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We recognize that increased systolic pressure is the most

challenging form of hypertension today and that pulse

pressure as an independent cardiovascular risk factor has

focused attention on arterial stiffness and wave reflections as

the most important factors determining these pressures. In

recent years, many studies emphasized the role of arterial

rigidity in the development of cardiovascular diseases, and

it was shown that stiffening of arteries is associated with

increased cardiovascular mortality and morbidity. Moreover,

arterial stiffening is linked to decreased glomerular filtration

rate, and is predictive of kidney disease progression and the

patient’s cardiovascular outcome. Premature vascular aging

and arterial stiffening are observed with progression of

chronic kidney disease (CKD) and in end-stage renal disease

(ESRD). This accelerated aging is associated with outward

remodeling of large vessels, characterized by increased

arterial radius not totally compensated for by artery wall

hypertrophy. Arterial stiffening in CKD and ESRD patients is

of multifactorial origin with extensive arterial calcifications

representing a major covariate. With aging, the rigidity is

more pronounced in the aorta than in peripheral conduit

arteries, leading to the disappearance or inversion of the

arterial stiffness gradient and less protection of the

microcirculation from high-pressure transmission. Various

non-pharmacological or pharmacological interventions

can modestly slow the progression of arterial stiffness,

but arterial stiffness is, in part, pressure dependent and

treatments able to stop the process mainly include

antihypertensive drugs.
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Cardiovascular disease is a major cause of morbidity and
mortality in patients with chronic kidney disease (CKD) or
end-stage renal disease (ESRD). Epidemiological and clinical
studies showed that structural and functional changes of
central and large conduit arteries are major contributing
factors associated with these complications.1–3 These changes
concern the two interrelated arterial functions: delivering
adequate blood flow to tissues and organs, as dictated by
their metabolic activity (conduit function), and transforming
cyclic high-flow and pressure oscillations in the aorta into
continuous and low-pressure capillary flow (cushioning or
dampening function).4,5

Atherosclerosis, characterized by atheromatous plaques
with restriction of blood flow and ischemia or infarction of
downstream tissues, is the principal long-term alteration of
conduit function, and a frequent cause of ischemic heart
disease, strokes, and peripheral artery diseases. Dampening
function disorders reflect changes of arterial wall viscoelastic
properties and dimensions, and are more typically associated
with left ventricular hypertrophy, congestive heart failure, and
sudden death.6–12 Results of cross-sectional studies emphasized
the role of arterial stiffness as an independent cardiovascular
risk factor and predictor of all-cause and cardiovascular death
in many populations, as well as of diseases such as coronary
atherosclerosis, diabetes, ESRD, aging, coronary events, and
stroke.13–22

DAMPENING FUNCTION AND ARTERIAL STIFFNESS

The arterial wall has elastic and viscous properties. Their
difference reflects the time-dependent response of the stress–-
strain relationship (arterial pressure–arterial diameter changes).
In a purely elastic artery, this relationship is time independent
and, after stress removal, the arterial diameter returns to its
initial dimensions. In the presence of wall viscosity, the arterial
wall retains part of the deformation, meaning that part of the
left ventricular energy responsible for strain is dissipated,
characterized by hysteresis of the pressure–diameter loop.23 As
it is difficult to measure and evaluate in humans, the role of
arterial ‘viscosity’ has not been evaluated as extensively as the
‘elastic’ properties of arteries. In contrast, a vast body of
literature on elastic properties is available.
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Definitions

The ability of arteries to accommodate the stroke volume can
be described in terms of compliance or arterial stiffness.24

These terms express the contained volume of the vasculature
(total or segmental), as a function of a given transmural
pressure. Compliance (C) describes the absolute volume
change (DV¼ strain) due to a pressure change (DP¼ stress):
C¼DV/DP. The reciprocal value of compliance is elastance
(E¼DP/DV) or stiffness. Compliance can be expressed
relative to the initial volume (V) as a coefficient of
distensibility Di, defined as Di¼DV/V�DP. In contrast to
compliance or elastance/stiffness, which provides informa-
tion about the ‘elasticity’ of the artery as a hollow structure,
the elastic incremental modulus (Einc, Young’s modulus)
provides information on the intrinsic elastic properties of the
biomaterials constituting the arterial wall independent of
vessel geometry. The pressure–volume relationship is non-
linear: at low distending pressure the tension is borne by
distensible elastin fibers, whereas at a high distending
pressure the tension is transferred and borne by less
extensible collagen fibers. Thus, the arterial wall gets stiffer
and more ‘resistant’ to distension, limiting arterial blood
pooling during left ventricular ejection. The most typical
clinical consequence of arterial stiffening is a steep pressure–
volume relationship, with increased systolic pressure during
ventricular ejection and decreased diastolic pressure during
diastolic runoff, resulting in high pulse pressure.24

