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Translating Artificial Intelligence Into Clinical Care
Andrew L. Beam, PhD; Isaac S. Kohane, MD, PhD

Artificial intelligence has become a frequent topic in the news
cycle, with reports of breakthroughs in speech recognition,
computer vision, and textual understanding that have made

their way into a bevy of prod-
ucts and services that are
used every day. In contrast,
clinical care has yet to reach
the much lower bar of auto-
mating health care informa-
tion transactions in the form

of electronic health records. Medical leaders in the 1960s and
1970s were already speculating about the opportunities to bring
automated inference methods to patient care,1 but the meth-
ods and data had not yet reached the critical mass needed to
achieve those goals.

The intellectual roots of “deep learning,” which power
the commodity and consumer implementations of present-
day artificial intelligence, were planted even earlier in the
1940s and 1950s with the development of “artificial neural
network” algorithms.2,3 These algorithms, as their name sug-
gests, are very loosely based on the way in which the brain’s
web of neurons adaptively becomes rewired in response to
external stimuli to perform learning and pattern recognition.
Even though these methods have had many success stories
over the past 70 years, their performance and adoption in
medicine in the past 5 years has seen a quantum leap. The
catalyzing event occurred in 2012 when a team of researchers
from the University of Toronto reduced the error rate in half
on a well-known computer vision challenge using a deep
learning algorithm.4 This work rapidly accelerated research
and development in deep learning and propelled the field
forward at a staggering pace. With the increased availability
of digital clinical data, it remains to be seen how these deep
learning models might be applied to the medical domain.

In this issue of JAMA, Gulshan and colleagues5 present
findings from a study evaluating the use of deep learning for
detection of diabetic retinopathy and macular edema. To
build their model, the authors collected 128 175 annotated
images from the EyePACs database. Each image was rated by
3 to 7 clinicians for referable diabetic retinopathy, diabetic
macular edema, and overall image quality. Each rater was
selected from a panel of 54 board-certified ophthalmologists
and senior ophthalmology residents. Using this data set, the
algorithm learned to predict the consensus grade of the raters
along each clinical attribute: referable diabetic retinopathy,
diabetic macular edema, and image quality. To validate their
algorithm, the authors assessed its performance on 2 sepa-
rate and nonoverlapping data sets consisting of 9963 and
1748 images. On the validation data, the algorithm had high

sensitivity and specificity. Only one of these values (sensitiv-
ity on the second validation data set) failed to be superior at a
statistically significant level. The other performance metrics
(eg, area under the receiver operating characteristic curve,
negative predictive value, positive predictive value) were
likewise impressive, giving the authors confidence that this
algorithm could be of clinical utility.

This work closely mirrors a recent “Kaggle” contest in
which 661 teams competed to build an algorithm to predict
the grade of diabetic retinopathy, albeit on a smaller data set
with fewer grades per image. Kaggle is a website that hosts
machine learning and data science contests. Companies and
researchers can post their data to Kaggle and have contes-
tants from around the world build predictive models. In the
diabetic retinopathy contest, nearly all of the top teams used
some form of deep learning and had little to no knowledge of
the eye or ophthalmology. The first-place team6 and second-
place team7 both used standard deep learning models and
were data science practitioners, not medical professionals.
Gulshan et al correctly pointed out that a prerequisite for a
successful deep learning model is access to a large database
of images with high-quality annotations. Accordingly, the
investigators increased both the number of images available
and the number of ratings per image, which allowed them to
improve on the existing state of the art with respect to both
Kaggle and the existing scientific literature.

To build their algorithm, Gulshan et al leveraged a work-
horse model in deep learning known as a convolutional neu-
ral network that has been critically important to recent ad-
vances in automatic image recognition. The convolutional
neural network model used by the authors is known as the
Inception-V3 network,8 which was developed by Google for
entry in the Large Scale Visual Recognition Challenge, which
it won in 2014. In this contest, known as ImageNet,9 research-
ers were given 1.2 million images that involve 1000 different
categories that cover a wide variety of everyday objects, such
as cats, dogs, automobiles, and different kinds of food. The goal
of the contest was to build a classifier that could automati-
cally recognize which object was present in an image and to
identify which region of the image contained the object. This
challenge was broad so that it covered many types of objects
thatacomputervisionsystemcouldencounterintherealworld.

As a result of this contest, several techniques10-12 have been
pioneered that improved the accuracy of these models
immensely. As with the study by Gulshan et al, these im-
provements are beginning to trickle into other areas of
computer vision, including medical image processing. For ex-
ample, Gulshan et al not only used the same network that was
originally built for ImageNet, they also used that network
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configuration to initialize their model for this study. This
is often known as “transfer learning” and occurs when
a network trained for one task (eg, ImageNet recognition)
is used to bootstrap a network to be used for a different
task (eg, detection of diabetic retinopathy). Gulshan et al ob-
served a boost in performance when they used the para-
meters learned on ImageNet to initialize their model, thus dem-
onstrating how progress in one domain can be used to
accelerate progress in another.

