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Abstract
Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex
systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear
relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to
critical care, it is the systemic properties of the host response to a physiological insult that manifest as
health or illness and determine outcome in our patients. Variability analysis provides a novel technology
with which to evaluate the overall properties of a complex system. This review highlights the means by
which we scientifically measure variation, including analyses of overall variation (time domain analysis,
frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant
(fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and
multiscale entropy). Each technique is presented with a definition, interpretation, clinical application,
advantages, limitations and summary of its calculation. The ubiquitous association between altered
variability and illness is highlighted, followed by an analysis of how variability analysis may significantly
improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients.
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Introduction
Biological systems are complex systems; specifically, they are
systems that are spatially and temporally complex, built from a
dynamic web of interconnected feedback loops marked by
interdependence, pleiotropy and redundancy. Complex sys-
tems have properties that cannot wholly be understood by
understanding the parts of the system [1]. The properties of
the system are distinct from the properties of the parts, and
they depend on the integrity of the whole; the systemic prop-
erties vanish when the system breaks apart, whereas the prop-
erties of the parts are maintained. Illness, which presents with
varying severity, stability and duration, represents a systemic
functional alteration in the human organism. Although illness

may occasionally be due to a specific singular deficit (e.g.
cystic fibrosis), this discussion relates to illnesses character-
ized by systemic changes that are secondary to multiple defi-
cits, which differ from patient to patient, with varied temporal
courses, diverse contributing events and heterogeneous
genetic contributions. However, all factors contribute to a
physiological alteration that is recognizable as a systemic ill-
ness. Multiple organ dysfunction syndrome represents the ulti-
mate multisystem illness, really representing a common end-
stage pathway of inflammation, infection, dysfunctional host
response and organ failure in critically ill patients, and fre-
quently leading to death [2]. Although multiple organ dysfunc-
tion syndrome provides a useful starting point for discussion
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regarding complex systems and variability analysis [3], the
application of variability analysis to other disease states is
readily apparent and exciting.

Life is composed of and characterized by rhythms. Abnormal
rhythms are associated with illness and can even be involved
in its pathogenesis; they have been termed 'dynamical dis-
eases' [4]. Measuring the absolute value of a clinical parame-
ter such as heart rate yields highly significant, clinically useful
information. However, evaluating heart rate variability (HRV)
provides additionally useful clinical information, which is, in
fact, more valuable than heart rate alone, particularly when
heart rate is within normal limits. Indeed, as is demonstrated
below, there is nothing 'static' about homeostasis. Akin to the
concept of homeorrhesis (dynamic stability) introduced by CH
Waddington, homeokinesis describes 'the ability of an organ-
ism functioning in a variable external environment to maintain a
highly organized internal environment, fluctuating within
acceptable limits by dissipating energy in a far from equilibrium
state' [5].

Clinicians have long recognized that alterations in physiologi-
cal rhythms are associated with disease. The human eye is an
excellent pattern recognition device, which is capable of com-
plex interpretation of ECGs and electroencephalograms
(EEGs) [6], and physicians make use of this skill on a daily
basis. However, more sophisticated analysis of variability pro-
vides a measure of the integrity of the underlying system that
produces the dynamics. As the spatial and temporal organiza-
tion of a complex system define its very nature, changes in the
patterns of interconnection (connectivity) and patterns of vari-
ation over time (variability) contain valuable information about
the state of the overall system, representing an important
means with which to prognosticate and treat our patients [3].
As clinicians, our goal is to make use of this observation in
order to improve patient care. This technology of variability
analysis is particularly valuable in the intensive care unit (ICU),
where patients are critically ill and numerous parameters are
routinely measured continuously. The intensivist is poised to
marshal the science of variability analysis, becoming a 'dynami-
cist' [6], to measure and characterize the variability of physio-
logical signals in an attempt to understand the information
locked in the 'homeokinetic code' [7], and thus contribute to a
breakthrough in our ability to treat critically ill patients.

The focus of this review and analysis is the measurement and
characterization of variability, a science that has undergone
considerable growth in the past two decades. The develop-
ment of mathematical techniques with a theoretical basis in
chaos theory and nonlinear dynamics has provided us with
greater ability to discern meaningful distinctions between bio-
logical signals from clinically distinct groups of patients. The
science of variability analysis has developed from a close col-
laboration between mathematicians, physicists and clinicians.
As such, the techniques for measuring variability sometimes

represent a bewildering morass of equations and terminology.
Each technique represents a unique and distinct means of
characterizing a series of data in time. The principal objectives
of this review are as follows: to present a concise summary,
including definition, interpretation, advantages, limitations and
calculation of the principal techniques for performing variability
analysis; to discuss the interpretation and application of this
technology; and to propose how this information may improve
patient care. Although the majority of the discussion relates to
the analysis of HRV because is it readily and accurately meas-
ured on an ECG, the techniques are applicable to any biolog-
ical time signal. Two tables are included to facilitate review of
the techniques for characterizing variability (Table 1) and the
evidence for altered variability in illness (Table 2).

Science of variability analysis
Sampling
The analysis of patterns of change over time or variability is
performed on a series of data collected continuously or semi-
continuously over time. For example, a heart rate tracing may
be converted to a time series of intervals between consecutive
heart beats (measured as R–R' intervals on an ECG). The
same may be done with inter-breath intervals, albeit not as eas-
ily. When there is no intrinsic rhythm such as a heart or respi-
ratory rate, sampling a signal occurs in discrete time intervals
(e.g. serum concentrations of a hormone measured every few
minutes). In order to reconstruct the underlying signal without
error, one must respect the Nyquist Theorem, which states
that the sampling frequency must be at least twice the highest
frequency of the signal being sampled.

Stationarity
Stationarity defines a limitation in techniques designed to
characterize variability. It requires that statistical properties
such as mean and standard deviation of the signal remain the
same throughout the period of recording, regardless of meas-
urement epoch. Stationarity does not preclude variability, but
it provides boundaries for variability such that variability does
not change with time or duration of measurement. If this
requirement is not met, as is the case with most if not all bio-
logical signals when physiological and/or pathophysiological
conditions change, then the impact of trends with change on
the mean of the data set must be considered in the interpreta-
tion of the variability analysis. The relative importance of sta-
tionarity to individual techniques of variability analysis is
addressed below.

Artifact
Variability analysis should be performed on data that are free
from artifact, with a minimal noise:signal ratio. Noise is meas-
urement error, or imprecision secondary to measurement tech-
nology. Often present in patient monitoring, artifact must be
removed, often by visual inspection of the raw data. For exam-
ple, in the evaluation of HRV the presence of premature atrial
and/or ventricular beats require that the data be removed, and
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appropriate interpolation be performed without compromising
the integrity of the variability analysis. Several techniques, such
as a Poincaré Plot of the difference between consecutive data
points, have been developed to facilitate automated identifica-
tion and removal of artifact [8-10]. Different techniques are
more or less sensitive to artifact, which again is addressed
below.

Standardized technique
Various factors alter variability measurement. For example,
standing or head-up tilt (increased sympathetic activity) and
deep breathing (increased respiratory rate induced HRV) will
alter HRV indices in healthy individuals. With deference to
Heisenberg, experimental design should take into account that
the process of measurement may alter the intrinsic variation.
An important component of standardized technique is the
duration of measurement for analysis. For example, indices of
HRV may be calculated following a duration of 15 min or 24
hours. In general terms, it is inappropriate to compare variabil-
ity analysis from widely disparate durations of measurements
[11]. More specifically, the impact of duration of measurement
varies in relation to individual analysis technique, and is dis-
cussed below.

Time domain analysis
Definition
Time series analysis represents the simplest means of evaluat-
ing variability, identifying measures of variation over time such
as standard deviation and range. For example, quantitative
time series analysis is performed on heart rate by evaluating a
series of intervals between consecutive normal sinus QRS
complexes (normal–normal, or NN or RR' interval) on an ECG
over time. In addition, a visual representation of data collected
as a time series may be obtained by plotting a frequency dis-
tribution, plotting the number of occurrences of values in
selected ranges of values or bins.

