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Abstract
For patients with ischaemic heart disease, remote ischaemic conditioning may offer an innovative, non-invasive and
virtually cost-free therapy for protecting the myocardium against the detrimental effects of acute ischaemia-reperfu-
sion injury, preserving cardiac function and improving clinical outcomes. The intriguing phenomenon of remote
ischaemic conditioning was first discovered over 20 years ago, when it was shown that the heart could be rendered
resistant to acute ischaemia-reperfusion injury by applying one or more cycles of brief ischaemia and reperfusion to
an organ or tissue away from the heart – initially termed ‘cardioprotection at a distance’. Subsequent pre-clinical
and then clinical studies made the important discovery that remote ischaemic conditioning could be elicited
non-invasively, by inducing brief ischaemia and reperfusion to the upper or lower limb using a cuff. The actual
mechanism underlying remote ischaemic conditioning cardioprotection remains unclear, although a neuro-hormonal
pathway has been implicated. Since its initial discovery in 1993, the first proof-of-concept clinical studies of remote
ischaemic conditioning followed in 2006, and now multicentre clinical outcome studies are underway. In this review
article, we explore the potential mechanisms underlying this academic curiosity, and assess the success of its applica-
tion in the clinical setting.
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Introduction
Cardiovascular disease remains the leading cause of
death and disability worldwide, accounting for 17 mil-
lion deaths in 2008, of which ischaemic heart disease
(IHD) is a major contributor [1]. For emergency IHD
patients presenting with an acute myocardial infarction
(MI), the treatment of choice is reperfusion of the
acutely ischaemic myocardium using percutaneous cor-
onary intervention (PCI). For stable IHD patients with
multivessel coronary artery disease, the treatment of
choice is usually revascularisation by coronary artery
bypass graft (CABG) surgery. In both clinical settings,

the heart is subjected to the detrimental effects of
acute ischaemia-reperfusion injury (IRI), the result of
which is cardiomyocyte death, impaired cardiac con-
tractile function, risk of onset of heart failure and
death. Despite advances in treatment, the morbidity
and mortality in these patients remains significant.
Specifically, the risk profile of patients undergoing
CABG surgery has increased [2, 3]. There exists a need
therefore to research and develop techniques that will
lower mortality further, and one such target is to
reduce myocardial reperfusion injury [4]. This is a par-
adoxical phenomenon of myocardial damage that
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occurs on return of blood supply to the ischaemic
myocardium [5]. The exact contribution of reperfusion
injury to the overall infarct size has been difficult to
quantify, but it has been estimated to be in the region
of 50% of the final infarct size [6]. Therefore, novel
therapeutic interventions are required to protect the
heart against the detrimental effects of acute IRI.

In this review article, we discuss the non-inva-
sive, virtually cost-free strategy of remote ischaemic
conditioning (RIC), which has made the leap from
being an academic curiosity to a potential clinical
therapy.

Methods
We undertook a PubMed search using the keywords
myocardial infarction, reperfusion, ischaemia, remote,
preconditioning, postconditioning, perconditioning,
cardiac and vascular surgery, CABG, coronary inter-
vention, and cardiopulmonary bypass and reviewed
papers retrieved using these search terms. In addition,
references to papers were examined, and papers of rel-
evance were also reviewed. Certain landmark papers
have been referred to, independent of the PubMed
search criteria.

RIC: history and evolution
The endogenous cardioprotective phenomena of is-
chaemic preconditioning, first discovered in 1986 [7],
and ischaemic postconditioning, later described in
2003 [8], have the ability to protect the heart against
acute lethal IRI, and are reviewed elsewhere in this
journal [9, 10]. The major disadvantage of ischaemic
preconditioning and ischaemic postconditioning, how-
ever, is the requirement to apply an invasive inter-
vention directly to the heart. In this regard, the
phenomenon of RIC, which allows the protective
stimulus to be applied to an organ or tissue away
from the heart, has the advantage.

The first experimental study to describe this
cardioprotective phenomenon was published by Przyk-
lenk et al. in 1993 [11]. In a canine heart model, apply-
ing 45 min cycles of occlusion and reflow to the
circumflex coronary artery reduced infarct size induced
by 45 min occlusion and 3 h reperfusion of the left
anterior descending artery, suggesting that cardiopro-
tection could be transferred from one coronary territory

to another. This transfer of cardioprotection was then
extended to a remote organ, the kidney, by McClana-
han et al., who demonstrated that 10 min of occlusion
and reflow in the renal artery could reduce infarct size
induced by 30 min ligation and 3 h reperfusion of the
left main coronary artery, extending the paradigm from
intra-cardiac to inter-organ protection [12]. Subsequent
experimental studies have reported that the precondi-
tioning stimulus could be applied to a number of differ-
ent organs remote from the heart, including the
intestine, liver and brain. However, in terms of facilitat-
ing the translation of RIC into the clinical setting, the
major advance was made by Birnbaum et al., who dis-
covered that the RIC stimulus could be applied to the
gastrocnemius muscle of the hindlimb, by partially
occluding the femoral artery [13]. Furthermore, Oxman
et al. demonstrated that the conditioning stimulus
could be applied non-invasively, using a tourniquet
applied to the hindlimb [14]. The discovery that RIC
could be elicited non-invasively, by simply inflating and
deflating a cuff placed on the upper arm or leg in
human volunteers, greatly facilitated its translation into
the clinical setting (see below).

One other major advantage of RIC is its ability to
confer cardioprotection when applied at a number of
different time points in relation to the index myocar-
dial ischaemia-reperfusion episode, a feature that has
also facilitated its clinical application. The early experi-
mental studies focused on applying the conditioning
stimulus immediately before the index myocardial is-
chaemic episode (remote ischaemic preconditioning),
with subsequent experimental studies reporting efficacy
with the conditioning stimulus applied at varying time
points. These include 12–24 h before the index myo-
cardial ischaemic episode (delayed remote ischaemic
preconditioning); after the onset of myocardial ischae-
mia, but before reperfusion (remote ischaemic percon-
ditioning); at the onset of myocardial reperfusion
(remote ischaemic postconditioning); and most
recently, even after 15 min of myocardial reperfusion
has elapsed (delayed remote ischaemic postcondition-
ing).

