of 2.8 ml/dl. Values
are calculated from the equations of Douglas et al.53 and
Kelman,54 assuming �[H�] � 0.77 � �PCO2.55 Point A represents
the arterial blood. Without the Haldane effect, the venous point
would be at V0, representing a venous PCO2 of approximately
48.3 mmHg. However, because the venous hemoglobin–oxygen
saturation (Sv�O2) is lower (approximately 75%), the Haldane
effect allows an increase in carbon dioxide capacity of whole
blood, resulting in a PCO2 approximately 1.2 mmHg lower than
V0, shown at venous point VH. When breathing 100% O2, the
attenuated Haldane effect should cause an increase in venous
PCO2. However, calculations show that the increase is very
small. Assuming that the venous oxygen saturation while
breathing 100% O2 is 85%, with unchanged cardiac output, the
blunted Haldane effect would result in only a minor increase in
venous PCO2 (shown at point VH=) of approximately 0.5 mmHg.

Fig. 2. Effect of 100% oxygen breathing on ventilation/perfu-
sion ratios (V̇A/Q̇). Depicted are two curves, each representing
the distribution of blood flow as a function of V̇A/Q̇ in a 44-yr-
old normal male volunteer. The data are derived from the tech-
nique of multiple inert gas elimination, from which a 50-com-
partment model of V̇A/Q̇ has been derived.17 The closed circles
represent the blood flow distribution breathing air, and the
open circles represent the blood flow distribution breathing
100% O2. The population of gas exchange units with low V̇A/Q̇
ratios (in the region 0.01–0.1) breathing air has disappeared
during oxygen breathing and been replaced by a 10.7% shunt,
most likely reflecting blood flow through atelectatic areas. The
Bohr dead space/tidal volume ratio increased from 40% to 57%.
Redrawn from Wagner et al.,17 with permission.
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ygen breathing causes cerebral hypoxia7 was based on
two studies, one that indirectly assessed middle cerebral
artery velocity and one that did not measure arterial
oxygen content32 or account for the expected increase
in dissolved oxygen (approximately 10% with 100% O2).
Although oxygen administration results in reduced cere-
bral blood flow through generation of reactive oxygen
species, which deplete nitric oxide,29,33 there is over-
whelming evidence that the increase in arterial oxygen
content more than offsets the decrease in brain perfu-
sion.

The same argument has been made regarding oxygen
supplementation causing reduced oxygen delivery dur-
ing stroke.7 Given loss of autoregulation in the ischemic
brain, it is unlikely that oxygen or even hypocapnia
would reduce blood flow, and there is no evidence that
it causes brain hypoxia. In patients with stroke, system-
atic reviews indicate that supplemental oxygen is bene-
ficial in hypoxemia and is not harmful even in its ab-
sence.34

Fetus

The bulk of evidence shows that administering up to
100% O2 during labor and delivery will increase fetal
oxygenation and can be used routinely without fear of
fetal harm. However, it has been proposed that oxygen
breathing by laboring mothers may reduce uterine per-
fusion and fetal PO2.7 This is based on the hypothesis that
supplemental oxygen results in hypocapnia and reduced
uterine perfusion via the mechanisms described above.
In one study of healthy pregnant women at greater than
35 weeks’ gestation, the administration of 100% oxygen
caused hyperventilation and a reduced PETCO2.25 How-
ever, in the same study, hyperoxia caused no change in
either uterine or umbilical artery pulsatility index, ex-
cept when the authors added carbon dioxide to their
breathing gas to “correct” for decreased PETCO2. Further-
more, in several studies of parturients, oxygen adminis-
tration caused no change in directly measured maternal
PaCO2.11–13,15,16

Two studies cited in support of the notion of fetal
hypoxia induced by maternal hyperoxia were in me-
chanically ventilated women undergoing cesarean deliv-
ery. Both studies reported the PO2 in umbilical vein35,36

and artery36 as a function of maternal inspired oxygen
concentration. In both, umbilical PO2 increased up to
50–65% inspired oxygen, but the incremental effect of
higher concentrations could not be established because
of poor maternal PCO2 control and insufficient statistical
power. However, most studies have shown that peripar-
tum administration of oxygen increases fetal oxygen-
ation.11–13,15,16,37 Furthermore, with increasing maternal
inspired oxygen concentration up to 100%, there is ev-
idence of a dose related increase in fetal oxygenation

(fig. 3).15,16 Supplemental oxygen is associated with ei-
ther no significant change in maternal or umbilical vessel
PCO2