Calculation
Mathematically, standard deviation is equal to the square root
of variance; and variance is equal to the sum of the squares of
difference from the mean, divided by the number of degrees of
freedom. Evaluating HRV, the standard deviation of a series of
NN intervals (SDNN) represents a coarse quantification of
overall variability. As a measure of global variation, standard
deviation is altered by the duration of measurement; longer
series will have greater SDNN. Thus, SDNN can be calculated
for short periods between 30 s and 5 min and used as a

Table 1

Techniques to characterize variability

Variability analysis Description Advantages Limitations Output variables

Time domain Statistical calculations of 
consecutive intervals

Simple, easy to calculate; 
proven clinically useful; 
gross distinction of high 
and low frequency 
variations

Sensitive to artifact; 
requires stationarity; fails 
to discriminate distinct 
signals

SD, RMSDD Specific to HRV: 
SDANN, pNNx

Frequency distribution 
(plot number of 
observations falling in 
selected ranges or bins)

Visual representation of 
data; can fit to normal or 
log-normal distribution

Lacks widespread clinical 
application; arbitrary 
number of bins

Skewness (measures 
symmetry): positive (right tail) 
versus negative (left) Kurtosis 
(measures peakedness): flatter 
top (<0) versus peaked (>0)

Frequency domain Frequency spectrum 
representation (spectral 
analysis)

Visual and quantitative 
representation of 
frequency contribution to 
waveform; useful to 
evaluate relationship to 
mechanisms; widespread 
HRV evaluation

Requires stationarity and 
periodicity for validity; 
sensitive to artifact; altered 
by posture, sleep, activity

Total power (area under curve) 
Specific to HRV: ULF (<0.003 
Hz), VLF (0.003–0.04 Hz), LF 
(0.04–0.15 Hz), HF (0.15–0.4 
Hz)
Time spectrum analysis

Scale invariant 
(fractal) analysis

Power law: log power 
versus log frequency

Ubiquitous biologic 
application; 
characterization of signal 
with single linear 
relationship; enables 
prognostication

Requires stationarity and 
periodicity; requires large 
datasets

Slope of power law Intercept of 
power law

DFA Identifies intrinsic 
variations 2°system (versus 
external stimuli), does not 
require stationarity

Requires large datasets 
(>8000 patients)

Scaling exponent α1 (n < 11)
Scaling exponent α2 (n > 11)
α–β filter

Entropy Measures the degree of 
disorder (information or 
complexity)

Unique representation of 
data; requires fewest data 
points (100–900 patients)

Needs to be 
complemented by other 
techniques

ApEN SampEN Multi-scale 
entropy

ApEn, approximate entropy; DFA, detrended fluctuation analysis; HF, high frequency; HRV, heart rate variability; LF, low frequency; pNNx, 
proportion greater than x ms; RMSDD, root mean square of standard deviation; SampEn, sample entropy; SD, standard deviation; SDANN, 
standard deviation of 5 min averages; ULF, ultralow frequency; VLF, very low frequency.



Critical Care    December 2004  Vol 8 No 6    Seely and Macklem 

R370
measure of short-term variability, or calculated for long periods
(24 hours) as a measure of long-term variation [12]. Because
it is inappropriate to compare SDNNs from recordings of dif-
ferent duration, standardized duration of recording has also
been suggested [11].

Various permutations of measurement of standard deviation, in
an effort to isolate short-term, high frequency fluctuations from
longer term variation, are possible. For example, SDANN
(standard deviation of the average NN interval calculated over
5-min intervals within the entire period of recording) is a meas-
ure of longer term variation because the beat-to-beat variation
is removed by the averaging process. In contrast, the following
variables were devised as a measure of short-term variation:
RMSSD (square root of the mean squared differences of con-

secutive NN intervals), NN50 (number of pairs of adjacent NN
intervals differing by more than 50 ms), and pNN50 (propor-
tion of NN intervals differing by more than 50 ms = NN50
divided by total number of NN intervals). These measures of
high frequency variation are interrelated; however, RMSSD
has been recommended because of superior statistical prop-
erties [11]. The conventional 50 ms used in the NN50 and
pNN50 measurements represents an arbitrary cutoff, and is
only one member of a general pNNx family of statistics; in fact,
a threshold of 20 ms may demonstrate superior discrimination
between physiological and pathological HRV [13].

In order to characterize a frequency distribution, it may be fit-
ted to a normal distribution, or rather a log-normal distribution
– one in which the log of the variable in question is normally

Table 2

Evidence for altered patterns of variability in illness states

Variability analysis Cardiac Respiratory Neurological Miscellaneous Critical care

Time domain ↓HRV ↔↑mortality risk 
in elderly, CAD, post-MI, 
CHF and dilated 
cardiomyopathy [14–24]

Altered frequency 
distribution of airway 
impedance in asthma 
[5]
Altered respiratory 
variability (↓kurtosis) 
in sleep apnoea [148]

Frequency domain Altered spectral HRV 
analysis↔illness severity 
in cardiac disease (CHF 
[50–52], hypertension 
[53,54], CAD [55,56], 
angina [57], MI [58]) and 
noncardiac disease 
(hypovolaemia [49], 
chronic renal failure [59], 
diabetes mellitus [60], 
anaesthesia [61])

↓Total HRV, ↓LF and 
↓LF/HF HRV 
following trauma 
[149], sepsis and 
septic shock in the 
ICU 
[62,64,68,150,151] 
and in ER patients 
[63]

Power law analysis Altered HRV power law 
(↓HRV left shift and 
steeper slope) with age 
[84], CAD [85] and post-
MI [86]

↑Respiratory 
variability (right shift) 
in patients with 
asthma [7] 
↓Variability of foetal 
breathing with 
maternal alcohol 
intake [152]

Altered variability in 
gait analysis [153–
155] and postural 
control [156] with 
ageing and 
neurological disease 
Altered variability of 
mood↔psychiatric 
illness [157–159]

Haematological: 
altered leucocyte 
dynamics [160,161] 
observed in 
haematological 
disorders (e.g. cyclic 
neutropenia)

Altered HRV power 
law (↓HRV left 
shift)↔↓mortality risk 
in paediatric ICU 
patients [33]

DFA Altered DFA scaling 
exponent↔age [92], 
heart disease [93–96], 
post-ACBP [100], 
prearrhythmias [97], 
patients with sleep 
apnoea [98], and 
↑mortality risk post-MI 
[99]

Altered respiratory 
variability (↓DFA 
scaling 
exponent)↔age[101]

Temperature: altered 
temperature 
measurements↔age[
103]

↑Heart rate DFA 
scaling 
exponent↔septic 
shock[162] and 
procedures[61] in 
paediatric ICU 
patients

Entropy ↓HR ApEn↔age [118], 
ventricular dysfunction 
[123], occurs prior to 
arrhythmias [119–121]

Greater respiratory 
irregularity in patients 
with panic disorder 
[136]

Altered EEG entropy 
with 
anaesthesia[132,163,
164]

Endocrine: ↓ApEn of 
GH [125,126], insulin 
[127,128], ACTH, 
GH, PRL [129,130], 
PTH [131]↔age and/
or illness

↓HR ApEn↔healthy 
individuals infused 
with endotoxin [124] 
↑TV ApEn in 
respiratory failure 
[135]

↓, decreased; ↑, increased; ↔, is associated with; ACBP, aorto–coronary bypass procedure; ACTH, adrenocorticotrophic hormone; ApEn, 
approximate entropy; CAD, coronary artery disease; CHF, congestive heart failure; DFA, detrended fluctuation analysis; EEG, 
electroencephalogram; ER, emergency room; GH, growth hormone; HF, high frequency; HRV, heart rate variability; ICU, intensive care unit; LF, 
low frequency; MI, myocardial infarction; PRL, prolactin; PTH, parathyroid hormone; TV, tidal volume.
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distributed. The skewness or degree of symmetry may be cal-
culated, with positive and negative values indicating distribu-
tions with a right-sided tail and a left-sided tail, respectively.
Kurtosis may also be calculated to identify the peakedness of
the distribution; positive kurtosis (leptokurtic) indicates a
sharp peak with long tails, and negative kurtosis (platykurtic)
indicates a flatter distribution.