Arterial dampening has two aspects: transformation of
cyclic blood flow in the aorta into a continuous capillary flow
and dampening of arterial pressure oscillations, thereby
limiting their transmission to the microcirculation. The effi-
ciency of these functions depends on the stiffness and
geometry of the aorta and central arteries, and rigidity of
successive arterial segments (stiffness gradient).24–26

Arterial stiffness and resistance to distension

During ventricular contraction, part of the stroke volume is
forwarded directly to the peripheral tissues, and part of it is
momentarily stored in the aorta and central arteries, stretching
the arterial walls and raising local blood pressure. Part of the
energy produced by the heart is diverted for the distension of
arteries and is ‘stored’ in the vessel walls. During diastole, the
‘stored’ energy recoils the aorta, propelling the accumulated
blood forward into the peripheral tissues, ensuring continuous
flow (Figure 1). To limit the cardiac work required during
ventricular ejection, the energy necessary for arterial distension
and recoil should be low, i.e., for a given stroke volume, the
pressure increase should be as small as possible. The efficiency
of this function depends on artery stiffness and geometry.
When rigidity is mild, the arterial wall opposes low resistance
to distension and the pressure effect is minimized. When the
arterial system is rigid and cannot be stretched, the entire
stroke volume flows through the arterial system and peripheral
tissues only during systole with two consequences: intermittent
flow and short capillary transit time, with reduced metabolic
exchanges (Figure 1).24,26

In addition to influencing the ‘resistance to distension’,
arterial stiffness determines the propagation velocity of the
pressure wave from the proximal aorta toward peripheral
vessels; i.e., pulse wave velocity (PWV).4,23,24 The arterial
system is heterogenous, with PWV increasing progressively
from the ascending aorta to the peripheral muscular conduit
arteries, generating a stiffness gradient 25–29 that is important
for the regulation of cardiac work and pulsatile pressure
transmission to the microcirculation.25,26,29,30

PWV is a convenient way to measure arterial stiffness.
Briefly, the speed of pressure wave propagation in a solid is
proportional to its rigidity. PWV assesses the stiffness of an
artery as a hollow structure and according to the Moens and
Korteweg’s formula: PWV2¼ Einc� h/2r� r. It depends on
artery geometry (wall thickness, h; radius, r), intrinsic elastic
properties of the arterial wall biomaterials (Einc), and density
(r).4,24 PWV must not be confounded with blood velocity.
Indeed, although PWV varies between 4 and 5 m/s in the
ascending aorta and between 9 and 12 m/s in peripheral con-
duit arteries,4,27,28 blood velocity is in the order of cm/s.5,23,31

PWV represents the transmission of energy through the arterial
wall, whereas blood velocity represents the displacement of
mass through the incompressible blood column. This difference
in speed propagation is physiologically advantageous for left
ventricular work and arterial blood flow.

At the start of ventricular ejection, the incompressible
blood faces a blood column occupying the aorta and arterial
tree. The ejected blood has to find space, which is achieved
principally by distending the proximal aorta and propelling
the blood column forward. Concomitant to blood entering
the aorta, the proximal aortic pressure increase creates a
pressure wave with higher proximal pressures than in
downstream segments (pressure gradient). All these changes
are confined to a short segment of the proximal aorta. These
local alterations are transmitted downstream, because the
incompressible blood displaced from the proximal aorta
must also find its place in downstream segments. The
pressure wave moves downstream to distal arterial segments,
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Figure 1 | Schematic representation of the role of arterial
stiffness in assuring blood flow through the peripheral
circulation.
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rapidly propagating the pressure gradient from segment to
segment, i.e., displacing blood downstream. The PWV
increase from the aorta to the peripheral arteries quickly
propelling the pressure gradient along the arterial tree,
resulting in a rapid (in milliseconds) downstream mobiliza-
tion of blood in the arterial system. This transmission
occurs during ventricular ejection, and the downstream
displacement of arterial blood ‘frees up’ space for the stroke
volume. Relying only on the ‘thrusting’ force of blood
entering the proximal aorta, the movement of all arterial
blood would require very high cardiac energy expenditure to
counter the high inertial forces of the blood column. At the
end of ventricular ejection, the stroke volume is now
occupying the blood column whose length (stroke distance) is
measured in centimeters, i.e., mean blood velocity in cm/s.31

The fact that PWV largely exceeds blood velocity in the aorta
is important; otherwise, peak aortic flow velocity exceeding
PWV would create conditions for the generation of longi-
tudinal shock waves (similar to those generated by an
airplane passing the speed of sound), potentially provoking
arterial injury.