Mechanisms underlying RIC
The actual mechanistic pathway underlying RIC-
induced cardioprotection remains unclear, but it can
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be divided into three interrelated events: (i) generation
of the cardioprotective signal in the conditioned
remote organ or tissue; (ii) the pathway that conveys
the cardioprotective signal from the conditioned
remote organ or tissue to the heart; and (iii) the
activation of intracellular signalling pathways within
the heart that mediate the cardioprotective effect
(Fig. 1). The current paradigm dictates there are both

neural and humoral aspects to (i) and (ii), and their
involvement and potential interdependence are dis-
cussed below. The myocardial signalling pathways are
thought to be similar to those that are recruited in
ischaemic preconditioning.

A number of experimental studies have implicated
a blood-borne factor(s) generated in the RIC-treated
animal as potential mediators of cardioprotection. The

Release of factor from 
the brain

Reflex (non-central) 
efferent innervation back 

to limb

Towards DMVN in 
brainstem

Cuff inflation 
and deflation

Vagus nerve

Release of factor 
from other remote 
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Release of factor from parasympathetic 
pre-post-ganglionic nerve endings

Release of factor 
from the limb

Figure 1 Hypothetical model highlighting potential mechanistic pathways underlying remote ischaemic conditioning.
It has been proposed that brief non-lethal periods of ischaemia-reperfusion applied to the upper or lower limb, using
serial inflation/deflations of a cuff, causes the release of local autocoids (such as adenosine, bradykinin, opioids)
which then activate sensory afferent neurones in the upper or lower limb that in turn relay the cardioprotective sig-
nal to the dorsal motor vagal nucleus (DMVN) in the brainstem. At this point, it is not clear how the cardioprotec-
tive signal reaches the heart or other organs. Several hypotheses have been suggested. (1) Activation of nuclei within
the DMVN results in increased vagal nerve firing to the heart, which via the release of acetylcholine (Ach), and sub-
sequent activation of muscarinic Ach receptors, induces the cardioprotective phenotype. (2) It is largely agreed that a
blood-borne dialysable cardioprotective factor is released into the systemic circulation, from where it conveys the car-
dioprotective effect to the heart and other organs. However, the actual source of the blood-borne cardioprotective
factor is not clear, although possibilities include: (i) the conditioned limb itself; (ii) the central nervous system, possi-
bly the brainstem; (iii) pre-/postganglionic parasympathetic nerve endings within the heart; or (iv) a non-conditioned
remote organ/tissue.
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evidence for this is derived from the following studies.
Gho et al. noted that RIC would only protect the heart
if the conditioned intestine was reperfused, suggesting
that reperfusion was required to wash the cardiopro-
tective factor out of the conditioned tissue [15]. Dick-
son et al. [16, 17] discovered that the ischaemic
preconditioning effect could be transferred from one
rabbit to another non-preconditioned rabbit, first via
whole blood transfusion, and second via transfer of
coronary effluent (IPC effluent) from a preconditioned,
to a na€ıve isolated heart. Hence, the presence and
necessity of a blood-borne cardioprotective factor is
clear. This model has been reproduced across several
species [18–20], and has played a central role in recent
characterisation of the humoral factor. Preliminary evi-
dence suggested that an intact opioid receptor system
was required for protection to occur [19, 21]; however,
opioid levels were not raised in IPC effluent [21]. A
subsequent study demonstrated raised adenosine levels
in IPC effluent and, via use of the adenosine receptor
blocker, 8-(-p-sulfophenyl) theophylline (8-SPT), that
adenosine receptor activation was required for efflu-
ent-mediated protection [22]. Combined together, this
evidence could suggest adenosine and opioid receptor
cross-talk [23, 24].

Current evidence suggests the factor is between 3.5
and 30 kDa, thermolabile and hydrophobic. Using
dialysis membranes to fractionate the proteins within
coronary effluent or serum according to their molecu-
lar weight, several studies demonstrated the factor to
be smaller than 30 kDa [19, 20] and, crucially, larger
than 3.5 kDa [18]. This would suggest that small mol-
ecules, such as adenosine and opioids, are not essential
for RIC (adenosine 267.24 Da, opioids 500–800 Da,
bradykinin 1060.22 Da). Moreover, using a series of
chromatographic and heating steps, it was proposed
that the factor was both thermolabile and hydrophobic,
indicating it may be a protein [18, 20]. Proteomic
analysis of plasma, via a combination of two-dimen-
sional gel electrophoresis and mass spectrometry,
unmasked an altered plasma proteome following RIC.
Studies by Lang et al., Hepponstall et al. and Hibert
et al. found 4, 51 and 30 differentially expressed pro-
teins, respectively, in RIC plasma relative to control
[25–27]. These proteins, linked to the regulation of
various cellular functions, including the acute phase

response, immune response, haemostasis and lipid
transport, suggested a complex interaction of signalling
pathways in response to RIC. Broad proteomic analy-
ses, however, are not well suited to the hypothesis of a
single, small, low-abundance protein conveying the
cardioprotection, because of the large number of high-
abundance proteins in plasma. With this in mind, two
studies have analysed coronary effluent using liquid
chromatography and mass spectrometry, the advantage
being that the majority of plasma proteins (high-abun-
dance) are removed [22, 28]. Initial investigation
revealed 185 unique proteins in coronary effluent, fol-
lowing five cycles of 5 min global ischaemia, and
11 min reperfusion in an isolated rat heart. Only
30.3% were plasma proteins, with the remainder origi-
nating from the cytoplasm and various intracellular
organelles. A subsequent study alluded in the discus-
sion to a proteomic (liquid chromatography/mass
spectrometry) analysis of coronary effluent from iso-
lated rat hearts, which found that 8–10 peptides were
increased by > 50% relative to control effluent, with in
the order of 100 uncharacterised ions corresponding to
metabolites or proteins [22]. Thus, although high-
abundance proteins are largely excluded in coronary
effluent, a significant amount of protein is still
released, indicating that effluent must be further frac-
tionated before mass spectrometry, if a potential bio-
marker is to be found.