Interpretation and clinical application
Time domain analysis involves the statistical evaluation of data
expressed as a series in time. Clinical evaluation of time
domain measures of HRV have been extensive, using overall
standard deviation (SDNN) to measure global variation, stand-
ard deviation of 5-min averages (SDANN) to evaluate long-
term variation, and the square root of mean squared differ-
ences of consecutive NN intervals (RMSSD) to measure
short-term variation. An abridged review of an extensive litera-
ture suggests that diminished overall HRV measured with time
domain analysis portends poorer prognosis and/or increased
mortality risk in patients with coronary artery disease [14,15],
dilated cardiomyopathy [16], congestive heart failure [17,18]
and postinfarction patients [19-23], in addition to elderly
patients [24]. Time domain HRV analysis has been used to
compare β-blocker therapies postinfarction [25], to evaluate
percutaneous coronary interventions [26,27], to predict
arrhythmias [28] and to select patients for specific antiarrhyth-
mic therapies [29], which are a few examples of a vast body of
literature that is well reviewed elsewhere [30,31].

Time series of parameters derived from biological systems are
known to follow log-normal frequency distributions, and devia-
tions from the log-normal distribution have been proposed to
offer a means with which to characterize illness [32]. For exam-
ple, in paediatric ICU patients with organ dysfunction, HRV
evaluated using a frequency distribution (plotting frequency of
occurrence of differences from the mean) revealed a reduction
in HRV and a shift in the frequency distribution to the left with
increasing organ failure; these changes improved in surviving
patients and were refractory in nonsurvivors [33]. The authors
utilized a technique that was initially described in the evalua-
tion of airway impedance variability, demonstrating increased
variability in asthma patients characterized by altered fre-
quency distribution [5].

Advantages and limitations
Statistical measures of variability are easy to compute and pro-
vide valuable prognostic information about patients. Fre-
quency distributions also offer an accurate, visual
representation of the data, although the analysis may be sen-
sitive to the arbitrary number of bins chosen to represent the
data. Time domain measures are susceptible to bias second-
ary to nonstationary signals. A potential confounding factor in
characterizing variability with standard deviation is the
increase in baseline heart rate that may accompany diminished
HRV indices. The clinical significance of this distinction is

unclear, because the prognostic significance of altered SDNN
or SDANN remains clinically useful. A more condemning limi-
tation of time domain measures is that they do not reliably dis-
tinguish between distinct biological signals. There are many
potential examples of data series with identical means and
standard deviations but with very different underlying rhythms
[34]. Therefore, additional, more sophisticated methods of var-
iability analysis are necessary to characterize and differentiate
physiological signals. It is nonetheless encouraging that, using
rather crude statistical measures of variability, it is possible to
derive clinically useful information.

Frequency domain analysis
Definition
Physiological data collected as a series in time, as with any
time series, may be considered a sum of sinusoidal oscillations
with distinct frequencies. Conversion from a time domain to
frequency domain analysis is made possible with a mathemat-
ical transformation developed almost two centuries ago
(1807) by the French mathematician Jean-Babtiste-Joseph
Fourier (1768–1830). Other transforms exist (e.g. wavelet,
Hilbert), but Fourier was first and his transformation is used
most commonly. The amplitude of each sine and cosine wave
determines its contribution to the biological signal; frequency
domain analysis displays the contributions of each sine wave
as a function of its frequency. Facilitated by computerized data
harvest and computation, the result of converting data from
time series to frequency analysis is termed spectral analysis
because it provides an evaluation of the power (amplitude) of
the contributing frequencies to the underlying signal.

Calculation
The clinician should note that the power spectrum is simply a
different representation of the same time series data, and the
transformation may be made from time to frequency and back
again. It is not necessary for the clinician to know how to per-
form power spectral density analysis using the fast Fourier
transformation because computers can do so quickly and reli-
ably, calculating a weighted sum of sinusoidal waves, with dif-
ferent amplitudes and frequencies. This provides an analysis of
the relative contributions of different frequencies to the overall
variation in a particular data series. Interpretation of the analy-
sis must factor in the assumptions inherent to this calculation,
namely stationarity and periodicity. Note that the square of the
contribution of each frequency is the power of that frequency
to the total spectrum, and the total power of spectral analysis
(area under the curve of the power spectrum) is equal to the
variance described above (they are different representations
of the same measure) [11]. The fast Fourier transform or anal-
ysis (see Appendix 1) represents a nonparametric calculation
because it provides an evaluation of the contribution of all fre-
quencies, not discrete or preselected frequencies.
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Interpretation and clinical application
Spectral analysis of heart rate was first performed by Sayers
[35]. It was subsequently used to document the contributions
of the sympathetic, parasympathetic and renin–angiotensin
systems to the heart rate power spectrum, which introduced
frequency domain analysis as a sensitive, quantitative and non-
invasive means for evaluating the integrity of cardiovascular
control systems [36]. Spectral analysis has been utilized to
evaluate and quantify cardiovascular and electroencephalo-
graphic variability in numerous disease states, and is per-
ceived as an important tool in clinical medicine [37].

The power spectral density function or power spectrum pro-
vides a characteristic representation of the contributing fre-
quencies to an underlying signal. By identifying and measuring
the area of distinct peaks on the power spectrum, it is possible
to derive quantitative connotation to facilitate comparison
between individuals and groups. In 2–5 min recordings, spec-
tral analysis reveals three principal peaks, identified by conven-
tion with the following ranges: very low frequency (VLF;
frequency ≤ 0.04 Hz [cycles/s], cycle length >25 s), low fre-
quency (LF; frequency 0.04–0.15 Hz, cycle length >6 s) and
high frequency (HF; frequency 0.15–0.4 Hz, cycle length 2.5–
6 s). In 24 hour recordings VLF is further subdivided into VLF
(frequency 0.003–0.04 Hz) and ultralow frequency (ULF; fre-
quency ≤ 0.003 Hz, cycle length >5 hours) [11]. Correlations
between time and frequency measures have also been dem-
onstrated, for example in healthy newborns [38] and in cardiac
patients following myocardial infarction [39].

Numerous factors in health and disease have an impact on the
amplitude and area of each peak (or frequency range) on the
HRV power spectrum. Akselrod and coworkers [36] first dem-
onstrated the contributions of sympathetic and parasympa-
thetic nervous activity and the renin–angiotensin system to
frequency specific alterations in the HRV power spectrum in
dogs. Several authors have evaluated and reviewed the rela-
tionship between the autonomic nervous system and spectral
analysis of HRV [40-44]. Although autonomic regulation is
clearly a significant regulator of the HRV power spectrum, evi-
dence demonstrates a lack of concordance with direct evalu-
ation of sympathetic tone, for example in patients with heart
failure [45], and reviews increasingly conclude that HRV is
generated by multiple physiological factors, not just autonomic
tone [46,47].

In interpreting the significance of the HRV power spectrum,
investigators initially focused on peaks because of a presumed
relationship with a single cardiovascular control mechanism
leading to rhythmic oscillations; however, others documented
nonrhythmic (no peak) fluctuations in both heart rate and
blood pressure variability, indicating the need to analyze
broadband power [48]. Thus, the calculation of HF, LF, VLF
and ULF using the ranges listed above serve to facilitate data
reporting and comparison, but they are nonetheless arbitrary

ranges with diverse physiological input. A recent review of
HRV [47] documented the evidence that ULF reflects
changes secondary to the circadian rhythm, VLF is affected by
temperature regulation and humoral systems, LF is sensitive to
cardiac sympathetic and parasympathetic nerve activity, and
HF is synchronized to respiratory rhythms, primarily related to
vagal innervation.