Reflected waves and central blood pressure

The arterial stiffness gradient regulates pressure transmission
along the arterial tree and to the microcirculation. The
arterial pressure wave generated in the aorta (forward or
incident wave) is propagated to arteries throughout the body.
The stiffness gradient, together with aortic geometry changes
(tapering), local arterial branchings, and lumen-narrowing,
creates an impedance mismatch, causing partial reflections of
forward pressure waves traveling back to the central aorta
(reflected waves).24,32–34 Wave reflections considerably influ-
ence the pressure wave amplitude and shape along the arterial
tree.32–35 Forward and reflected pressure waves overlap, and
the final amplitude and shape of the pulse pressure wave are
determined by the phase relationship (timing) between these
component waves.

The overlap between the two waves depends on the site of
pressure recording along the arterial tree. Peripheral arteries
are close to reflection sites, and the reflected wave occurs at the
impact of forward wave, i.e., the waves are in phase producing
an additive effect. The ascending aorta and central arteries are
distant from reflecting sites, and the return of the reflected
wave is variably delayed (Tsh, time to shoulder) (Figure 2),
depending on PWV and traveling distances.36 In the aorta or
central arteries, forward and reflected waves are not in phase.
In subjects with low PWV, reflected waves impact on central
arteries during end-systole and diastole, increasing the aortic
pressure in early diastole but not during systole.24,32–35 This
situation is physiologically advantageous, as the higher
diastolic pressure boosts coronary perfusion without increas-
ing the left ventricular pressure load.

This difference in the overlap between component
pressure waves in the aorta and peripheral arteries results in
lower aortic systolic and pulse pressures, compared with
peripheral arteries (central-to-peripheral systolic and pulse

pressure amplification) 33–36 (Figure 2). The higher peripheral
pressure is also due to the higher peripheral artery stiff-
ness, i.e., the higher local pressure effect of the displaced
blood column.

Arterial stiffening disrupts the desirable timing. With
increased PWV, the reflected waves return earlier, thus
impacting the central arteries during systole rather than
diastole, amplifying aortic and ventricular pressures during
systole, and reducing aortic pressure during diastole. With
arterial stiffening (high PWV), the forward and reflected
waves in the aorta are almost in phase, and central aortic
pressure is close to the peripheral pressure, and the central-
to-peripheral systolic and pulse pressure amplification tends
to disappear or be attenuated.4,23,35,36 By favoring early wave
reflections, arterial rigidity increases peak- and end-systolic
pressures in the ascending aorta, thereby raising myocardial
pressure load (left ventricular hypertrophy) and oxygen
consumption, and decreasing diastolic blood pressure and
subendocardial blood flow.6–11,34–38

Influence of age

Young subjects are characterized by significantly lower aortic
stiffness than peripheral stiffness, and thus by a significant
‘stiffness gradient’4,24,27,28 (Figure 3a). Partial pressure wave
reflections are generated at the transition between these
segments, limiting pulsatile energy transmission downstream
to the microcirculation.25,29,30 In young subjects, this process
is coupled with low aortic PWV and the reflected wave
still returning during diastole. With aging and pathologies,
aortic rigidity increases much more than hardening in
peripheral arteries, progressively dissipating the stiffness
gradient25,27,28,39 (Figure 3b). The reflection sites are now
closer to the microcirculation, increasing pulsatile energy
transmission into the peripheral microcirculation.25,29,30 The
arteriolar network is a major site of resistance and reflections,
and the ultimate microcirculation protection against pulsatile
pressure transmission.4,24,34

This protection is highly dependent on an intact myogenic
response and autoregulatory response, characterized by
vasoconstriction, increased vascular resistance, and, in the

PforwardPbackward (reflected)

Recorded aortic
pressure wave

The time interval of pressure
wave to

and back from reflection sites

Forward and backward
pressures

are in phase: no time interval

Recorded peripheral
pressure wave at

reflection sites

Tsh

Figure 2 | Representation of forward and reflected pressure
wave travel and the influence of their timing and overlap on
recorded aortic and peripheral pressure waves. Tsh, time to
shoulder.

390 Kidney International (2012) 82, 388–400

r e v i e w M Briet et al.: Arterial stiffness in CKD

John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




long term, lead to structural inward microvessel remodel-
ing.40,41 Autoregulation is an important protective mecha-
nism in highly perfused organs with low arteriolar resistance,
particularly the brain and kidney.24,29,30,40 Loss of renal blood
flow autoregulation leads to pulsatile energy transmission
and higher dissipation in the microcirculation, with con-
sequent hyperfiltration and subsequent glomerulosclerosis,
and progressively diminished kidney function,42 as observed
in several conditions, e.g., aging, diabetes, hypertension, and
chronic nephropathies.43–46 The decreased stiffness gradient
associated with high aortic PWV and higher pressure
transmission to the microcirculation could account for the
inverse relationships observed between aortic PWV and
impaired kidney (and brain) function.47–55