Several experimental studies have suggested that the
cardioprotective effect elicited by a RIC stimulus deliv-
ered in vivo was still present, even when the heart was
isolated and subjected to acute MI either on a Lange-
ndorff apparatus (isolated perfused hearts) [29], or in a
transplanted recipient animal [30]. These findings sug-
gest that an intact neural pathway to the heart was not
required for RIC cardioprotection during the acute MI,
but it does not of course exclude the need for an intact
neural pathway at the time of the RIC stimulus.

Although the identity of the blood-borne cardio-
protective mediator of RIC remains unknown, a num-
ber of candidate molecules have been suggested
including opioid [21], adenosine [22], bradykinin [31],
erythropoietin, calcitonin gene related peptide, stromal
derived factor 1-alpha (SDF1-a) [32], hypoxia induc-
ible factor 1-alpha (HIF1-a) and nanoparticles pro-
duced by cells called exosomes [33].

4 © 2015 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland.
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A number of experimental studies have suggested
the involvement of a neural pathway in RIC cardiopro-
tection. The evidence for this is summarised below.
Gho et al. first noted that the ganglion blocker, hexa-
methonium, blocked RIC-induced cardioprotection
elicited by intestinal conditioning, thereby implicating
a role for the autonomic ganglia of the sympathetic
and parasympathetic nervous systems in inter-organ
protection [15]. A subsequent study in human volun-
teers confirmed that trimethaphan, an autonomic gan-
glionic blocker, abrogated limb RIC protection of
endothelial function [34]. Two studies, however, did
not show any abolition of RIC with hexamethonium
[35, 36], suggesting that further investigation is per-
haps necessary.

Given the involvement of the autonomic nervous
system in RIC, it is logical to hypothesise that the RIC
cardioprotection is dependent on an intact sensory
afferent neuronal pathway at the remote organ or tis-
sue. Indeed, transection of the femoral nerve before
application of the RIC stimulus abolishes cardioprotec-
tion [37, 38]. Moreover, Ding et al. noted that brief
renal artery occlusion resulted in increased afferent
renal nerve activity, and nerve transection also abol-
ished RIC-induced cardioprotection [39]. Similarly,
direct stimulation of the sensory nerve of the remote
organ or tissue has been reported to reproduce the
cardioprotective effect elicited by RIC [40–42]. Finally,
stimulation of cutaneous sensory nerves, using either
topical application of capsaicin [43] or surgical skin
incision (see later section on remote preconditioning
of trauma) [44, 45], has been reported also to mimic
RIC cardioprotection.

The question arose, therefore, of how the brief
ischaemic burden to the tissue or organ is translated
to sensory afferent activation. Experimental studies
have demonstrated that the application of brief
ischaemia–reperfusion to a remote organ or tissue
generates factors such as adenosine [39, 46, 47],
bradykinin [31] and calcitonin gene related peptide
[48] in the remote organ or tissue, which then stim-
ulate the local sensory neural afferent pathway.
Indeed, the adenosine receptor antagonist 8-SPT
abrogated the increased afferent renal nerve activity
observed by Ding et al. following brief renal artery
occlusion [39]. In addition, intra-arterial injection of

adenosine, while not at a level sufficient to elicit car-
dioprotection alone, was able to induce cardioprotec-
tion via a mechanism requiring an intact sciatic
nerve [38]. Thus, it seems RIC induces local release
of a neuro-active factor that in turn activates sensory
afferent neurones, and initiates the cardioprotective
message.

The final element concerns the efferent limb of
the neural pathway to the heart. Initial studies dem-
onstrated that vagal nerve stimulation [49, 50] mim-
icked the cardioprotective effect of RIC, whereas with
bilateral vagotomy this was abrogated [49, 50]. An
elegant study by Mastitskaya et al. demonstrated,
using optogenetics, that activation of the dorsal motor
nucleus of the vagus nerve was sufficient to induce
cardioprotection [51]. Moreover, this effect was abro-
gated in the presence of atropine. Two papers, how-
ever, question this paradigm; first, spinal cord
transection at C7, by removing central nervous inner-
vation, did not abolish the remote preconditioning of
trauma [52]. Second, there is evidence that vagal
nerve stimulation before index ischaemia increases
infarct size [53].

Initial experimental studies had implicated a
blood-borne cardioprotective pathway, and an intact
neural pathway to the conditioned organ or tissue.
Recent studies have investigated the interaction
between these two signalling components.

It has been reported that RIC by limb ischaemia
or intra-arterial adenosine releases a dialysable blood-
borne cardioprotective factor(s), the release of which
required intact sensory innervation of the limb and
was blocked by pre-treatment with the nitric oxide
(NO) donor, S-nitroso-N-acetylpenicillamine [38].
Interestingly, production of NO, via activation of NO
synthase, is seemingly not required for production of
the cardioprotective factor, but is required for induc-
tion of the protective phenotype [54].

An important experimental study by Redington
et al. demonstrated that either direct femoral nerve
stimulation or topical application of capsaicin gener-
ated a dialysate that was able to reduce MI size in a
na€ıve isolated rabbit heart, providing the first evidence
that the neural pathway to the conditioned limb was
required to generate the blood-borne cardioprotective
factor [43].

© 2015 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland. 5
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In an interesting clinical study, Jensen et al. found
that plasma dialysate obtained from RIC-treated dia-
betic patients with sensory neuropathy failed to limit
MI size in an isolated na€ıve rabbit heart, although
plasma dialysate harvested from RIC-treated non-dia-
betic and diabetic patients without sensory neuropathy
was cardioprotective [55]. Therefore, the current para-
digm suggests that the conditioned limb generates
adenosine in the local circulation, which then activates
the sensory neural pathway (through a mechanism
dependant on NO), leading to the activation of dorsal
nuclei within the brainstem. How the cardioprotective
signal is then conveyed from the brainstem to the
heart remains unclear. The current evidence suggests
the presence of both vagal and humoral influences
[43, 51].

