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The inheritance of two copies of a mutant β-globin gene, one 
from each parent, is the underlying cause of sickle cell disease. The muta-
tion, GAG→GTG, substitutes valine for glutamic acid at position 6 in the 

β-globin chain of hemoglobin A, resulting in a hemoglobin called hemoglobin S.1-3 
Sickle cell disease is one of the most common autosomal recessive disorders in the 
world. Approximately 8% of black Americans are heterozygous and have the sickle 
cell trait, whereas approximately 1 in 600 is homozygous and has sickle cell dis-
ease. In certain areas of sub-Saharan Africa, an estimated 40 to 60% of the popu-
lation is heterozygous, suggesting that 1 to 4% of babies born in this region have 
the disease.4

Hemoglobin S polymerizes on deoxygenation. The polymers make the erythro-
cyte rigid, distort its shape, and cause structural damage in the red-cell membrane, 
all of which alter the rheologic properties of the cell, impair blood flow through the 
microvasculature, and lead to hemolysis and vaso-occlusive episodes.2,5 The extent 
of hemoglobin S polymerization is a primary determinant of the severity of sickle 
cell disease6 and is proportional to the degree and duration of hemoglobin deoxy-
genation and to the concentration of intracellular hemoglobin S raised to approxi-
mately the 15th power.2 The presence of fetal hemoglobin in the erythrocyte re-
duces the concentration of hemoglobin S and thereby inhibits its polymerization.7

The complications of sickle cell disease are myriad, but the two most common 
acute events are vaso-occlusive pain crisis, caused by physical and adhesive entrap-
ment of red cells containing hemoglobin S in the microcirculation, and the acute 
chest syndrome, a lung injury syndrome.8,9 In addition, affected adults are at risk 
for a progressive vasculopathy, characterized by systemic and pulmonary hyperten-
sion, endothelial dysfunction, and proliferative changes in the intima and smooth 
muscle of blood vessels.10-16 With increasing age, chronic end-organ complications 
begin to appear. These include chronic renal failure, hemorrhagic and nonhemor-
rhagic stroke, avascular necrosis of bone, and pulmonary hypertension, which has 
a remarkably high prevalence among adults with sickle cell disease.12,17 From a 
clinical perspective, pulmonary complications — namely, the acute chest syndrome 
and pulmonary hypertension — are the most common causes of death in patients 
with sickle cell disease.8,9,12,18

Advances in our understanding of the mechanism of vaso-occlusion and the 
sequelae of chronic intravascular hemolysis have led to insights into the highly 
variable clinical manifestations of sickle cell disease. We present a new formulation 
of sickle cell disease and propose that certain of its complications are driven by 
the vaso-occlusive process, whereas others result from the deleterious effects of 
intravascular hemolysis on endothelial-cell and vascular function.
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Pheno t y pes of Sick le Cell 
Dise a se

All patients with sickle cell disease have the same 
GAG→GTG substitution, but the penetrance and 
severity of specific complications arising from the 
mutant hemoglobin S gene, as well as the risk 
factors for these complications and the age at 
which they occur, are highly variable. For exam-
ple, the major laboratory risk factors for both 
vaso-occlusive pain crisis and the acute chest syn-
drome are high, steady-state leukocyte counts and 
high hemoglobin levels.1,8,9 In contrast, chole-
lithiasis, cutaneous leg ulceration, priapism, and 
pulmonary hypertension are associated with low 
steady-state hemoglobin levels and an increased 
rate of intravascular hemolysis.12,17,19-23 These lat-
ter complications also occur in other hemolytic 
diseases. For example, pulmonary hypertension 
is common in thalassemia even though the acute 
chest syndrome does not occur in that disorder, 
which is not caused by hemoglobin S.24-28 Pria-
pism and cutaneous leg ulceration also occur in 
other hemolytic disorders, although to a lesser ex-
tent than in sickle cell disease.21,29-34

Given the divergent clinical manifestations of 
and epidemiologic risk factors for vaso-occlusive 
pain crisis and the acute chest syndrome (as com-
pared with other vasculopathic complications, 
such as sudden death, pulmonary hypertension, 
cutaneous leg ulceration, and priapism), sickle 
cell disease may be best understood as the inter-
action of two overlapping subphenotypes driven 
by two major mechanisms: vaso-occlusion and 
hemolytic anemia (Fig. 1).

Va so - o cclusion

Vaso-occlusive crises are recurrent episodes of 
severe pain in sickle cell disease. The cause of 
these events is microvascular entrapment of eryth-
rocytes and leukocytes, which obstruct blood flow 
and bring about organ ischemia. In the microcir-
culation of transgenic mouse models of sickle 
cell disease, hypoxia or inflammatory agents, 
such as tumor necrosis factor α or lipopolysac-
charide, increase adhesive interactions between 
endothelium, leukocytes, and erythrocytes in the 
postcapillary venules, thereby initiating vascular 
occlusion.35-39 This model indicates that cycles of 
ischemia and reperfusion, in addition to intra-

vascular hemolysis, cause oxidant stress, in which 
there is activation of vascular oxidases,40-42 and 
inflammatory stress, which is characterized by the 
expression of endothelial-cell adhesion molecules 
and inflammatory cytokines and by leukocyto-
sis.35,37,43-45 Precapillary obstruction by rigid, de-
formed erythrocytes with a high content of hemo-
globin S polymer probably also contributes to 
occlusion of the microcirculation (Fig. 1).46