Arterial tensile and shear stresses

Arterial stiffening can be associated with modified Einc

(collagen accumulation and cross-links, broken elastin fibers,
vascular smooth muscle cell apoptosis, calcifications, inflam-
mation and fibrosis, endothelial dysfunction)56–67 and wall
thickness and/or radius, i.e., arterial remodeling.68 The latter is
the response to changes of mechanical forces, such as shear
stress acting on the endothelium and cyclic circumferential
strain affecting the endothelium and smooth muscle cells.68–71

Arterial remodeling characteristics depend largely on the
nature of hemodynamic stimuli. According to Laplace’s law,
arterial tensile stress (s) is proportional to transmural pressure
(P) and radius (r), and inversely proportional to wall thickness
(h) (s¼ Pr/h). In response to increased blood pressure or
arterial radius, vessel wall thickening and higher wall-to-lumen
ratio68,69 maintain tensile stress. Blood flow alterations result
in shear stress (t) changes directly proportional to blood flow
(Q) and blood viscosity (Z), and inversely proportional to
vessel radius (r) (t¼QZ/pr3). In response to blood flow
changes, shear stress is maintained by changing arterial cross-
sectional lumen area.70,71

MEASUREMENT OF ARTERIAL STIFFNESS

Because the methodological issues concerning the measure-
ment of various stiffness indices and their clinical applica-
tions were published recently and reviewed in detail,72–76

herein we briefly mention only the most relevant ones for
clinical and pathophysiological studies. There are two main
techniques to measure arterial stiffness: directly or to estimate
it indirectly from circulation models. The main characteristics
of the devices used to measure arterial rigidity are sum-
marized in Table 1.

Direct measurement of arterial stiffness

PWV is the most widely used technique that Bramwell and
Hill77 introduced to physiology in 1929. Briefly, a pressure
wave’s propagation speed in a solid is proportional to its
stiffness. If expressed through the elastic modulus (Einc), PWV
can be expressed as PWV¼K� E0.5, where K reflects tissue
density. Thus, when measuring the pressure wave at different
sites along an arterial segment or along the arterial tree (dL),
the distal wave is recorded later (dt) than the proximal one
and PWV¼ dL/dt. Waveform landmarks that are in concert
from one side to another have to be used; the foot of the
pressure wave is widely used because it is more clearly
identified on all sites.

Although PWV can be measured on any artery or between
any arterial sites, only carotid-to-femoral PWV has been shown
to have predictive value for morbidity and mortality.14,21,28

It represents stiffness of the aorta and iliofemoral axes. The
several commercial devices available differ according to the type
of signal (pressure, distension, flow) or whether they
simultaneously record both sites or use the electrocardiogram
for synchronization. When a high-fidelity pressure transducer
is used, they may allow pressure wave analysis and wave
reflection assessment. PWV reference values determined in a
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attenuated.
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very large population are now available, and measurement
standardization based on those values was recently proposed.78

Distance measurement and identification of the foot of the
wave are important issues. To have realistic PWV values, the
use of intersecting tangents to measure transit time (dt) of
the foot of the wave and carotid-to-femoral distance (dL) is
preferred; PWV is then calculated as PWV¼ 0.8� dL/dt.78

Techniques derived from PWV, e.g., the brachial ankle PWV,
might be of interest, but because the wave is propagating
simultaneously in the arm and the aorta much of the aorta is
simply ignored by this parameter, which limits its usefulness.
The quantum key distribution technique measures the time
interval between the electrocardiogram Q wave and the first
Korotkov sound during ambulatory blood pressure monitor-
ing.72,74 This technique provides an estimate of stiffness
partly dependent on heart rate because of variable electro-
mechanical coupling time.

It is also possible to directly measure arterial dimension
changes during the cardiac cycle and link them to local
pulse pressure changes. This approach is straightforward and
provides the pressure–diameter relationship, the stress–strain
relationship if thickness is also measured, and, thus, yields
stiffness indexes at any given blood pressure level. These tech-
niques are based on high-precision vascular echotracking or
magnetic resonance imaging and applanation tonometry.72,74–76

Measurement of stiffness using the pressure–diameter relation-
ship has not been validated as much as PWV, in terms of
prediction of cardiovascular events. Nevertheless, measurement
of local stiffness remains useful for clinical research.

Indirect estimation of arterial stiffness

These techniques rely on simplified circulation models. The
most widely used is the Windkessel model.5,23 The diastolic
blood pressure decay is exponential, and the constant of this

exponential modeling is proportional to rigidity. This model
can be made more complex by using two exponential
functions: one for large arteries (C1) and the other for small
arteries (C2).79,80 To date, only one epidemiological study
validating this technique has been published,80 and this has
been conducted only for small-artery compliance.