The concept of remote preconditioning of trauma
originally arose from the observation that patients who
had undergone abdominal aortic aneurysm (AAA) sur-
gery had a greater risk for MI, a greater infarct size
and increased mortality compared with those who had
not undergone surgery. Indeed, Ren et al. observed
that infarct size in mice increased with prior remote
vascular surgery [44]. However, they subsequently
demonstrated that a small cutaneous incision to the
abdomen was able to limit MI size, in a manner simi-
lar to RIC. Two further studies have described such a
phenomenon, with the current paradigm suggesting
the protection occurs via activation of Ad- and C-
sensory afferent neurons [45, 52], which confer protec-
tion to the heart, perhaps independent of central
innervation.

There is some evidence, although inconsistent, that
a systemic inflammatory response is obtained in the
setting of reperfusion injury. Reperfusion injury per se
is associated with a neutrophilic infiltration within the
target organ [4]. Remote ischaemic conditioning seems
to have an anti-inflammatory effect. For instance, a
group conducting experiment on skeletal muscle flaps
noted that RIC reduced the number of leucocytes
adhering the postcapillary venules [56]. Similarly, RIC
decreased overall levels of interleukin-1b and interleu-
kin-6 in a porcine model of lung IRI. In a human
forearm endothelial model of IRI, neutrophil adhesion
was reduced by RIC, as was phagocytosis [57]. Even
pro-inflammatory gene expression in leucocytes

appears to be suppressed, while anti-inflammtory gene
expression is up-regulated [58]. However, when a
panel of circulating cytokines was analysed in adults
and children undergoing cardiac surgery, RIC did not
produce any changes in anti-inflammatory or pro-
inflammatory cytokines [59, 60]. In a similar study by
Albrecht et al., circulating levels of interleukin-1b,
interleukin-8 and tumour necrosis factor-a were
increased in patients subjected to RIC before cardio-
pulmonary bypass, compared with controls [61]. This
pro-inflammatory response directly contradicts pre-
clinical evidence and hence, the exact role of a sys-
temic response is unclear and needs further investiga-
tion.

Clinical translation of RIC
The first major step to the clinical translation of RIC
was the discovery that the RIC stimulus could be
delivered non-invasively, by simply applying cycles of
inflation–deflation using a standard blood pressure cuff
placed on the upper arm [62, 63]. The first study to
investigate the effect of limb RIC protection of the
heart, using this non-invasive intervention, was a small
proof-of-concept clinical study published in 2000,
comprising eight patients undergoing CABG surgery.
The authors did not find any cardioprotection in
patients randomly assigned to the limb RIC protocol
(two cycles of 3 min upper arm cuff inflation, and
2 min deflation). Subsequently, Kharbanda et al. dem-
onstrated in human volunteers that limb RIC (three
cycles of 5 min cuff inflation–deflation) protected the
contralateral limb against ischaemia-induced endothe-
lial dysfunction, as assessed by flow-mediated dilata-
tion [63]. This important study established the
standard upper limb RIC protocol used in a number
of subsequent clinical studies.

Remote ischaemic conditioning has been investi-
gated in a number of different clinical settings of acute
myocardial IRI:

(1) CABG surgery, in which the heart is subjected to
global ischaemic injury as the heart goes onto car-
diopulmonary bypass (CPB), followed by global
reperfusion injury as the heart comes off CPB.
The global acute IRI that results can be detected
as peri-operative myocardial injury by measuring

6 © 2015 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland.
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a rise in serum cardiac enzymes such as creati-
nine kinase (CK-MB) and troponin T and I. It
can also be detected as areas of late gadolinium
enhancement (which corresponds to the area of
myocardial necrosis) on cardiac magnetic reso-
nance imaging;

(2) Major non-cardiac vascular surgery, in which
peri-operative myocardial injury measured by a
rise in serum cardiac enzymes such as CK-MB
and troponin T and I occurs in 20–30% of
patients;

(3) Elective PCI. One component of the peri-proce-
dural myocardial injury that occurs during PCI is
due to regional ischaemic injury and coronary
microembolisation, the extent of which can be
measured by the rise in serum cardiac enzymes;

(4) ST-segment elevation MI (STEMI) treated by pri-
mary PCI. Patients presenting with an acute
STEMI will usually have a major thrombotic
occlusion in one of the major epicardial coronary
arteries, resulting in acute myocardial ischaemia,
the treatment for which is timely reperfusion
using primary PCI. The price for restoring blood
flow in the infarct-related artery, however, is
further myocardial injury and cardiomyocyte death
– termed myocardial reperfusion injury [4].

RIC in cardiac surgery
A protocol of four cycles of 5 min ischaemia-reperfu-
sion of the forearm was applied to children before con-
genital heart surgery [60]. The group that had the RIC
protocol had lower peri-operative myocardial injury, as
determined by postoperative troponin I, lower inotro-
pic requirements at 3 and 6 h, and lower airway pres-
sures at 6 h postoperatively. In the adult cardiac
surgical setting, our group was the first to provide evi-
dence that RIC could be effective [64]. Remote ischae-
mic conditioning was applied after the induction of
anaesthesia, in the form of three cycles of 5 min
ischaemia-reperfusion of the forearm. In the 27
patients in the RIC group, there was a 43% reduction
in peri-operative myocardial injury, as determined by
troponin levels over 72 h, compared with the control
group. Similar studies in the cardiac surgical setting
have followed, and have confirmed the protective prop-
erties of RIC. For instance, a recent trial by Thielmann

et al. randomly assigned 329 elective CABG patients to
either RIC or a sham protocol. The troponin release
was not only lower in the RIC group, but this group
also had a lower all-cause mortality when assessed after
1.54 years [65]. Table 1 gives a brief overview of the
important clinical trials conducted in cardiac surgical
patients.