Stepping back, one can consider how these results might
affect medicine and, in particular, areas of medicine that in-
volve the analysis of images such as pathology, radiology, and
dermatology.13 It seems likely that these algorithms will re-
shape specific aspects of these specialties as more algorithms
are developed to address a wider range of medical imaging
tasks. Because these algorithms are by their nature standard-
ized, repeatable, and scalable, they can be deployed to ana-
lyze a large number of images in hospitals around the world
once an algorithm has been developed and validated, en-
abling clinicians to focus on other aspects of their practice.

A simple cost-benefit analysis reveals some interesting
implications. Once a model has been “trained,” it can be
deployed on a relatively modest budget. Deep learning uses a
specialized type of computer chip known as a graphics pro-
cessing unit to process data at high speeds. A modern graph-
ics processing unit costing approximately $1000 can be
added to most existing computer systems with little diffi-
culty and can process about 3000 images per second14

depending on the complexity of the underlying deep learning
model. This translates to an image processing capacity of
almost 260 million images per day (because these devices
can work around the clock), all for the cost of approximately
$1000. How will practice and clinical training adapt to refo-
cus if initial screening of images is delegated to a machine
with a learning algorithm? How will these capabilities mesh
with current regulatory and reimbursement policies, or will
these have to be modified?

Finally, the commercial efforts to push this technology into
clinical care are becoming apparent, as several companies have
begun to translate these research advancements to commer-
cial applications. For example, one company is using deep
learning models to improve cancer detection,15 while an-
other company uses deep learning to read radiology images.16

Outside of imaging, other companies using artificial intelli-
gence have started to help manage care, predict patient out-
comes, or monitor patients through wearable devices, all in an
attempt improve health care delivery. Given that artificial in-
telligence has a 50-year history of promising to revolutionize
medicine and failing to do so, it is important to avoid over-
interpreting these new results. However, given the rapid and
impressive progress in other areas of artificial intelligence,
along with results such as those presented by Gulshan et al,
there are valid reasons to remain cautiously optimistic that the
time could now be right for artificial intelligence to transform
the clinic into a much higher-capacity and lower-cost infor-
mation processing care service.
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INNOVATIONS IN HEALTH CARE DELIVERY

Adapting to Artificial Intelligence
Radiologists and Pathologists
as Information Specialists

Artificial intelligence—the mimicking of human cogni-
tion by computers—was once a fable in science fiction
but is becoming reality in medicine. The combination of
big data and artificial intelligence, referred to by some
as the fourth industrial revolution,1 will change radiol-
ogy and pathology along with other medical specialties.
Although reports of radiologists and pathologists being
replaced by computers seem exaggerated,2 these spe-
cialties must plan strategically for a future in which arti-
ficial intelligence is part of the health care workforce.

Radiologists have always revered machines and tech-
nology. In 1960, Lusted predicted “an electronic scanner-
computer to examine chest photofluorograms, to sepa-
rate the clearly normal chest films from the abnormal
chest films.”3 Lusted further suggested that “the abnor-
mal chest films would be marked for later study by the
radiologists.”3 Lusted’s intuitions were prescient: inter-
preting radiographs is pattern recognition; computers can
recognize patterns and may be helpful because some
roentgenographic analyses can be automated.

Nearly 60 years after Lusted’s prediction, Enlitic,
a technology company in Silicon Valley, inputted im-
ages of normal radiographs and radiographs with frac-
tures into a computerized database.4 Using deep learn-
ing, a refined version of artificial neural networks, the

computer developed rules that not only identified ra-
diographs with fractures but highlighted the fractures.
The computer received the image data rather than rules
for their interpretation. The computer was not pro-
grammed regarding what to detect but developed al-
gorithms necessary for fracture detection using deep
learning.4 Deep learning is an autodidact—like an out-
standing radiology resident, the more images it ana-
lyzes, the better it gets. The IBM prototype for artificial
intelligence, Watson, can identify pulmonary embo-
lism on computed tomography (CT) and detect abnor-
mal wall motion on echocardiography.5 Watson has a
boundless capacity for learning—and now has 30 bil-
lion images to review after IBM acquired Merge. Wat-
son may become the equivalent of a general radiologist
with super-specialist skills in every domain—a radiolo-
gist’s alter ego and nemesis.

This progress in imaging has changed the work of
radiologists. Radiology, once confined to projectional im-
ages, such as chest radiographs, has become more com-
plex and data rich. Cross-sectional imaging such as CT
and magnetic resonance, by showing anatomy with
greater clarity, has made diagnosis simpler in many in-
stances; for example, a ruptured aneurysm is inferred on
a chest radiograph but actually seen on CT. However, this
has come at a price—the amount of data has increased
markedly. For example, a radiologist typically views
4000 images in a CT scan of multiple body parts (“pan
scan”) in patients with multiple trauma. The abun-
dance of data has changed how radiologists interpret im-
ages; from pattern recognition, with clinical context, to
searching for needles in haystacks; from inference to de-
tection. The radiologist, once a maestro with a chest ra-
diograph, is now often visually fatigued searching for an
occult fracture in a pan scan.