Another indirect technique, aortic characteristic impe-
dance, requires flow and pressure measurement at the aortic
root.5,23,29 Characteristic impedance is the minimal impe-
dance for higher frequencies of pressure and flow harmonics.
It is proportional to PWV. This technique is rarely used
alone, as it is hampered by the difficulty of obtaining reliable
noninvasive data for aortic flow and pressure. On the list are
also rigidity estimates derived from blood pressure measure-
ment, e.g., ambulatory blood pressure monitoring–derived
ambulatory arterial stiffness index (1/slope of the systolic
blood-pressure–diastolic blood-pressure relationship) or
crude brachial pulse pressure.81 Although these values reflect
arterial stiffness, they provide very different information,
which might eventually make them useful for patient
evaluation, but clearly are not surrogates for direct artery
stiffness measurements.

ARTERIAL STIFFNESS IN VARIOUS CLINICAL CONDITIONS

Numerous publications and several reviews58,82–84 reported
the various pathophysiological conditions associated with
increased arterial stiffness and wave reflections. Apart from the
dominant effect of aging,78,84–86 they include the following:
physiological conditions, such as low birth weight,86 meno-
pausal status,87 and/or lack of physical activity;88 genetic
background, such as family history of hypertension and
diabetes,89,90 and/or myocardial infarction90 and genetic
polymorphisms;91 cardiovascular risk factors, such as obe-
sity,92 smoking,93 hypertension,94,95 hypercholesterolemia,96,97

Table 1 | Techniques to estimate arterial stiffness

Techniques Manufacturer Signal Probe Remarks

Direct PWV measurement
Complior Alam Medical, Vincennes, France Pressure Standard Simultaneous
Sphygmocor AtCor Medical, Sydney, Australia Pressure High fidelity ECG triggered
PulsePen Diatechne, Milan, Italy Pressure High fidelity ECG triggered
PulseTrace Micromedical, Chatham Maritime, UK Flow Doppler ECG triggered
Vicorder Skidmore Medical, Bristol, UK Pressure Cuff Simultaneous

Ankle brachial PWV
Omron VP-1000 Omron Medical, Kyoto, Japan Plethysmography Cuff Simultaneous

Other
Q-KD Novacor, Rueil Malmaison, France Korotkov sounds Cuff ECG triggered

Echotracking techniques
Artlab System Esaote, Genoa, Italy 128 Lines Online
E-Traking Aloka, Tokyo, Japan 4 Lines Online
HDI-lab Philips, Eindhoven, Netherlands NA Offline

Indirect techniques
CVProfilor HD (Hypertension Diagnostics), Eagan, MN Pressure Cuff
Arteriograph Medexperts, Budapest, Hungary Pressure Cuff Suprasystolic inflation
Mobilograph IEM Healthcare, Stolberg, Germany Pressure Cuff

Abbreviations: ECG, electrocardiogram; PWV, pulse wave velocity.
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impaired glucose tolerance,98,99 metabolic syndrome,92,100 type
1 or 2 diabetes,100 hyperhomocysteinemia,100 and/or high C-
reactive protein (CRP) level;101 and cardiovascular diseases, for
example, coronary heart disease,20 congestive heart failure,102

and fatal stroke.21 The influence of CKD or ESRD11,13,103,104 is
detailed below. The contributions of these different factors
to arterial stiffness and wave reflections were subjected to
multivariate analyses: when evaluating the degree of arterial
stiffness, the major parameters to be considered are age and
blood pressure, and, to a lesser extent, sex and classical
cardiovascular risk factors.

Pertinently, primarily non-cardiovascular diseases, such as
rheumatoid arthritis,105,106 systemic vasculitides,59 and sys-
temic lupus erythematosus,107 are associated with increased
aortic rigidity, underscoring the role of inflammation in the
stiffening of large arteries. The inflammation process, either
acute during Salmonella typhi vaccination60 or chronic
during rheumatoid arthritis59,60 or systemic lupus erythema-
tosus,107 was reported to rigidify the large arteries. This
stiffening may occur through various mechanisms, including
endothelial dysfunction, cell release of any number of
inducible matrix metalloproteinases (including MMP-9),
medial calcifications, modified proteoglycan composition
and hydration state, and/or cell infiltration around the vasa
vasorum leading to vessel ischemia.60,61 The association of
arterial stiffening and inflammation in essential hypertension
was demonstrated through the relationships between arterial
stiffness and either tumor necrosis factor-alpha (TNFa),
interleukin-6, or highly sensitive CRP (hs-CRP).101,108,109

The primary proinflammatory cytokines, TNFa, and inter-
leukin-6, are the main inducers of hepatic hs-CRP synthesis.
Interleukin-6 and hs-CRP are independent predictors of
increased risk of coronary artery disease. Interleukin-6 and
TNFa are also independent risk factors for high blood
pressure in apparently healthy subjects. In untreated patients
with essential hypertension, aortic stiffness, assessed through
carotid-to-femoral PWV, was significantly associated with hs-
CRP and interleukin-6.108 According to the REASON study,
baseline hs-CRP was an independent predictor of carotid-to-
femoral PWV, central augmentation index, and lower central
pulse pressure after antihypertensive treatment.109