The biggest limitations of the clinical trials in the
cardiac surgical setting lie in their study design. The
vast majority of them have been single-centre trials
examining small groups of patients admitted for elec-
tive CABG surgery. This represents fewer than 50% of
patients undergoing major cardiac surgery in England
and Wales [78]. Moreover, most of the trials have been
single-blinded, leaving room for bias. In fact, one
meta-analysis suggests that single-blinded trials were
mostly positive, while double-blinded ones were mostly
negative [79]. Second, the primary endpoint used in
almost all the trials was the area under the curve of a
48-h or 72-h collection of troponin or CK-MB post-
procedure. While there is evidence that higher tropo-
nin and CK-MB levels after cardiac surgery are
associated with increased mortality at one year, much
of this evidence comes from small, single-centre trials,
with a mixture of prospective, retrospective and post-
hoc analyses, as discussed in a meta-analysis by Petaja
et al. [80]. This represents only a surrogate endpoint,
and stronger clinical endpoints such as postoperative
morbidity and mortality, and patient-centred indices
such as quality of life, are lacking. Third, many of the
initial studies excluded diabetic patients, as they were
proof-of-concept trials. In fact, complex high-risk
patients, with unstable angina, recent MI, renal disease
and complex surgery, were not studied. Given that the
cardiac surgical casemix is gradually increasing in risk
profile, this represents another major drawback.

Two large multicentre, double-blinded randomised
controlled trials aim to address these limitations. The
ERICCA (Effect of Remote Ischaemic preConditioning
on clinical outcomes in patients undergoing CABG
surgery) trial, run by our group, is currently recruiting
at 30 centres in the UK, and aims to recruit 1610
high-risk patients undergoing CABG, with or without
valve surgery. The primary endpoints in this trial are
cardiovascular death, non-fatal MI, coronary revascu-
larisation and stroke at one year, with various second-
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Table 1 Some key clinical trials of remote ischaemic conditioning (RIC) in cardiac surgery.

Study n Details of surgery Details of anaesthesia Study comments Results

Cheung
et al. [60]

37 Paediatric congenital
cardiac surgery
(blood cardioplegia)

I – sevoflurane
M – isoflurane + air + O2

Single-blinded
Elective patients with
no co-morbidities

↓ TnI
↓ Inotrope score
at 3 and 6 h

↓ Airway resistance
at 6 h

Hausenloy
et al. [64]

57 Elective adult CABG
surgery (cold blood
cardioplegia and
intermittent cross-
clamp fibrillation)

I – midazolam + propofol/
etomidate + fentanyl

M – propofol TCI

Single-blinded
Elective patients with
no co-morbidities

↓ AUC of TnT (43%)

Venugopal
et al. [66]

45 Elective adult CABG
surgery ! valve
(cold blood
cardioplegia only)

I – midazolam + propofol/
etomidate + fentanyl

M – isoflurane + air +
O2 or propofol TCI

Single-blinded
Elective patients with
no co-morbidities

Diabetes were not
studied

↓ AUC of TnT
(42.2%)

Thielmann
et al. [67]

53 Elective CABG with
cold crystalloid
cardioplegia

I – sufentanil + etomidate
M – isoflurane or propofol

Single-blinded
Elective patients with
no co-morbidities

↓ AUC of TnI
(44.5%)

Hong
et al. [68]

130 Elective off pump
CABG

I – midazolam + sufentanil
M – sevoflurane +
remifentanil

Single-blinded
RIC induced after
knife to skin

↓ AUC of TnI (26%)
which was not
significant

Rahman
et al. [69]

162 Elective and urgent
CABG with cold
blood cardioplegia

I – etomidate + fentanyl
M – propofol with
isoflurane or enflurane
during bypass

Double-blinded
Well designed with
multiple secondary
endpoints

No significant
difference in Tn,
inotrope score,
ventilator
requirements,
kidney injury

Li et al. [70] 81 Elective aortic valve
replacement with
cold blood
cardioplegia

I – midazolam
M – fentanyl + propofol
and intermittent
isoflurane

Single-blinded
Elective patients with
no co-morbidities

Preconditioning and
per conditioning
examined

↓ in TnI with
RIPerC only at
5 min before and
30 min after
cross-clamp
removal

Wagner
et al. [71]

120 Elective CABG ! valve
with cold crystalloid
cardioplegia

I – sufentanil + diazepam
M - sufentanil +
diazepam

Single-blinded
RIC applied 18 h
before surgery

↑ TnI with
tramadol

↓ in TnI
only at 8 h

Karuppasamy
et al. [59]

104 Elective CABG ! valve
with cold blood
cardioplegia

I – midazolam +
remifentanil + propofol

M – isoflurane before
bypass, propofol on and
after bypass

Single-blinded
Strict anaesthetic
regimen on isoflurane
pre-bypass

No isoflurane at
reperfusion

No change in
troponin, CK-MB
or BNP

No change in
inflammatory
cytokines

Wu et al. [72] 75 Elective mitral valve
surgery with blood
cardioplegia

Premedication: scopolamine +
diazepam

I – midazolam + fentanyl
M – midazolam +
sufentanil

Two protocols of
RIC tested. RIC 1
was 39 arm. RIC 2
involved 39 arm
and 29 leg

↓ AUC of TnI

Lucchinetti
et al. [73]

55 Elective CABG with
cold blood
cardioplegia

I – propofol + fentanyl/
sufentanil/remifentanil

M – isoflurane + opioids

RIC started along
with isoflurane at
the same time

Isoflurane throughout
surgery

No change in TnT
or BNP

No change in
inflammatory
reponse

8 © 2015 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland.
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ary endpoints, including quality of life and exercise
tolerance [81]. The preliminary results of this trial
should be available late next year. The RIPHeart
(Remote Ischaemic Preconditioning for Heart surgery)
study aims to recruit all patient undergoing any form
of surgery involving CPB [82], with primary endpoints
similar to those of ERICCA.

One of the first major trials to give a negative
result was conducted by Bonser’s group [69]. This was
a well-designed, double-blinded, placebo-controlled
trial that went to great lengths to ensure blinding.
They randomly allocated 162 patients to either a con-
trol group or an RIC group, with a protocol of three
cycles of 5 min ischaemia-reperfusion of the forearm.
Only elective or urgent, non-diabetic CABG patients,
with no history of unstable angina in the past 48 h
were included. Remote ischaemic conditioning did not

result in a reduction in peri-operative myocardial
injury, as determined by 48-h area under the curve of
troponin. Since then, there have been other studies
that were negative (see Table 1), and there are possibly
two major reasons for this.