What does spectral analysis of HRV tell us about our patients?
Despite nonspecific pathophysiological mechanisms, there is
ample evidence that the frequency contributions to HRV are
altered in illness states, and that the degree of alteration cor-
relates with illness severity. It is illustrative that alterations in
the spectral HRV analysis related to illness severity have been
demonstrated from hypovolaemia [49] to heart failure [50-52],
from hypertension [53,54] to coronary artery disease [55,56],
and from angina [57] to myocardial infarction [58], in addition
to chronic renal failure [59], autonomic neuropathy secondary
to diabetes mellitus [60], depth of anaesthesia [61] and more.
Spectral analysis of HRV has been applied in the ICU. For
example, using spectral HRV and blood pressure variability
analyses in consecutive patients admitted to an ICU, increas-
ing total and LF HRV power were associated with recovery
and survival, whereas progressive decreases in HRV were
associated with deterioration and death [62]. In separate
investigations involving patients in the emergency room [63] or
admitted to an ICU after 48 hours [64], decreased total, LF
and LF/HF HRV was not only present in patients with sepsis
but also correlated with subsequent illness severity, organ
dysfunction and mortality. Several reviews discuss the applica-
tion of HRV spectral analysis to the critically ill patient [65-68].
Thus, alterations in spectral analysis correlate with severity of
illness, a finding consistently reported in cardiac and noncar-
diac illness states, providing the clinician with a means with
which to gauge prognosis and determine efficacy of
intervention.

Advantages and limitations
In order to derive a valid and meaningful analysis using a fast
Fourier transform and frequency domain analysis, the assump-
tions of stationarity and periodicity must be fulfilled. The signal
must be periodic, namely it is a signal that is comprised of
oscillations repeating in time, with positive and negative alter-
ations [69]. In the interpretation of experimental data, periodic
behaviour may or may not exist when evaluating alterations in
spectral power in response to intervention. The assumption of
stationarity may also be violated with prolonged signal record-
ing. Changes in posture, level of activity and sleep patterns will
alter the LF and HF components of spectral analysis [70].
Spectral analysis is more sensitive to the presence of artifact
and/or ectopy than time domain statistical methods. In addi-
tion, given that different types of Holter monitors may yield
altered LF signals [71], it is essential to ensure that the sam-
pling frequency of the monitor used to read QRS complexes
does not contribute to error in the variability analysis [11,72].
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Thus, the performance and interpretation of spectral analysis
must incorporate these limitations. Recommendations based
upon the stationarity assumption include the following [11]:
short-term and long-term spectral analyses must be distin-
guished; long-term spectral analyses are felt to represent aver-
ages of the alterations present in shorter term recordings and
may hide information; traditional statistical tests should be
used to test for stationarity when performing spectral analysis;
and physiological mechanisms that are known to influence
HRV throughout the period of recording must be controlled.

Time spectrum analysis
Another means to address the stationarity assumption inher-
ent in the Fourier transform is to evaluate the power spectral
density function for short periods of time when stationarity is
assumed to be present, and subsequently follow the evolution
of the power spectrum over time [73]. This combined time var-
ying spectral analysis allows the continuous evaluation of
change in variability over time. One can use sequential spec-
tral approach [74], Wavelet analysis [75], the Wigner-Ville
technique or Walsh transforms, all of which provide an analy-
sis of frequency alteration over time, which is useful in clinical
applications [37]. For example, time frequency analysis has
demonstrated increased LF HRV power during waking hours
(considered primarily a marker of sympathetic tone) and
increased HF HRV during sleep (thought to be related to res-
piratory fluctuations secondary to vagal tone) [70]. The
authors hypothesized that observations of increased cardio-
vascular events occurring during waking hours may be sec-
ondary to sudden increases in sympathetic activity. However,
spectral analysis should not be the only form of variability anal-
ysis because there are patterns of variation that are present
across the frequency spectrum, involving long-range organiza-
tion and complexity.

Power law
Definition
Power law behaviour describes the dynamics of widely dispa-
rate phenomena, from earthquakes, solar flares and stock mar-
ket fluctuations to avalanches. These dynamics are thought to
arise from the system itself; indeed, the theory of self-organ-
ized criticality has been suggested to represent a universal
organizing principle in biology [76]. It is illustrative to discuss
the frequency distribution of earthquakes. A plot of the log of
the power of earthquakes (i.e. the Richter scale) against the
log of the frequency of their occurrence reveals a straight line
with negative slope of -1. Thus, the probability of an earth-
quake may be determined for a given magnitude, occurring in
a given region over a period of time, providing a measure of
earthquake risk. In areas of increased earthquake activity, the
line is shifted to the right, but the straight line relationship (and
the slope) remains unchanged. Thus, the vertical distance
between the straight line log–log frequency distributions or
the intercept provides a measure of the difference in probabil-
ities of an earthquake of all magnitudes between the two

regions. Power law behaviour in physics, ecology, evolution,
epidemics and neurobiology has also been described and
reviewed [77].

Power laws describe dynamics that have a similar pattern at
different scales, namely they are 'scale invariant'. As we shall
see, detrended fluctuation analysis (DFA) is also a technique
that characterizes the pattern of variation across multiple
scales of measurement. A power law describes a time series
with many small variations, and fewer and fewer larger varia-
tions; and the pattern of variation is statistically similar regard-
less of the size of the variation. Magnifying or shrinking the
scale of the signal reveals the same relationship that defines
the dynamics of the signal, analogous to the self-similarity seen
in a multitude of spatial structures found in biology [78]. This
scale invariant self-similar nature is a property of fractals,
which are geometric structures pioneered and investigated by
Benoit Mandelbrot [79]. Akin to a coastline, fractals represent
structures that have no fixed length; their length increases with
increased precision (magnification) of measurement, a prop-
erty that confers a noninteger dimension to all fractals. In the
case of a coastline, the fractal dimension lies between 1 (a
perfectly straight coastline) and 2 (an infinitely irregular coast-
line). With respect to time series, the pattern of variation
appears the same at different scales (i.e. magnification of the
pattern reveals the same pattern) [78]. This is often referred to
as fractal scaling. Of principal interest to clinicians and scien-
tists is that one can measure the long range correlations that
are present in a series of data and, as we shall see, measure
the alterations present in states of illness.

Calculation
As with frequency domain analysis (discussed above), the first
step in the evaluation of the power law is the calculation of the
power spectrum. This calculation, based on the fast Fourier
transform (defined above), yields the frequency components
of a series in time. By plotting a log–log representation of the
power spectrum (log power versus log frequency), a straight
line is obtained with a slope of approximately -1. As the fre-
quency increases, the size of the variation drops by the same
factor, and this patterns exists across many scales of fre-
quency and variation, within a range consistent with system
size and signal duration. Mathematically, power law behaviour
is scale invariant; if a variable x is replaced by Ax', where A is
a constant, then the fundamental power law relationship
remains unaltered. A straight line is fitted using linear regres-
sion, and the slope and intercept are obtained (see Appendix
1).

Interpretation and clinical implications
Power law behaviour has been observed for numerous physi-
ological parameters and, relevant to clinicians, a change in
intercept and slope is both present and prognostic in illness.
Power law behaviour describes fluctuations in heart rate (first
noted by Kobayashi and Musha [80]), foetal respiratory rate in
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lambs [81], movement of cells [82] and more. Power laws in
pulmonary physiology were recently reviewed [83], noting a
link between fractal temporal structure and fractal spatial anat-
omy. Alterations in the heart rate power law relationship
(decreased or more negative slope) are present with ageing in
healthy humans [84] as well as in patients with coronary artery
disease [85]. Illness also confers changes in heart rate power
law relationship. In over 700 patients with a recent myocardial
infarction, as compared with age-matched control individuals,
a steeper (more negative slope) power law slope was the best
predictor of mortality evaluated [86]. In a random sample of
347 healthy individuals aged 65 years or older, a steep slope
in the power law regression line (β < -1.5) was the best univar-
iate predictor of all-cause mortality, with an odds ratio for mor-
tality at 10 years of 7.9 (95% confidence interval 3.7–17.0; P
< 0.0001) [87]. Furthermore, only power law slope and a his-
tory of congestive heart failure were multivariate predictors of
mortality in this cohort. Thus, changes in both slope and inter-
cept have been documented to provide prognostic information
in diverse patient populations.