ARTERIAL REMODELING AND STIFFNESS IN CKD STAGES 2–5

The risk of developing cardiovascular disease increases with
kidney–disease progression and is already observed in
patients with isolated proteinuria or slightly reduced
glomerular filtration rate (GFR).110–112 Patients with CKD
stage 4 are more likely to die than to progress to ESRD, and
most of their deaths are due to cardiovascular diseases.112,113

CKD is characterized by a high prevalence of conventional
(hypertension, diabetes, dyslipidemia) and nonconventional
(oxidative stress, inflammation, anemia, mineral-metabolism
disturbance(s)) cardiovascular risk factors.114–116 Exposing
the arteries to this environment might influence arterial
structure and induce arterial remodeling and stiffening
(Figure 4a and b).

Arterial remodeling is already observed in early-stage CKD
and its progression.104 Compared with normotensive and
hypertensive controls, patients with CKD stages 2–5 had
significantly larger internal carotid artery diameters but
comparable intima–media thicknesses, resulting in signifi-
cantly increased circumferential wall stress (Figure 4b). Their
carotid elastic modulus increased with CKD progression but
did not differ from that of blood pressure–matched
hypertensive controls. In contrast to carotid stiffness, their
carotid-to-femoral (aortic) PWV was significantly higher
than that of hypertensive and normotensive controls,
suggesting that the rigidity of the two vessels could progress
differently in this population (Figure 4a).104

In CKD, wall thickening did not compensate for the
increased lumen diameter, resulting in heightened circumfer-
ential wall stress, indicating pressure-unadapted large artery
remodeling in CKD (Figure 4b). In contrast to observations
made in non-uremic atherosclerosis patients,117 a recent
study showed that carotid intima–media thickness declined

20

16

10

8

4

P< 0.05*

P< 0.05*

CKD HT NT

P
W

V
 (

m
/s

)

a

b

c

d

P= 0.001, linear trend

Yo
un

g’
s 

el
as

tic
m

od
ul

us
 (

kP
a)

2000

1600

1200

800

400

0

51Cr-EDTA GFR
(ml/min per 1.73 m2)

>45 30–45 15–30 0–15

P= 0.008, linear trend
C

irc
um

fe
re

nt
ia

l w
al

l
st

re
ss

 (
kP

a)
100

60

80

40

20

51Cr-EDTA GFR
(ml/min per 1.73 m2)

>45 30–45 15–30 0–15

Circumferential
wall stress >45 kPa

Circumferential
wall stress <46 kPa

1.0

0.50

0.25

0.75

0
0 1 2 3 4 5 6

Log-rank. P= 0.001

Probability of survival without dialysis

Figure 4 | Arterial stiffness phenotypes in chronic kidney
disease (CKD) stages 2–5 patients compared with
normotensive (NT) and hypertensive (HT) controls. (a) Aortic
pulse wave velocity (PWV), (b) Young’s elastic modulus,
(c) circumferential stress, and (d) probability of survival without
dialysis according to circumferential wall stress.104,118 Cr-EDTA,
chromium-labeled ethylenediaminetetraacetic acid; GFR,
glomerular filtration rate.

Kidney International (2012) 82, 388–400 393

M Briet et al.: Arterial stiffness in CKD r e v i e w

John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




during worsening CKD.118 In that cohort, circumferential
wall stress was the only arterial parameter independently
associated with CKD deterioration and ESRD118 (Figure 4).
Because of their antiproliferative properties, renin–angioten-
sin system blockers, often prescribed to CKD patients, could
have a role in the thickening defect.119,120 Excessive vascular
smooth muscle cell apoptosis is another hypothesis. Shroff
et al.121 found apoptosis-related rarification of vascular
smooth muscle cells in children with ESRD compared with
patients without CKD. Finally, enhanced extracellular matrix
turnover with high MMP activity could also contribute to the
observed phenotype. MMPs are involved in flow-induced
outward vascular remodeling122 and several aspects of
cardiovascular remodeling, e.g., left ventricular hypertrophy,
atherosclerosis, and/or aortic aneurysm.123–125 Several studies
on CKD patients showed serum-level variations of MMPs
and their inhibitors.126,127

Arterial enlargement, arterial stiffening, and increased
circumferential wall stress occurred in parallel with GFR
decline, but their relative importance is more complex.118

Compared with hypertensive patients and healthy subjects,
CKD patients had greater aortic stiffness even after adjust-
ment for age and blood pressure.104,118,128–132 However,
within CKD populations, conflicting results were published
as to whether aortic stiffness was associated with CKD
severity. Cross-sectional investigations, including the recent
CRIC study that included 2,564 CKD patients, demonstrated
an independent association between aortic stiffness and CKD
stages.132,133 Lilitkarntakul et al.134 recently reported that
CKD patients’ blood pressure, not renal function, was the
major determinant of arterial stiffness. We and others found
no association between aortic rigidity and CKD stages within
the CKD population.118,135 However, in both those studies,
carotid stiffness was independently associated with CKD
stages, thereby suggesting that carotid and aortic hardening
could progress differently in this population.