First, the translation of RIC into the clinical set-
ting is not straightforward. Remote ischaemic condi-
tioning in the pre-clinical setting was investigated in
young animals that underwent myocardial IRI by
direct ligature applied to the coronary artery. There
was no pre-existing disease state, and almost none of
the models included any form of cardiopulmonary
bypass. Direct translation into the clinical setting of
this model is not feasible, as many of our patients have
co-existing morbidity. For instance, unstable angina,
which is characterised by intermittent ischaemia, is a
form of preconditioning, and patients with unstable

Table 1 (continued)

Study n Details of surgery Details of anaesthesia Study comments Results

Young
et al. [74]

96 Double or triple valve,
CABG + valve or
isolated mitral valve,
redo CABG, isolated
CABG with < 50%
ejection fraction all
with warm blood
cardioplegia

Premedication: zopiclone +
midazolam

I – midazolam + fentanyl
M – propofol +
isoflurane + fentanyl
top-ups

Double-blinded
RIC applied at the
time of surgical
incision

↓ TnT at 6 h and
12 h in RIC group
after secondary
analyses to adjust
for sulphonylurea
and statin use,
cross-clamp and
bypass time,
Euroscore.

No change in AKI
↑ inotrope
requirement in
RIC group

Kottenberg
et al. [75]

72 Elective CABG surgery
with cold crystalloid
cardioplegia

I – sufentanil + etomidate
M – two groups – one
isoflurane and one
propofol TIVA

Single-blinded
Four-arm trial to
examine the effects
of anaesthesia

↓ AUC of TnI (50%)
only in the
isoflurane group

Hong et al. [76] 1280 All elective cardiac
surgery both off
pump and on pump
with cold blood
cardioplegia

I – midazolam +
etomidate + sufentanil

M – propofol +
remifentanil

Multicentre trial
Study combined
RIPreC with RIPostC

Primary endpoint
was composite
outcome

No difference in
primary outcome

No difference in
ICU/hospital stay

Thielmann
et al. [77]

329 Elective CABG surgery
with cold crystalloid
cardioplegia

I – sufentanil + etomidate
M – isoflurane or
propofol

Single-centre
Double-blinded
Mortality was taken
as a safety endpoint

Propofol used in
only 79 patients

↓ AUC of TnI
(17.3%)

Lower all cause
mortality at 1 year

Lower MACCE
at 1 year

I/M, induction/maintenance; Tn, troponin; CABG, coronary artery bypass graft; TCI, target-controlled infusion; AUC, area under
the curve; RIPerC, remote ischaemic perconditioning; CK-MB, creatinine kinase MB isoenzyme; B-type natriuretic peptide; AKI,
acute kidney injury; TIVA, total intravenous anaesthesia; RIPreC/RIPostC, remote ischaemic pre/postconditioning; MACCE, major
adverse cardiovascular and cerebral events
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angina who then have a MI often do better than
patients whose first presentation is an MI [83, 84].
Whether RIC would work over and above an already
preconditioned heart is unclear. In addition, patient
with diabetes are harder to precondition due to various
factors [85]. Furthermore, cardiopulmonary bypass
itself is now an innovative technology that involves
mild hypothermia and cardioplegia, all of which are
protective for the heart [86]. Thus, while the early
positive trials included elective patients with few co-
morbidities [60, 64], Bonser and co-workers included
both elective and urgent patients with previous acute
coronary syndromes. Second, the importance of con-
comitant medication cannot be underestimated. Dur-
ing the early years of ischaemic preconditioning (IPC)
research, several pharmacological agents were found to
mimic IPC. Some of these agents included volatile
anaesthetic agents, glyceryl trintitrate, opioids such as
remifentanil, fentanyl and morphine, insulin, atorvasta-
tin, nicorandil, abciximab, clopidogrel and cangrelor
[87]. Patients referred for cardiac surgery are often on
one or more of these drugs, or may be administered
these drugs during the course of their surgery. It may
be that patients might already have been protected,
and the RIC stimulus did not confer any further
benefit. However, the question remains whether
RIC might further add to this protection, by increasing
either the intensity or the timing of the stimulus. In
fact, our group is currently recruiting patients for a
four-arm, double-blinded, randomised placebo-con-
trolled trial to understand the effects of RIC and
glyceryl trinitrate (the ERIC-GTN study (www.clinical-
trials.gov, NCT01864252).

RIC in major non-cardiac vascular
surgery
Ali et al. were the first to publish on the phenomenon
of RIC in the setting of major vascular surgery [88].
Patients having elective open AAA repair were ran-
domly assigned to have a protocol of RIC that
involved two epsiodes of 10 min ischaemia followed
by reperfusion. This was achieved by cross-clamping
the iliac artery. Both groups were well-matched, and
RIC reduced myocardial injury, infarction and renal
impairment significantly in these patients. However,
in three small proof-of-concept trials by Walsh and

colleagues, RIC in various vascular surgical settings
gave mixed results. In the setting of endovascular
aneurysm repair, RIC did not result in a reduction in
cardiac injury, but there was a reduction in the urinary
biomarker of renal injury. On the other hand, patients
undergoing carotid endarterectomy and elective open
AAA repair did not experience any benefit from an
RIC protocol in terms of myocardial, renal or neuro-
logical injury. All of these trials were small proof-of-
concept trials and large-scale studies are yet to be per-
formed in the setting of vascular surgery.

RIC in elective PCI
An early study by Iliodromitis et al. did not show any
evidence of benefit from an RIC protocol administered
in patients undergoing elective PCI. However, this
study may have been underpowered [89]. The first
clinical study to demonstrate the cardioprotective
effects of RIC in stable IHD patients undergoing coro-
nary revascularisation by elective PCI was by Hoole
et al. [90]. In the CRISP trial, where 202 patients were
randomly assigned to either RIC or control, RIC
reduced troponin release at 24 h following elective
PCI, suggesting lower levels of periprocedural injury.
Furthermore, the RIC group had a lower incidence of
chest pain postoperatively, and fewer major adverse
cardiovascular and cerebrovascular events (MACCE) at
six months. In a follow-up of 195 patients six years
later, the RIC group continued to have lower rates of
MACCE compared with the control group [91]. Since
then, a number of clinical studies investigating the
protective effect of RIC have demonstrated mixed
results in the elective PCI setting (Table 2).