Given that power law analysis is performed by plotting the log
of spectral power versus the log of frequency using data
derived from spectral analysis, what is the relationship
between the two methods of characterizing variability?
Although derived using the same data, the two methods
assess different characteristics of signals. Spectral analysis
measures the relative importance or contribution of specific
frequencies to the underlying signal, whereas power law anal-
ysis attempts to determine the nature of correlations across
the frequency spectrum. These analyses may have distinct and
complementary clinical significance; for example, investiga-
tions of multiple HRV indices in patients following myocardial
infarction [86] and in paediatric ICU patients [33] found that
the slope of the power law had superior ability to predict mor-
tality and organ failure, respectively, as compared with tradi-
tional spectral analysis.

Limitation
Because determining power law behaviour requires spectral
analysis, namely the determination of the frequency compo-
nents of the underlying signal, the technique becomes prob-
lematic when applied to nonstationary signals. This limitation
makes it difficult to draw conclusions regarding the mecha-
nisms that underlie the alteration in dynamics observed in dif-
ferent patient groups. In addition, because power law
behaviour measures the correlation between a large range of
frequencies, it requires prolonged recording to achieve statis-
tical validity. Nonetheless, as with the time and frequency
domain analysis, valid clinical distinctions based on power law
analysis have been demonstrated.

Specifically addressing the problem of nonstationarity, there is
a problem in differentiating variations in a series of data that
arise as an epiphenomenon of environmental stimuli (such as

the effect of change in posture on heart rate dynamics) from
variations that intrinsically arise from the dynamics of a com-
plex nonlinear system [88,89]. Both lead to a nonstationary
variations but nonetheless represent clinically distinct phe-
nomena. The subsequent technique was developed to
address this issue.

Detrended fluctuation analysis
Definition
Introduced by Peng and coworkers [90], DFA was developed
specifically to distinguish between intrinsic fluctuations gener-
ated by complex systems and those caused by external or
environmental stimuli acting on the system [88]. Variations that
arise because of extrinsic stimuli are presumed to cause a
local effect, whereas variations due to the intrinsic dynamics of
the system are presumed to exhibit long-range correlation.
DFA is a second measure of scale invariant behaviour because
it evaluates trends of all sizes, trends that exhibit fractal prop-
erties (similar patterns of variation across multiple time scales).
A component of the DFA calculation involves the subtraction
of local trends (more likely related to external stimuli) in order
to address the correlations that are caused by nonstationarity,
and to help quantify the character of long-range fractal corre-
lation representing the intrinsic nature of the system.

Calculation
The calculation of DFA involves several steps (see Appendix
1). The analysis is performed on a time series, for example the
intervals between consecutive heartbeats, with the total
number of beats equal to N. First, the average value for all N
values is calculated. Second, a new (integrated) series of data
(also from 1 to N) is calculated by summing the differences
between the average value and each individual value. This new
series of values represents an evaluation of trends; for exam-
ple, if the difference between individual NN intervals and the
average NN interval remains positive (i.e. the interval between
heartbeats is longer than the average interbeat interval), then
the heartbeat is persistently slower than the mean, and the
integrated series will increase. This trend series of data dis-
plays fractal, or scaling behaviour, and the following calcula-
tion is performed to quantify this behaviour. In this third step,
the trend series is separated into equal boxes of length n,
where n = N/(total number of boxes); and in each box the local
trend is calculated (a linear representation of the trend func-
tion in that box using the least squares method). Fourth, the
trend series is locally 'detrended' by subtracting the local trend
in each box, and the root mean square of this integrated,
detrended series is calculated, called F(n). Finally, it is possi-
ble to graph the relationship between F(n) and n. Scaling or
fractal correlation is present if the data is linear on a graph of
log F(n) versus log(n). The slope of the graph has been termed
α, the scaling exponent. A single scaling exponent represents
the limit as N and n approach infinity; however, applicable to
real life data sets, the linear relationship between log F(n) and
log n has been noted to be distinct for small n (n < 11) and
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large n (11 < n > 10,000), yielding two lines with two slopes,
labelled the scaling exponents α1 and α2, respectively. For a
more detailed description, see Appendix 1; excellent descrip-
tions of the calculation of DFA may be found elsewhere
[34,88].

Interpretation and clinical applications
DFA offers clinicians the advantage of a means to investigate
long range correlations within a biological signal due to the
intrinsic properties of the system producing the signal, rather
than external stimuli unrelated to the 'health' of the system. In
addition, the calculation is based on the entire data set and is
'scale free', offering greater potential to distinguish biological
signals based on scale specific measures [91]. Theoretically,
the scaling exponent will vary from 0.5 (random numbers) to
1.5 (random walk), but physiological signals yield scaling
exponents close to 1. A scaling exponent greater than 1.0 indi-
cates a loss in long range scaling behaviour and a pathological
alteration in the underlying system [88]. The technique was ini-
tially applied to detect long range correlations in DNA
sequences [90] but has been increasingly applied to biologi-
cal time signals.

As with other techniques of variability analysis, DFA has been
used to evaluate cardiovascular variation. Elderly individuals
[92], patients with heart disease [93] and asymptomatic rela-
tives of patients with dilated cardiomyopathy who have
enlarged left ventricles [94] all exhibit a loss of 'fractal scaling'.
To date, α1 has demonstrated greater clinical discrimination of
distinct heart rate data sets, as compared with α2 [88,94]. For
example, α1 provided the best means of distinguishing
patients with stable angina from age-matched control individ-
uals; however, the correlation did not extend to angiographical
severity of coronary artery disease [95]. In a retrospective eval-
uation of 2 hour ambulatory ECG recordings in the Framing-
ham Heart Study [96], DFA was found to carry additional
prognostic information that was not provided by traditional
time and frequency domain measures. In a retrospective com-
parison between 24 hour HRV analysis using several tech-
niques in patients post-myocardial infarction with or without
inducible ventricular tachyarrhythmia [97], a decrease in the
scaling exponent α1 was the strongest predictor of risk for ven-
tricular arrhythmia. DFA was superior to spectral analysis in the
analysis of HRV alteration in patients with sleep apnoea [98].
In a prospective, multicentre evaluation of HRV post-myocar-
dial infarction, reduced short-term scaling exponent (α1 <
0.65) was the single best predictor of subsequent mortality
[99]. In patients who had undergone coronary artery bypass
surgery, reduced short-term scaling exponent in the postoper-
ative period was the best predictor of a longer ICU stay, as
compared with other HRV measures [100]. Thus, alteration in
DFA scaling exponent (both increased and decreased) of
heart rate fluctuation provides additional diagnostic and prog-
nostic information that appears independent of time and fre-
quency domain analysis.

In addition to cardiovascular variation, DFA has increasingly
been applied to investigate other systems. Alterations in the
scaling exponent of respiratory variation (inter-breath intervals)
have been noted in elderly individuals [101]; and the finding of
long-range correlations in breath–breath end-tidal carbon
dioxide and oxygen fluctuations in healthy infants introduce
novel avenues for investigation of respiratory illness [102].
Remarkably, the scaling properties of temperature measure-
ments (every 10 min for 30 hours) are altered in association
with ageing [103]. In addition, DFA provides meaningful infor-
mation on EEG signals and has been utilized to distinguish
normal individuals from stroke patients [104,105].

Advantages and limitations
The principal advantage to DFA is the lack of confounding due
to nonstationary data. DFA is readily calculated using a com-
puter algorithm available through a cooperative academic
internet resource, Physionet http://www.physionet.org[106].
Although DFA represents a novel technological development
in the science of variability analysis and has proven clinical sig-
nificance, whether it offers information distinct from traditional
spectral analysis is debated [107]. Data requirements are
greater than with other techniques and have been suggested
to include at least 8000 data points, as noted by empirical
observations [88]. It is inappropriate to simply 'run' the DFA
algorithm blindly on data sets; for example, a clear shift in the
state of the cardiovascular system (e.g. spontaneous atrial
fibrillation) would prohibit meaningful DFA interpretation.
Finally, although appealing in order to simplify clinical compar-
ison, the calculation of two scaling exponents (one for small
and one for large n) represents a somewhat arbitrary manipu-
lation of the results of the analysis. The assumption that the
same scaling pattern is present throughout the signal remains
flawed, and therefore techniques without this assumption are
being developed and are referred to as multifractal analysis.