In addition, the recent publication of the arterial ancillary
study on the NephroTest cohort provided findings showing
that aortic stiffness was stable over time, whereas carotid

rigidity increased significantly during follow-up
(þ 0.28±0.05 m/s).122 Notably, in that cohort, aortic stiffness
was not associated with CKD progression.118 The absence of
such an association was also observed in another CKD
cohort.136 In the latter, only the baseline phosphate level was
independently associated with CKD worsening. In contrast,
Ford et al.137 found aortic stiffness to be associated with
deteriorating CKD. However, in their study, the correlations
were weak and CKD progression was based on estimated GFR,
whereas in the NephroTest cohort it was measured with 51Cr-
EDTA (chromium-labeled ethylenediaminetetraacetic acid)
clearance.118 Very few data on carotid stiffness are available.
We recently reported that carotid stiffness was not indepen-
dently associated with CKD deterioration.118 Further inves-
tigations are needed to elucidate the role of arterial rigidity in
advancing CKD and the differential arterial stiffness progres-
sion within the different arterial segments during CKD.

ARTERIAL REMODELING AND STIFFNESS IN ESRD (CKD 5D)

Atherosclerosis is highly prevalent in ESRD patients.1–3,138–141

The high atherosclerosis incidence in ESRD patients on
replacement therapy led to the hypothesis that atherogenesis
is accelerated in chronically hemodialyzed patients.1 Because
many ESRD patients frequently have severe vascular lesions
before initiating replacement therapy, and, in many, generalized
atherosclerosis can be the primary cause of renal failure, it
remains a matter of debate whether atherogenesis is acceler-
ated. Nevertheless, the features of ESRD patients’ atherosclero-
tic plaques, with a higher prevalence of calcified plaques, are
different from those of control general populations.140–142

Early vascular aging

The most characteristic arterial change observed in ESRD
patients is the so-called ‘accelerated arterial aging’, typified
by outward remodeling and arterial stiffening11,12,142–149

(Figures 5 and 6). Their age-related hardening is much
more pronounced in the aorta and central arteries than
in muscular-type peripheral arteries11,28,143,150 responsible
for accelerated reduction of the impedance mismatch and
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diminished buffering capacity to lower pulsatile pressure
transmission to the peripheral microcirculation (Figure 3).
Normal arterial aging is characterized by arterial enlarge-
ment, wall thickening, and stiffening.22,56 ESRD patients’
arterial remodeling is characterized by increased arterial
diameters and intima–media thickness, and wall-to-lumen
ratio similar to control subjects.11,143 Nevertheless, as in
earlier CKD stages, the hypertrophic response is ‘inadequate’.
According to Laplace’s law, when blood pressure increases,
and regardless of the internal radius, the wall-to-lumen ratio
(relative wall thickness) should increase to normalize
circumferential tensile stress. In the general population, this
increase is characterized by a positive relationship between
systolic blood pressure and arterial wall-to-lumen ratio
(Figure 7). This relationship is lost in ESRD patients whose
wall-to-lumen ratio tends to decline with pressure, leading to
inadequate hypertrophy and abnormally increased circum-
ferential tensile stress. The high tensile stress and limited
arterial capacity to hypertrophy is a pathophysiological
continuum observed from CKD stages 2–5 to CKD 5D. In
ESRD patients, the arteries, including the brachial artery
without the arteriovenous fistula, are enlarged, usually with
similar blood flows.151 These changes (enlarged diameter

with similar flows, i.e., lower flow velocity) result in
significantly lower shear stress, because of low shear rate
and anemia-associated low whole-blood viscosity.151 Because
physiological shear stress promotes endothelial cell survival
and quiescence,152,153 the lower shear stress in ESRD patients
is associated with high circulating levels of endothelial
microparticles, increased arterial rigidity, and diminished
endothelial flow–mediated dilation.63,154

Arterial stiffness is ‘pressure dependent’ and, in essential
hypertensive patients, the diminished arterial distensibility
is, in part, due to higher distending blood pressure. When
adjusted for blood pressure differences (i.e., under isobaric
conditions), the arterial distensibility and/or elastic modulus
of essential hypertensive subjects are more distensible than (in
muscular conduit arteries) or similar (in elastic capacitive
arteries) to those observed in normotensive controls.155–158