13,38 or a slight increase in umbilical vein and artery
PCO2,16 and no negative effect on fetal out-
comes.13,16,38,39

Myocardium

Although the increase in systemic vascular resistance
associated with oxygen breathing can have adverse ef-
fects in patients with impaired left ventricular function,
in most patients with myocardial ischemia or infarction,
the overall effect of supplemental oxygen is beneficial.
In a physiologic study in dogs, oxygen administration
(PO2 � 0.6 and 3.0 ATA) caused an increase in arterial
and coronary sinus oxygen content with no adverse
effect on myocardial function.40 In a study of humans
with and without coronary artery disease, administration
of 10–15 l/min oxygen caused a significant increase in
coronary artery and coronary sinus oxygen content
(mean increase 2.1 vol% in subjects without coronary
disease and 2.9 vol% in subjects with coronary dis-
ease).41 Published evidence supports the use of oxygen
supplementation for myocardial infarction or isch-
emia.41–44 Based on systematic reviews of the evidence,
both American and European guidelines recommend it
as first aid treatment for all patients with acute coronary
syndromes.45,46

Carbon Monoxide Poisoning

A major mechanism of carbon monoxide toxicity is
tissue hypoxia due to binding of carbon monoxide to
hemoglobin, myoglobin, and other hemoproteins, and
inhibition of electron transport at cytochrome a,a3. Tis-

Fig. 3. Umbilical artery and vein blood gas values as a function
of maternal inspired oxygen concentration. Administration of
oxygen (fractional concentration of oxygen 0.21, 0.47, 0.74, or
1.0) to women undergoing elective cesarean delivery during
epidural anesthesia resulted in a dose-related increase in partial
pressure of oxygen (PO2) in both the umbilical vein (UV) and
artery (UA). Maternal partial pressure of carbon dioxide (PCO2)
values were, at the four inspired oxygen concentrations, re-
spectively, 27.6 � 1.2, 29.3 � 0.8, 29.2 � 1.05, and 28.6 � 0.5
mmHg (mean � SEM). Graph redrawn from Ramanathan et
al.,16 with permission.
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sue damage or death results from hypoxia, oxidative
stress, and other secondary mechanisms. Very high ox-
ygen displaces carbon monoxide from heme-protein
binding sites. Hyperbaric oxygen is the definitive treat-
ment for carbon monoxide poisoning.47 However, pro-
ponents of the “oxygen decreases PO2” idea have argued
that reduced cerebral blood flow caused by oxygen
supplementation may contribute to morbidity.7,32 On
the contrary, oxygen breathing shortens the half-life of
carbon monoxide–bound hemoglobin48 and has other
beneficial pharmacologic effects including the attenua-
tion of oxidative stress.49,50 It has been suggested that
carbogen (oxygen–carbon dioxide mixtures) may be
superior to pure oxygen because the addition of carbon
dioxide to the breathing mixture would normalize the
PCO2.7 However, there is no evidence that oxygen ad-
ministration to patients with carbon monoxide poison-
ing would exacerbate the hypocapnia already present
during carbon monoxide hypoxia. The observation that
carbogen administration facilitates carbon monoxide
elimination relative to oxygen alone is an old one,51,52 an
effect attributable to both stimulation of respiration by
hypercapnia and reduction of carbon monoxide–hemo-
globin affinity due to the decrease in pH.

Conclusions

In summary, the evidence is overwhelming that admin-
istration of supplemental oxygen to either normal sub-
jects or patients augments blood and tissue oxygenation
(fig. 4). Although normobaric hyperoxia within the clin-
ical range can cause hyperventilation, the most plausible
mechanism is related to atelectasis and the consequent
ventilation/perfusion mismatching. The resulting in-
crease in venous admixture has the effect of increasing

physiologic dead space. Moreover, it is possible that the
change in lung compliance produced by atelectasis
could precipitate reflex-induced hyperventilation.23 The
ensuing decrease in PETCO2 is not associated with signif-
icant arterial hypocapnia and does not cause either isch-
emia or hypoxia. Although there can be small effects of
oxygen breathing on PaCO2, there is a consistent lack of
evidence for any significant change in numerous studies
using direct measurement. In the few observations sup-
porting a decrease in PaCO2, the magnitude is small and
unlikely to be of clinical significance. Clinicians can rest
assured that short-term appropriate administration of
high oxygen concentrations will have no adverse effects
on tissue oxygenation.
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