RIC in STEMI patients treated by
Primary PCI
It is important to note that an RIC intervention in the
setting of an acute MI would not be a preconditioning
stimulus, but a perconditioning or a postconditioning
stimulus, as the onset of ischaemia is unpredictable.
Primary PCI is the gold standard, and the first study
to examine RIC in this setting included 33 patients in
each group, but was negative [95]. Interestingly, in this
study, while RIC did not provide additional benefit
over the control group, a third group that received
morphine in addition to RIC had less myocardial
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injury, suggesting a synergistic role for RIC with an
opioid. However, in a well-powered trial of 333
patients, RIC instituted pre-hospital, before primary
PCI, resulted in better myocardial salvage at 30 days
compared with the control group [96]. Over a mean
follow-up period of 3.8 years, the rates of MACCE
were significantly lower in the RIC group, as was the
all-cause mortality [97]. A recent meta-analysis in the
setting of cardiovascular interventions suggests benefit
from RIC [98], and we have presented some key trials
in Table 3. It is interesting to note that the clinical set-
ting of an acute STEMI, with complete occlusion of
the coronary arteries (TIMI 0 flow), closely resembles
the pre-clinical setting of ligation of the coronary
arteries. Often, many of these patients are on no prior
medication. In theory, this subgroup of patients with
IHD should benefit most from the phenomenon of
RIC. Certainly, smaller trials with strict inclusion crite-
ria of TIMI 0 or 1 (total or near total occlusion) flow
on coronary angiography before randomisation have
shown benefit from RIC [99, 100].

RIC and the role of anaesthetic agents
While the role of anaesthetic agents has been reviewed
elsewhere in this journal [10], they have specific inter-

actions with RIC protocols that will be detailed here.
Numerous pre-clinical studies have shown that volatile
anaesthetic agents such as isoflurane are cardioprotec-
tive, and reduce myocardial IRI by activating similar
pathways as IPC [101]. Furthermore, it has been sug-
gested in several clinical trials that inhalational anaes-
thetic agents may be beneficial over intravenous agents
in patients undergoing cardiac surgery, although
debate still exists [102, 103]. In 2007, the American
Heart Association, along with the Society of Cardiovas-
cular Anesthesiologists, recommended that patients
with a history of cardiac disease should preferably be
anaesthetised with a volatile anaesthetic agent [104].
However, a recent clinical trial failed to support this
recommendation [105]. In addition, there is animal
evidence that propofol is protective against myocardial,
renal and cerebral IRI [106–108] at dosages of
6 mg.kg"1.h"1, along the lines of the Bristol model
of total intravenous anaesthesia [109]. Furthermore,
it has been shown that propofol in dosages of
120 lg.kg"1.min"1 (7.2 mg.kg"1.h"1) in cardiac sur-
gery resulted in a lower troponin levels at 24 h com-
pared with isoflurane alone or low-dose propofol
(60 lg.kg"1.min"1) [110]. In fact, there is evidence to
suggest that propofol acts as a free radical scavenger,

Table 2 Some key clinical trials of remote ischaemic conditioning (RIC) in elective percutaneous coronary interven-
tion (PCI).

Study n Study comments Results

Illiodromitis et al. [89] 41 Single-centre unblinded study
RIC performed in the catheter lab
Single-vessel disease

↑ TnI and CK-MB release in the RIC group
after 48 h

Hoole et al. [90] 202 Single-centre study
Single-blinded
Blinded follow-up for MACCE
RIC performed 2 h before procedure
Both single and combined targets stented

↓ TnI at 24 h after PCI in RIC group
↓ Chest discomfort and ST segment

deviation in RIC group
↓ MACCE at 6 months in RIC group

Ghaemian et al. [92] 80 Single-centre unblinded study
RIC stimulus applied to thigh 1 h before
procedure

Patients with previous MI were included

↓ TnI at both 12 and 24 h
RIC determined to independently predict
reduced periprocedural injury

Luo et al. [93] 205 Single-centre unblinded study
Both single and combined targets stented

↓ TnI at 16 h in RIC group
No change in renal outcome

Carrasco-Chinchilla
et al. [94]

232 Single-centre single-blinded study
Remote postconditioning protocol with
stimulus applied 5 min after the balloon
inflation/stent deployment

No difference in TnI at 24 h between
groups

Diabetic patients in the RIC group had a
larger incidence of PCI-MI

Tn, troponin; CK-MB, creatinine kinase MB isoenzyme; MACCE, major adverse cardiovascular and cerebral events; MI, myocar-
dial infarction.
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which may be beneficial in the setting of cardiopulmo-
nary bypass [111]. In summary, while volatile anaes-
thetic agents are cardioprotective, it is possible that
high-dose propofol may also be cardioprotective.

Given this controversy, it is unclear whether
anaesthetic agents enhance or block the effects of RIC.
In a clinical trial involving children with congenital
heart defects, anaesthesia was induced with sevoflurane
and maintained with isoflurane, air and oxygen
throughout the procedures. Although the exact dosages
were not reported in this study, RIC proved to be car-
dioprotective [60]. In the setting of adult cardiac sur-
gery, Hausenloy et al. reported the maintenance of
anaesthesia using a target-controlled infusion of propo-
fol to achieve a plasma concentration of 3–8 lg.ml"1

[64]. Remote ischaemic conditioning proved protective
in this setting as well. However, other groups have
reported conflicting data. For instance, in a four-arm
randomised controlled trial, Kottenberg et al. ran-
domly allocated patients to receive RIC or a sham pro-
tocol of RIC with either propofol or isoflurane
anaesthesia. They reported protection in patients

allocated to the isoflurane arm only, implying that
propofol blocked the protective effects of RIC [75].
This group has further proposed that RIC protected
via activation of the signal transducer and activator of
transcription 5 (STAT-5) in humans, a known cardio-
protective signal, while propofol prevented STAT-5
activation [112, 113]. On the other hand, in a trial by
Zaugg and colleagues, patients allocated to RIC before
cardiac surgery were not protected. All patients in this
trial were anaesthetised with isoflurane, and the
authors have suggested that isoflurane is already car-
dioprotective, and RIC does not add any further bene-
fit [73, 114]. Large trials such as ERICCA and
RIPHeart may answer this question.