Multifractal analysis
DFA is a monofractal technique, in that the assumption is that
the same scaling property is present throughout the entire sig-
nal. Multifractal techniques provide multiple, possibly infinite
exponents, such that the analysis produces a spectrum rather
than a discrete value. For example, wavelet analysis is a multi-
fractal analysis technique similar to DFA, which is capable of
distinguishing the heart rate dynamics of patients with conges-
tive heart failure from healthy control individuals [34]; a full dis-
cussion of multifractality of biological signals can be found
elsewhere [108]. A separate technique recently introduced by
Echeverría and colleagues [109] utilizes an α–β filter (a
technique imported from real-time radar tracking technology)
to characterize heart rate fluctuations. Those authors sug-
gested that this representation provides a superior means of
identifying clinically distinct signals, and in order to demon-
strate this they evaluated both theoretically and experimentally
derived data sets. It remains unclear whether the added com-
plexity and theoretical advantages of these techniques will

http://www.physionet.org
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afford consistent clinically significant improvements in the abil-
ity to distinguish physiological from pathological rhythms.

Entropy analysis
Definition
Entropy is a measure of disorder or randomness, as embodied
in the Second Law of Thermodynamics, namely the entropy of
a system tends toward a maximum. In other words, states tend
to evolve from ordered statistically unlikely configurations to
configurations that are less ordered and statistically more
probable. For example, a smoke ring (ordered configuration)
diffuses into the air (random configuration); the spontaneous
reverse occurrence is statistically improbable to the point of
impossibility. Entropy is the measure of disorder or random-
ness. Related to time series analysis, approximate entropy
(ApEn) provides a measure of the degree of irregularity or ran-
domness within a series of data. It is closely related to Kol-
mogorov entropy, which is a measure of the rate of generation
of new information [110]. ApEn was pioneered by Pincus
[111] as a measure of system complexity; smaller values indi-
cate greater regularity, and greater values convey more disor-
der, randomness and system complexity.

Calculation
In order to measure the degree of regularity of a series of data
(of length N), the data series is evaluated for patterns that
recur. This is performed by evaluating data sequences of
length m, and determining the likelihood that other runs in the
data set of the same length m are similar (within a specified tol-
erance r); thus two parameters, m and r, must be fixed to cal-
culate ApEn. Once the frequency of occurrence of repetitive
runs is calculated, a measure of their prevalence (negative
average natural logarithm of the conditional probability) is
found. ApEn then measures the difference between the loga-
rithmic frequencies of similar runs of length m and runs with
the length m+1. Small values of ApEn indicate regularity, given
that the prevalence of repetitive patterns of length m and m+1
do not differ significantly and their difference is small. A deri-
vation is included in Appendix 1, and a more comprehensive
description of ApEn may be found elsewhere [112-114].

Interpretation and clinical application
ApEn is representative of the rate of generation of new infor-
mation within a biological signal because it provides a meas-
ure of the degree of irregularity or disorder within the signal. As
such, it has been used as a measure of the underlying 'com-
plexity' of the system producing the dynamics [111,112,115].
The clinical value of a measure of 'complexity' is potentially
enormous because complexity appears to be lost in the pres-
ence of illness [114,116,117] (discussed in greater detail
below).

As with other means of characterizing biological signals, ApEn
has been most extensively studied in the evaluation of heart
rate dynamics. Heart rate becomes more orderly with age and

in men, exhibiting decreased ApEn [118]. Heart rate ApEn has
demonstrated the capacity to predict atrial arrhythmias, includ-
ing spontaneous [119] and postoperative atrial fibrillation after
cardiac surgery [120], and to differentiate ventricular arrhyth-
mias [121]. Heart rate ApEn is decreased in infants with
aborted sudden infant death syndrome [122]; among adults,
postoperative patients with ventricular dysfunction [123] and
healthy individuals infused with endotoxin [124] exhibit
reduced heart rate ApEn.

Because ApEn may be applied to short, noisy data sets, it was
applied to assess the variation of parameters in which frequent
sampling is more difficult (e.g. a blood test is necessary) and
a paucity of data exists. This was most apparent in the evalua-
tion of endocrine variability, as demonstrated in the following
investigations. By applying ApEn to measurements of growth
hormone (GH) every 5 min for 24 hours in healthy control indi-
viduals and patients with acromegaly, reduced orderliness (i.e.
increased ApEn) was observed in acromegaly [125]; and nor-
malization of GH ApEn values was demonstrated after pituitary
surgery for acromegaly [126]. Increased disorderliness has
been observed in insulin secretion in healthy elderly individuals
as compared with young control individuals (insulin measured
every minute for 150 min) [127], and in first-degree relatives of
patients with non-insulin-dependent diabetes mellitus (insulin
measured every minute for about 75 min) [128]. ApEn of
adrenocorticotrophic hormone, GH, prolactin and cortisol lev-
els (sampled every 10 min for 24 hours) is altered in patients
with Cushing's disease [129,130]. Finally, altered dynamics of
parathyroid hormone pulsatile secretion has been demon-
strated in osteoperosis and hyperparathyroidism [131].

ApEn has also been used to evaluate neurological, respiratory
and, recently, temperature variability. ApEn offers a means of
assessing the depth of anaesthesia [132-134], and ApEn of
tidal volume respiratory rate has been evaluated in patients
with respiratory failure weaning from mechanical ventilation
[135]. Alterations in respiratory variability are present in psy-
chiatric illness; for example, increased entropy of respiration
has been observed in patients with panic disorder [136].
Comparing chest wall movement and EEG activity in healthy
individuals, sleep (stage IV) produced more regular breathing
and more regular EEG activity [137]. Finally, demonstrating
the remarkable potential and novel applications of variability
analysis, ApEn of temperature measurements (every 10 min
for 30 hours) revealed increased regularity and decreased
complexity associated with age [103].

Advantages and limitations
ApEn statistics may be calculated for relatively short series of
data, a principal advantage in their application to biological
signals. Referring to both theoretical analysis and clinical
applications, Pincus and Golberger [112] concluded that m =
2 and r = 10–25% of the standard deviation of all the N values,
and an N value of 10m, or preferably 30m, will yield statistically
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reliable and reproducible results (i.e. 100–900 data points).
Pincus [114] also reported that ApEn is applicable to any sys-
tem with at least 50 data points. In contrast to time domain
measures of variability, which are independent of the
sequence of the data set, ApEn required an evaluation of vec-
tors representing consecutive data points, and thus the order
of the data is integral to the calculation of ApEn and must be
preserved during data harvest. Significant noise or nonstation-
ary data compromise meaningful interpretation of ApEn [113];
therefore, it should not be used as the only means to measure
signal characteristics.

Sample and multiscale entropy
An inherent bias within the ApEn calculation exists because
the algorithm counts similar sequences to a given sequence of
length m, including counting the sequence itself (to avoid the
natural logarithm of 0 within the calculations). As a result,
ApEn can be sensitive to the size of the data set, giving inap-
propriately low values when the total number of data points is
low; this, and a lack of consistency in differentiating signals
when m and r are altered, have led to the development of a
new family of statistics named sample entropy (SampEn), in
which self-matches are excluded in the analysis [110]. Sam-
pEn has the advantage of being less dependent on the length
of the data series in question, and has been applied to heart
rate fluctuations in the paediatric ICU [138]. Finally, because
both ApEn and SampEn are noted to evaluate differences
between sequences of length m and m+1, they evaluate reg-
ularity on one scale only, the shortest one, and ignore other
scales. Thus, given the temporal complexity of biological sig-
nals on multiple scales, a novel technique, multiscale entropy,
was developed as a more robust measure of complexity [139].
Initial investigations of multiscale entropy have been promising
[140], but comprehensive evaluation remains to be performed.