This concept differs from the observations made in CKD
patients or experimental models, in which arterial stiffness
increased under isobaric conditions.159 In CKD and ESRD,
hardening is associated with alterations of the intrinsic elastic
properties of arterial walls (increased Einc), namely fibroelastic
intimal thickening, calcification of elastic lamellae, elastinolysis
and inflammation, increased collagen content and collagen
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cross-linking, apoptosis, and rarified numbers of vascular
smooth muscle cells.121,159–162 These arterial wall changes are
influenced not only by nonspecific factors, such as age,
genetics, hypertension, diabetes, lipid abnormalities, inflam-
mation, and/or common atherosclerosis, but also by para-
meter(s) associated with the presence of uremia per se. Mineral
and bone disorders are the most frequently observed factors
associated with arterial remodeling and functional alterations
in CKD and ESRD.67,162–166 In hemodialyzed patients, arterial
stiffness was associated with arterial calcifications67,164–166 and
it worsened with the increasing calcifications.131

Calcifications

Arterial calcifications are common CKD and ESRD compli-
cations.67,167,168 The pathogenesis of calcification is multi-
factorial, implicating factors inducing and opposing it, with
plasma constituents maintaining minerals in solution and
inhibiting their deposition in tissues.169–174 The results of
several recent studies showed that low serum levels of the
soluble calcification inhibitor fetuin-A were an independent
predictor of aortic and carotid stiffness.172–175 Studies on
ESRD patients in general populations showed strong
associations between vitamin D deficiency and increased
arterial stiffness, as well as deficient endothelial function,
respectively.176–179 Clinical studies demonstrated that
vitamin D supplementation reduced MMP activity,180 which
is usually associated with high aortic PWV.181 Vitamin D
supplementation also had beneficial effects on the elastic
properties of vessel walls.182 In ESRD, the mineral-metabo-
lism disturbances are associated with uremic bone disease.
An inverse relationship of arterial calcification and stiffness
with bone density or bone turnover was observed in CKD
and ESRD patients.183–187

Response to intervention

Although aortic stiffness provides good prognostic informa-
tion, unequivocal evidence is still required for some therapies
proposed to attenuate arterial stiffness in CKD patients. Such
an effect should reflect a real diminution of arterial wall
rigidity, independent of other risk factor corrections, e.g., blood
pressure, lipid disorders, and others. In general populations,
many therapeutic strategies to prevent arterial stiffness have
been proposed, including lifestyle modifications or pharmaco-
logical approaches.58 Arterial hardening is pressure dependent
and blood pressure reduction should normally contain
rigidification. Guérin et al.17 provided the first evidence that,
in ESRD patients, aortic PWV insensitivity to blood pressure
reduction was an independent predictor of mortality. Experi-
mental and clinical studies showed that pharmacological
inhibition of the renin–angiotensin–aldosterone system was
the most efficient.17,188,189 Advanced glycation end-product
formation is associated with arterial stiffness, and advanced
glycation end-product cross-link braker has been shown to
reduce arterial stiffness in elderly subjects190 and improve
endothelial function in patients with isolated hypertension,191

but was not tested in CKD and ESRD patients.

The effect of renal transplantation on stiffness remains
contradictory: some observations suggested an attenuation
after living donor transplantation192 or short-term, but not
long-term, improvement after cadaveric engraftment.193

Arterial stiffness usually stays high in kidney transplant
recipients, associated with incomplete GFR restoration and
impaired renal allograft function.194,195 The long-term aortic
stiffness seen in cadaveric kidney transplant recipients seems
to be significantly influenced by donor age: less rigidity in
recipients of young kidneys and further deterioration in those
receiving older kidneys.196 A large prospective study is still
needed to define the effect of kidney transplantation on
vascular stiffening.

In recent years, many studies emphasized the role of
arterial stiffness in the development of cardiovascular
diseases, and it was shown that arterial rigidity is associated
with increased cardiovascular mortality and morbidity.
Arterial rigidity is closely associated with vascular aging.
Premature vascular aging and arterial stiffening are observed
with CKD progression and in ESRD. This accelerated aging is
associated with outward remodeling of large vessels,
characterized by enlarged arterial radius, incompletely
compensated for by artery wall hypertrophy. Arterial hard-
ening in CKD and ESRD patients is of multifactorial origin,
with extensive arterial calcifications representing a major
covariate. With aging, the stiffening is more pronounced in
the aorta than peripheral conduit arteries, leading to
disappearance or inversion of the arterial stiffness gradient
with diminished protection of the microcirculation against
high-pressure transmission. Various non-pharmacological or
pharmacological interventions can modestly slow arterial
stiffness, but treatments able to prevent stiffness mainly
include antihypertensive drugs.
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