Bone marrow and periosteal ischemia and 
reperfusion instigate cellular injury, infarction, 
tissue necrosis, edema, and inflammation. The 
clinical manifestations of these microvascular 
events are explosive episodes of pain and inflam-
mation, often accompanied by fever and leuko-
cytosis and sometimes by bone marrow necrosis, 
with pulmonary emboli consisting of necrotic 
marrow fat and cellular elements.1,8,9 Epidemio-
logic studies of the frequency and severity of vaso-
occlusive crises indicate an association with high 
concentrations of hemoglobin S, low concentra-
tions of fetal hemoglobin, and high steady-state 
leukocyte counts and hemoglobin levels.8 These 
epidemiologic data point to polymerized hemo-
globin S, inflammation, and hyperviscosity as ma-
jor determinants of the severity of erythrocyte 
vaso-occlusion.

The Acu te Ches t S y ndrome

The acute chest syndrome is a common form of 
lung injury in sickle cell disease. When severe, this 
syndrome is analogous to the acute respiratory 
distress syndrome. In a patient with sickle cell dis-
ease it is generally defined by the development of 
a new pulmonary infiltrate that is consistent with 
alveolar consolidation but not atelec tasis, involv-
ing at least one complete lung segment. The radio-
graphic abnormality is usually accompanied by 
chest pain, fever, tachypnea, wheezing, or cough.9 
The acute chest syndrome is the second most com-
mon cause of hospitalization among patients with 
sickle cell disease and the leading cause of ad-
mission to an intensive care unit and premature 
death in this patient population.8

Causes of the Acute Chest Syndrome
Three major causes of the acute chest syndrome 
have been proposed: pulmonary infection, em-
bolization of bone marrow fat, and intravascu-
lar pulmonary sequestration of sickled eryth-
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rocytes, resulting in lung injury and infarction 
(Fig. 2).

Pulmonary Infection
The most common cause of the acute chest syn-
drome in children and adults is pulmonary infec-
tion by a community-acquired pathogen, which 
incites an excessive inflammatory response to 
what often should have been a mild upper respi-
ratory infection. Studies have shown that trans-
genic mice that express human hemoglobin S are 
susceptible to inflammatory triggers such as lipo-

polysaccharide and episodic exposure to environ-
mental hypoxia, with the development of lung 
injury at doses of endotoxin or degrees of hypoxia 
that do not adversely affect wild-type mice.47,48

The National Acute Chest Syndrome Study 
Group analyzed 671 episodes of the acute chest 
syndrome in 538 patients with sickle cell disease 
to determine the cause, outcome, and response 
to therapy.9 Respiratory airway sputum and bron-
choalveolar-lavage specimens were analyzed for 
viral and bacterial infections, and an infectious 
agent was identified in 54% of patients who 

COLOR  FIGURE

Figure 1. Hypothetical Mechanisms of Clinical Subphenotypes of Sickle Cell Disease. 

It is hypothesized that many of the complications of sickle cell disease can be divided into two overlapping subtypes, each driven by dis-
tinct mechanisms. Cutaneous leg ulceration, priapism, pulmonary hypertension, sudden death, and stroke are associated with low steady-
state hemoglobin (Hb) levels and an increased rate of intravascular hemolysis, shown on the left side of the figure. These vasculopathic 
complications probably result from endothelial dysfunction, mediated by both inactivation of nitric oxide (NO) by free-plasma hemoglo-
bin and vascular reactive oxygen species as well as arginine (Arg) catabolism by plasma arginase. This process of hemolysis-associated 
endothelial dysfunction may also cause hemostatic activation and intimal and smooth-muscle proliferation. Such clinical complications 
as vaso- occlusive pain crisis, the acute chest syndrome, avascular necrosis of bones, and retinal vasculopathy are associated with high 
steady-state leukocyte counts and high hemoglobin levels. These complications are likely to result from obstruction of capillaries and 
postcapillary venules by erythrocytes containing polymerized hemoglobin S and by leukocytes (a monocyte is shown), as shown on the 
right side of the figure. ET-1 denotes endothelin 1, NOS nitric oxide synthase, O2

− superoxide, VCAM-1 vascular-cell adhesion molecule 1, 
and XO xanthine oxidase.
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were admitted to a hospital. Most of the agents 
were atypical bacteria and viruses. Community-
acquired encapsulated bacteria were isolated in 
less than 10% of cases, even though normal 
splenic phagocytic function is rare in sickle cell 
disease.

Fat Emboli
The second major cause of the acute chest syn-
drome is the fat emboli syndrome. It is associated 

with a severe vaso-occlusive pain crisis involving 
multiple bones, especially the pelvis and femur, 
which results in infarction and edema of the 
bone marrow. The bone marrow undergoes ne-
crosis, and its contents, including fat, cells, and 
even bony spicules, are released into the blood-
stream and travel to the lung, where they cause 
acute pulmonary hypertension, severe lung in-
flammation, and hypoxemia.49-51 Secretory phos-
pholipase A2 is thought to convert bone marrow 
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Figure 2. The Vicious Cycle of the Acute Chest Syndrome.