The amount of data continues to increase in imaging,
both extractable by the human eye and extractable only
by software.6 Thus, radiology has moved from a subjec-
tive perceptual skill to an objective science. Data have
empowered radiologists but also challenged them com-
putationally because of their abundance and complex-
ity. This has paved the way for the role of computers,

which extract fine information about tis-
sues invisible to the human eye and pro-
cess those data quickly and accurately.

How should the changes in imaging,
coupled with artificial intelligence, fur-
ther change the work of radiologists? To
avoid being replaced by computers, ra-

diologists must allow themselves to be displaced by
computers. While some radiographic analyses can
be automated, others cannot. Radiologists should iden-
tify cognitively simple tasks that could be addressed
by artificial intelligence, such as screening for lung
cancer on CT. This involves detecting, measuring, and
characterizing a lung nodule, the management of which
is standardized.7 A radiology residency or a medical de-
gree is not needed to detect lung nodules. Likewise, ra-
diologists are overtrained to interpret portable chest ra-
diographs obtained in the intensive care unit to confirm
that support lines are in proper position. These studies
are not challenging and may be ideal for automation and
delegation to artificial intelligence.

The primary purpose of radiologists is the provi-
sion of medical information; the image is only a means
to information. Radiologists are more aptly considered

Deep learning is an autodidact—like an
outstanding radiology resident, the more
images it analyzes, the better it gets.
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“information specialists” specializing in medical imaging. This is simi-
lar to pathologists, who are also information specialists. Patholo-
gists and radiologists are fundamentally similar because both ex-
tract medical information from images.

Pathologists have embraced machines and technologies. Some
tasks once performed manually by pathologists have been auto-
mated, such as cell counts, typing and screening of blood, and
Papanicolaou tests, leaving pathologists with more complex tasks.
Artificial intelligence can perform the more complex tasks of pa-
thologists and, in some instances, with superior accuracy. A recent
study showed that computers could predict the grade and stage of
lung cancer better than pathologists.8 Even though such studies need
larger-scale validation with more diverse tissue types, it is clear in
both radiology and pathology that many tasks can be handled by ar-
tificial intelligence. To underscore the commonality between radi-
ology and pathology, researchers using operant conditioning trained
pigeons to spot abnormal calcifications on mammograms and de-
tect breast cancer on histology.9

Because pathology and radiology have a similar past and a com-
mon destiny, perhaps these specialties should be merged into a single
entity, the “information specialist,” whose responsibility will not be
so much to extract information from images and histology but to
manage the information extracted by artificial intelligence in the clini-
cal context of the patient.

The information specialist would not spend time inferring con-
ditions between competing shadows on radiographs, scroll through
hundreds of images looking for pulmonary embolus on CT, or ex-
amine slides for “orphan Annie”–shaped nuclei. Artificial intelli-
gence could perform many such tasks. The information specialist
would interpret the important data, advise on the added value of
another diagnostic test, such as the need for additional imaging, ana-
tomical pathology, or a laboratory test, and integrate information
to guide clinicians. Radiologists and pathologists will still be the phy-
sician’s physician.

Together, the information specialist and artificial intelligence
could manage individuals and populations. If a single artificial intel-
ligence unit could do the work of many radiologists, then a single in-
formation specialist could manage many units of artificial intelli-

gence. This would truly scale the influence of radiologists and
pathologists. If artificial intelligence becomes adept at screening for
lung and breast cancer, it could screen populations faster than ra-
diologists and at a fraction of cost. The information specialist could
ensure that images are of sufficient quality and that artificial intel-
ligence is yielding neither too many false-positive nor too many false-
negative results. The efficiency from the economies of scale be-
cause of artificial intelligence could benefit not just developed
countries, such as the United States, but developing countries ham-
pered by access to specialists. A single information specialist, with
the help of artificial intelligence, could potentially manage screen-
ing for an entire town in Africa.

Information specialists should train in the traditional sciences
of pathology and radiology. The training should take no longer than
it presently takes because the trainee will not spend time master-
ing the pattern recognition required to become a competent radi-
ologist or pathologist. Visual interpretation will be restricted to per-
ceptual tasks that artificial intelligence cannot perform as well as
humans. The trainee need only master enough medical physics to
improve suboptimal quality of medical images. Information special-
ists should be taught Bayesian logic, statistics, and data science and
be aware of other sources of information such as genomics and bio-
metrics, insofar as they can integrate data from disparate sources
with a patient’s clinical condition.

There may be resistance to merging 2 distinct medical special-
ties, each of which has unique pedagogy, tradition, accreditation, and
reimbursement. However, artificial intelligence will change these di-
agnostic fields. The merger is a natural fusion of human talent and
artificial intelligence. United, radiologists and pathologists can thrive
with the rise of artificial intelligence.

The history of automation in the broader economy has a reas-
suring message.1 Jobs are not lost; rather, roles are redefined; hu-
mans are displaced to tasks needing a human element. Radiolo-
gists and pathologists need not fear artificial intelligence but rather
must adapt incrementally to artificial intelligence, retaining their own
services for cognitively challenging tasks. A unified discipline, infor-
mation specialists would best be able to captain artificial intelli-
gence and guide medical information to improve patient care.
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