Summary and discussion of variability 
techniques
The preceding sections highlight the considerable range of
techniques that have been developed to characterize biologi-
cal signals. Each with distinct theoretical background and sig-
nificance, they contribute complementary information
regarding signal characteristics. Time domain measures of var-
iation represent an evaluation of overall, short-term or long-
term variation, and are clinically proven as a means of identify-
ing clinically significant alterations in biological signals, in par-
ticular with cardiovascular variability. Frequency domain
analysis also has prognostic value, and has been useful in
demonstrating the importance of sympathovagal balance in
regulating HF and LF cardiovascular oscillations. Power law
analysis contributes an analysis of fractal, long range correla-
tions, allowing distinction between physiological and patho-
logical signals with the slope and intercept of the power law.
DFA also represents a means of detecting long range correla-
tions, and is less bound by the stationarity assumption inherent
to the other techniques. By measuring the degree to which

sequences of data repeat themselves within a signal, ApEn
provides a measure of signal irregularity, related to the rate of
production of new information. Although techniques have
shown consistent prognostic capacity, prediction of mortality
is not the sole virtue of HRV analysis; separate techniques also
may clarify mechanisms of disease [141]. Attempts to charac-
terize biological signals should incorporate the 'toolkit' of tech-
niques discussed in this review as well as the publication of
raw data and code to facilitate comparison and development
of this still young, exciting science [117].

Interpretation and significance of altered variability
Following this review of the technology of variability analysis,
the meaning of altered variability in biological signals must be
addressed. A synthesis of the multiple but consistent theories
regarding the significance of altered variability is presented to
assist in the clinical application of this novel technology. A
leading investigator within this field, Goldberger [142] pro-
posed that increased regularity of signals represents a
'decomplexification' of illness, citing numerous examples of ill-
ness states with increased regularity of rhythms. For example,
Cheyne–Stokes respiration, Parkinsonian gait, loss of EEG
variability, preterminal cardiac oscillations, neutrophil count in
chronic myelogenous leukaemia and fever in Hodgkin's dis-
ease all exhibit periodic, more regular variation in the dynamics
of disease states [142]. Given that scale invariance is believed
to be a central organizing principle of physiological structure
and function, breakdown in this scale invariant, fractal behav-
iour, leads to uncorrelated randomness or more predictable
behaviour, both representing a pathological alteration to the
underlying system [78,84]. Thus, health is characterized by
'organized variability' and disease is defined by decomplexifi-
cation, increased regularity and reduction in variability.

In contrast to the 'decomplexification' hypothesis, Vaillancourt
and Newell [143] noted increased complexity and increased
approximate entropy in several disease states, including
acromegaly and Cushing's disease, and hypothesized that dis-
ease may manifest with increased or decreased complexity,
depending on the underlying dimension of the intrinsic
dynamic (e.g. oscillating versus fixed point). In a rebuttal, Gold-
berger [142] noted that increased complexity demonstrated
by lower entropy (specifically ApEn) requires corroboration by
other techniques, given potential problems with using ApEn as
the only technique to assess variability. A rebuttal to the rebut-
tal (all published concurrently) [144] noted that others accept
the fundamental premise that increased and decreased varia-
bility occur in disease.

In addition to the discussion regarding complexity, increased
short-term variation in airway calibre in patients with asthma is
observed, and reproduced experimentally with activation of air-
way smooth muscle with inhaled methacholine [5]. Given that
smooth muscle activation is associated with increased meta-
bolic rate, energy dissipation and an increased likelihood of
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statistically unlikely airway configurations, Macklem's hypothe-
sis states that asthma is a disease of higher energy dissipa-
tion, greater distance from thermodynamic equilibrium, lower
entropy and greater variation [5]. This suggests that health is
defined by a certain distance from thermodynamic equilibrium;
too close (decreased variation, too little energy dissipation,
low entropy) or too far (increased variation and energy dissipa-
tion, high entropy) both represent pathological alterations.

The science of complex systems is intimately related to varia-
bility analysis. Taking a broad systems based interpretation,
the human organism is a complex system or, more accurately,
it is a complex system of complex systems. The host response
to sepsis, shock, or trauma is an example of a biological com-
plex system that is readily apparent to intensivists [3]. Every
complex system has 'emergent' properties, which define its
very nature and function, including the presence of health ver-
sus illness. Variability or patterns of change over time (in addi-
tion to connectivity or patterns of interconnection over space)
represent technology with which to evaluate the emergent
properties of a complex system, which may be physiological or
pathological [3]. It is possible to conceive complex systemic
host response in a phase space of variability parameters, in
which health represents stable 'holes' in space, exhibiting
marked systemic stability accompanied by specific patterns of
variability (and connectivity). Illness represents an alteration
from health, separate 'holes' with distinct patterns of variability.
Often, it takes a major insult to change a stable healthy state
to an illness state, which may have varying degrees of stability.
It is within this complex systems conception of health and ill-
ness that the clinical utility of variability analysis may be
appreciated.

How can variability analysis improve outcome in the 
intensive care unit?
What does variability analysis offer that conventional monitor-
ing does not? What is the clinical utility of this technology?
We propose that multi-system continuous variability analysis
offers the intensivist a unique monitoring tool that is capable of
improving prognostication and directing therapeutic interven-
tion. Intuitively, there is additional information in this analysis.
Variability analysis tracks specific patterns of change in indi-
vidual parameters over time (akin to calculating the first deriv-
ative or velocity in calculus). Monitoring patterns of change in
variability continuously over time offers an additional dimen-
sion of analysis (akin to a second derivative evaluation or
acceleration). Just as monitoring individual system variability
offers an evaluation of the underlying individual system pro-
ducing those dynamics, evaluating multisystem variability pro-
vides an evaluation of the whole, namely the systemic host
response. By using variability analysis at different time points
or, more powerfully, continuously over time, it is theoretically
possible to track the 'system state' over time. Then, by select-
ing patients according to pathological patterns of variability
and pursuing interventions with a therapeutic response or

physiological alteration in variability, we hypothesize that out-
comes in critically ill patients may be improved.

Why does this individualized variability directed therapy offer
exciting clinical potential? First, as the host response is a com-
plex system, response to intervention in individual patients is
unpredictable, although response to an intervention may be
statistically beneficial for a cohort of patients. Thus, only by
evaluating the response to intervention in individual patients
can it be ascertained that the intervention is beneficial in those
patients. Interventions that have not proven beneficial for the
'average' patient may still be beneficial in selected individual
patients, in whom pathological variability is both present and
improved by therapy. In summary, continuous, individualized,
variability directed, goal directed therapeutic intervention has
numerous theoretical advantages over conventional epidemio-
logical cohort analysis evaluating response to a single inter-
vention given to a heterogeneous population of patients. This
technology is well suited to the ICU, in which real-time, contin-
uous, digital physiological data acquisition (including wave-
form analysis) has been demonstrated [145-147]. Unresolved
questions include whether, how and when is it possible to con-
vert pathological to physiological variability, to prod our
patients from illness to health. Answering these questions will
determine the impact variability analysis has on ICU patient
outcome.

Conclusion
The science of analyzing biological signals has undergone tre-
mendous growth over the past decade, with the development
of advanced computational methods that characterize the var-
iation, oscillation, complexity and regularity of signals. These
methods were developed in response to theoretical limitations
of the others; however, all appear to have clinical significance.
There is no consensus that any single technique is the single
best means of characterizing and differentiating biological sig-
nals; rather, investigators agree that multiple techniques
should be performed simultaneously to facilitate comparison
between methods, techniques and studies. Variability analysis
represents a novel means to evaluate and treat individual
patients, suggesting a shift from epidemiological analytical
investigation to continuous individualized variability analysis.
Existing literature documents the clinical value of measuring
variability to provide diagnostic, prognostic and pathophysio-
logical information; future research must utilize this technology
to improve care and the outcomes of our patients.
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Appendix 1: techniques of variability analysis
Variability analysis
The description of means to characterize and differentiate bio-
logical signals, or sequences of data in time produced by bio-
logical systems, is referred to as 'variability analysis'. For
example, a heart rate recording may be considered a series of
intervals between consecutive heart beats, referred to as NN
intervals (interval between consecutive normal sinus beats) or
RR intervals (interval between consecutive R waves on an
ECG). With the goal of providing a single means of character-
izing a whole series of data, the following techniques were
developed to perform variability analysis and applied to clinical
data sets.