Other forms of RIC
Remote ischaemic perconditioning (RIPerC) is a strat-
egy where multiple cycles of ischaemia-reperfusion
are applied during the lethal ischaemia phase, but
before reperfusion [115]. It has been shown to acti-
vate similar pathways to remote ischaemic precondi-
tioning (RIPreC). The clinical relevance of

Table 3 Key clinical trials of remote ischaemic conditioning (RIC) in patients with ST-segment elevation myocardial
infarction (STEMI) treated by percutaneous coronary intervention (PCI).

Study n Study comments Results

Rentoukas et al. [95] 96 Single-centre unblinded study
Three groups: control; RIC; and RIC with
morphine

RIC initiated before procedure and morphine
administered before balloon inflation

No difference between control and RIC
groups in peak Tn release

↓ TnI in RIC and morphine group vs control

Botker et al. [96] 251 Single-centre single-blinded study
RIC started in the ambulance on
confirmation of STEMI

Primary endpoint was myocardial salvage
index determined by SPECT

↑ Myocardial salvage in the RIC group
↑ Left ventricular ejection fraction at 24 h
in the RIC group but not at 30 days

No difference in 30-day MACCE

Crimi et al. [99] 96 Multicentre single-blinded study
Remote ischaemic postconditioning in the
lower limb

Only TIMI 0 and 1 flow patients were randomly
allocated (total or near total occlusion)

↓ CK-MB AUC in the RIC group
↓ Myocardial oedema as determined on
T2-weighted CMR imaging in the RIC group

Better ST segment resolution in the RIC group

Sloth et al. [97] 251 Follow-up of MACCE to study by Botker at al.
Median 3.8 years follow-up

↓ MACCE in RIC group compared to the
control group

White et al. [100] 190 Single-centre single-blinded study
TIMI 0 flow (total occlusion) as a specific
inclusion criteria

Primary endpoint was MI size as measured
with CMR

↓ Infarct size in the RIC group
↓ Myocardial oedema in the RIC group
↓ TnT in the RIC group
↑ Myocardial salvage in the RIC group

Tn, troponin; SPECT, single photon emission computed tomography; MACCE, major adverse cardiovascular and cerebral events;
AUC, area under the curve; TIMI, Thrombolysis In Myocardial Infarction study; CMR, cardiac magnetic resonance.
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perconditioning is appreciable in patients admitted
for an urgent PCI. For instance, during an acute MI,
patients present to the hospital with ongoing ischae-
mia, and thus any stimulus applied would be RIPerC.
In the cardiac surgical setting, RIPerC involves appli-
cation of the remote stimulus after the aortic cross-
clamp has been applied. In a trial of 81 patients
admitted for elective aortic valve replacement, patients
who received RIPerC had significantly lower levels of
troponin 5 min before removal of the cross-clamp,
and 30 min after removal compared with control and
RIPreC. However, at 72 h, there was no difference in
troponin levels, and the significance of RIPerC is yet
to be defined in cardiac surgery [70].

Remote ischaemic postconditioning (RIPostC)
involves the application of the remote ischaemic stim-
ulus at the point of reperfusion. The mechanisms of
RIPostC have not been fully elucidated, but there is
evidence that it involves the survival activating factor
enhancement (SAFE) pathway, rather than the conven-
tional RISK pathway activated in RIPreC. Translation
into the clinical arena came in the form of the trial by
Hong and co-workers. They randomly assigned 70
patients having off-pump CABG to a combination of
RIPreC and RIPostC in one group, and controls in the
other. This resulted in a 48.7% reduction in peri-oper-
ative injury, as determined by the 72-h troponin area
under the curve [116]. However, in a larger trial by
this group including 1280 patients, RIPreC and
RIPostC together did not reduce a composite endpoint
of major adverse outcomes, which included death, MI,
arrhythmia, stroke, coma, renal failure or dysfunction,
respiratory failure, cardiogenic shock, gastrointestinal
complication and multi-organ failure [76]. Currently,
De Hert’s group is aiming to recruit 660 patients for a
multicentre, randomised controlled trial comparing a
control group with RIPreC, RIPostC and a combina-
tion of both. Their primary endpoint is the incidence
of postoperative of atrial fibrillation, with secondary
endpoints including length of ICU stay, hospital stay
and MACCE [117]. In the setting of acute MI,
RIPostC resulted in a 20% reduction in periprocedural
injury, but had no influence in elective PCI for stable
or unstable angina [94, 99].

At this point, it is worth briefly mentioning the
concept of delayed RIPostC. The basis of the concept

lies in the supposition that reperfusion injury does
not only occur at the point of reperfusion, but can
continue for a while after reperfusion. Delayed
RIPostC aims to influence protective pathways later in
the reperfusion period. At the time of writing, there
have been no clinical trials in humans, but pre-clinical
evidence exists that RIPostC may reduce injury in the
brain and the heart [118, 119].

Conclusion
Remote ischaemic conditioning is a novel strategy that
has been shown to reduce myocardial reperfusion
injury. While there have been both promising and dis-
appointing results from trials, results from large multi-
centre randomised controlled trials such as ERICCA
and RIPHeart are awaited. Anaesthetists are in the
unique position of providing peri-operative care to
their patients, especially in cardiac and neurosurgery.
If RIC proves to be beneficial, then anaesthetists may
be at the forefront of providing peri-operative organ
protection to their patients. Even if RIC is not realised
as a protective intervention, an understanding of
mechanisms may lead to development of pharmacolog-
ical agents that may be administered peri-operatively
by anaesthetists, in the hope of protecting vulnerable
patients from myocardial injury following reperfusion.
Over the years, research and development has reduced
the risks of cardiac interventions and surgery dramati-
cally. Remote ischaemic conditioning may help us
reduce this even further.
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