Time domain analysis
Considered the simplest means of measuring variability, time
domain analysis involves performing a statistical analysis of
data expressed as a sequence in time. For example, SDNN
(the standard deviation of NN intervals) has been used as a
measure of HRV; greater variation yeilds higher standard devi-
ation. Standard deviation is the square root of the average of
the squared differences from the mean. SDANN (standard
deviation of the average NN interval calculated over 5-min
intervals within the entire period of recording) is a measure of
longer term variation because the averaging process removes
beat-to-beat variations. In contrast, the following variables
were devised as a measure of short-term variation: RMSSD
(square root of the mean squared differences of consecutive
NN intervals), NN50 (number of pairs of adjacent NN intervals
differing by more than 50 ms), and pNN50 (proportion of NN

intervals differing by more than 50 ms = NN50 divided by total
number of NN intervals).

Frequency domain analysis
Physiological data collected as a series in time may be consid-
ered a sum of rhythmic oscillations with distinct frequencies.
Conversion from time domain to frequency domain analysis is
performed most commonly using the Fourier transform, which
decomposes the signal into a series of sine and cosine waves
with frequencies that are multiples of the fundamental fre-
quency (reciprocal of the time length to the input data record);
the fast Fourier transform is a discrete Fourier transform that
reduces the number of computations. The result of the Fourier
transform is a complex number (a number multiplied by the
square root of -1) for each frequency, the square of which is
considered the spectral power of that frequency. The whole
process is called spectral analysis, because it provides an
evaluation of the spectral power (amplitude) of the contribut-
ing frequencies of an underlying signal.

Power law analysis
Power law behaviour may be described by the following
equation:

F(x) = αxβ

Where α and β are constants. Taking the logarithm of both
sides, a straight line (graph log f [x] versus log x) with slope β
and intercept log α is revealed:

Log f(x) = log (αxβ) = log α + log xβ = log α + β log x

Thus, power law behaviour is scale invariant; if a variable x is
replaced by Ax', where A is a constant, then the fundamental
power law relationship remains unaltered. If dynamics follow a
power law, a log–log representation of the power spectrum
(log power versus log frequency) reveals a straight line, always
within a defined range consistent with the size and duration of
the system. The straight line is fitted using linear regression,
and the slope β and intercept can readily be obtained. When
β = -1, the dynamics are described as 1/f noise. Power law
behaviour describes the dynamics of widely disparate phe-
nomena, including heart rate fluctuations, inter-breath inter-
vals, earthquakes, solar flares, stock market fluctuations, and
avalanches.

Detrended fluctuation analysis
Variations that arise because of extrinsic stimuli are presumed
to cause a local effect, whereas variations due to the intrinsic
dynamics of the system are presumed to exhibit long range
correlation. DFA attempts to quantify the presence or absence
of long range scale-invariant (fractal) correlation.

The first step in the technique to calculate DFA is to map a bio-
logical signal, such as a series of heart beats, to an integrated

Key messages

• A complex systems paradigm provides insights regard-
ing research and treatment of critically ill patients.

• Variability analysis is the science of measuring the 
degree and character of patterns of variation of a time-
series of a biologic parameter, in order to evaluate the 
state of the underlying complex system responsible for 
the biologic signal.

• Using techniques that measure overall variation, fre-
quency contribution, scale-invariant variation and 
degree of disorder, altered variability in consistently 
present in illness states, and the degree of alteration 
provides a measure of prognosis.

• Using continuous multiogan variability analysis 
(CMVA), we hypothesize that goal-directed variability-
directed therapeutic intervention will improve outcome 
and reduce mortality in critically ill patients, a novel 
individualized systems approach that complements 
analytical basic science and epidemiologic population 
science.
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series. The integrated series is calculated by the sum of the
differences between individual inter-beat intervals represented
as NNi and the average interbeat interval for the whole data
set, equal to NNave.

y(k) = Σi = 1
N (NNi - NNave)

This series y(k) represents an evaluation of trends; for exam-
ple, if the difference NNi - NNave remains negative (heart beat
is persistently faster than the mean), then y(k) increases as k
increases. This trend function y(k) is then separated into equal
boxes of length n, where n = N/(total number of boxes). In each
box, the local trend yn(k) is calculated as a linear representa-
tion of the function y(k) in that box using the least squares
method. Least squares analysis involves the principle of opti-
mization of the estimate based on minimizing the sum of the
squared differences from the values predicted by the model.
The series y(k) is then 'detrended' by subtracting the local
trend yn(k). The root mean square of this integrated and
detrended series is represented by the following:

F(n) = √ (1/N Σk = 1
N [y(k)2 - yn(k)2])

By performing this analysis for all values of n, it is possible to
calculate the relationship between F(n) and n. Scaling or frac-
tal correlation is present if the data is linear on a graph of log
F(n) versus log(n). The slope of the graph has been termed α,
the scaling exponent, which will vary from 0.5 (white noise or
uncorrelated random data) to 1.5 (Brownian noise or inte-
grated white noise or random walk). When α = 1, behaviour
corresponds to the 1/f noise. As α increases above 1 to 1.5,
behaviour is no longer determined by a power law. Because
the linear relationship between log F(n) and log(n) appears to
have two distinct linear segments, one for small (n < 11) and
large n (n > 11), the slopes of both lines are calculated sepa-
rately and termed α1 and α2, respectively; repeatedly, α1 has
proven superior to α2 in terms of prognostic ability.

Approximate entropy
ApEn is a measure of 'irregularity'; smaller values indicate a
greater chance that a set of data will be followed by similar
data (regularity), and a greater value for ApEn signifies a lesser
chance of similar data being repeated (irregularity). To calcu-
late ApEn of a series of data, the data series is evaluated for
patterns that recur. This is performed by evaluating data
sequences or runs of length m, and determining the likelihood
that other runs of length m are similar, within a tolerance r.
Thus, two parameters, m and r, must be fixed to calculate
ApEn. Increased regularity is associated with illness.

The following is a description of the calculation of ApEn. Given
any sequence of data points u(i) from i = 1 to N, it is possible
to define vector sequences x(i), which consist of length m and
are made up of consecutive u(i), specifically defined by the
following:

x(i) = (u [i], u [i + 1], ... u [i + m - 1])

In order to estimate the frequency that vectors x(i) repeat
themselves throughout the data set within a tolerance r, the
distance d(x [i],x [j]) is defined as the maximum difference
between the scalar components x(i) and x(j). Explicitly, two
vectors x(i) and x(j) are 'similar' within the tolerance or filter r
(i.e. d(x [i],x [j]) ≤ r) if the difference between any two values for
u(i) and u(j) within runs of length m are less than r (i.e. |u(i + k)
- u(j+k)| ≤ r for 0 ≤ k ≤ m). Subsequently, Ci

m(r) is defined as
the frequency of occurrence of similar runs m within the toler-
ance r:

Ci
m(r) = (number of j such that d(x [i],x [j]) ≤ r)/(N - m - 1), where

j ≤ (N - m - 1)

Taking the natural logarithm of Ci
m(r), Φm(r) is defined as the

average of ln Ci
m(r):

Φm(r) = Σi ln Ci
m(r)/(N - m - 1), where Σi is a sum from I = 1 to

(N - m - 1)

Φm(r) is a measure of the prevalence of repetitive patterns of
length m within the filter r.

Finally, approximate entropy, or ApEn(m,r,N), is defined as the
natural logarithm of the relative prevalence of repetitive pat-
terns of length m as compared with those of length m + 1:

ApEn(m,r,N) = Φm(r) - Φm+1(r)

Thus, ApEn(m,r,N) measures the logarithmic frequency that
similar runs (within the filter r) of length m also remain similar
when the length of the run is increased by 1. Thus, small values
of ApEn indicate regularity, given that increasing run length m
by 1 does not decrease the value of Φm(r) significantly (i.e. reg-
ularity connotes that Φm [r] ≈ Φm+1 [r]). ApEn(m,r,N) is
expressed as a difference, but in essence it represents a ratio;
note that Φm(r) is a logarithm of the averaged Ci

m(r), and the
ratio of logarithms is equivalent to their difference.
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