The acute chest syndrome is a lung injury syndrome initiated by three major triggers, all related to vaso-occlusion 
by sickle cells: infection, embolization of bone marrow fat, and intravascular sequestration of red cells, all of which 
cause lung injury and infarction. Lung injury results in ventilation–perfusion mismatch and hypoxemia, which leads 
to increased deoxygenation of hemoglobin S, followed by hemoglobin polymerization and erythrocyte vaso-occlu-
sion, which in turn promote bone marrow infarction and pulmonary vaso-occlusion. NO denotes nitric oxide, and 
VCAM-1 vascular-cell adhesion molecule.
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phospholipids to free fatty acids, which initiate 
an inflammatory response and lung injury in a 
process analogous to that triggered by intravenous 
administration of oleic acid in mouse models of 
the acute respiratory distress syndrome.52

Oil red O staining of lipid accumulations 
within alveolar macrophages is diagnostic of the 
fat emboli syndrome, and the lipid accumula-
tions can be identified in more than 16% of cases 
of the acute chest syndrome in adults and chil-
dren.9 A study compared induced sputum sam-
ples of alveolar macrophages with samples ob-
tained using bronchoalveolar lavage and found a 
modest but significant correlation between the 
two methods (r = 0.65).53 In this study, patients 
with lipid-laden macrophages in induced sputum 
samples had significantly greater extrathoracic 
pain, more neurologic symptoms, lower platelet 
counts, and higher aminotransferase levels than 
patients without evidence of fat emboli. The acute 
chest syndrome can be part of the spectrum of 
disorders in the systemic fat emboli syndrome. 
This latter syndrome should be suspected in pa-
tients with abrupt multiorgan failure, rapid de-
velopment of the acute respiratory distress syn-
drome, acute increases in pulmonary arterial 
pressures, evidence of hepatic injury, alterations 
in mental status, seizures, prominent thrombo-
cytopenia, and in rare cases, coagulopathy.54,55

Pulmonary Infarction
Pulmonary infarction, or vaso-occlusion, may also 
contribute to the development of the acute chest 
syndrome. In a small number of patients, wedge-
shaped lung infarction, sometimes followed by 
central cavitation, develops.9,56

Clinical Aspects of the Acute Chest Syndrome
In most adults with sickle cell anemia, the acute 
chest syndrome develops 24 to 72 hours after the 
onset of severe pain in the arms, legs, or chest. 
The acute chest syndrome is associated with 
marked systemic inflammation, with a mean peak 
temperature of 38.9°C and a mean white-cell 
count of 23,000 per cubic millimeter.9 Although 
a high steady-state hemoglobin level (without pain 
crisis) is a major risk factor for the acute chest 
syndrome, in hospitalized patients with vaso-
occlusive pain crisis, an abrupt drop in the hemo-
globin level (a mean decrease of 0.78 g per deci-
liter from steady-state levels) and an increase in 

markers of hemolysis often precede the develop-
ment of the acute chest syndrome. The platelet 
count also falls before the onset of the acute 
chest syndrome; a platelet level of 200,000 per 
cubic millimeter or less is an independent risk 
factor for severe manifestations of the syndrome 
and is associated with increased risks of neuro-
logic complications and the need for mechanical 
ventilation.

The mean length of hospitalization for adults 
with the acute chest syndrome is 10.5 days, as 
compared with only 3 to 4 days for uncomplicat-
ed vaso-occlusive pain crisis. Mechanical ventila-
tion is required in 13% of patients with the syn-
drome, and 3% die. The outcome for patients on 
mechanical ventilation is actually quite good, with 
a mortality rate of only 19%, as compared with 
the outcome for all patients with the acute chest 
syndrome, for whom the mortality rate is approx-
imately 30%.9 Rapid simple or exchange transfu-
sion, ideally with antigen-matched blood, removes 
the trigger for acute lung injury — sickled erythro-
cytes — allowing rapid recovery in young pa-
tients.

Sickle cell disease is often accompanied by 
asthma. Reactive airway disease occurs in 13% or 
more of patients with the acute chest syndrome 
and in up to 53% of children between birth and 
the age of 9 years.9,57 Although a number of 
studies suggest that asthma is a risk factor for 
the acute chest syndrome and stroke in patients 
with sickle cell disease,58-60 it remains uncertain 
whether there is an increase in the prevalence of 
asthma among children with sickle cell disease 
in the steady state, as compared with matched 
controls.59,61 During steady-state sickle cell dis-
ease, the major abnormality in pulmonary func-
tion is a restrictive ventilatory impairment, char-
acterized by a mild reduction in total lung 
capacity, and reduced diffusion capacity for car-
bon monoxide.62,63 These abnormalities worsen 
with age and are associated with increases in 
pulmonary-artery pressures.63,64

Hemolysis,  End o theli a l - Cell 
Dysfunc tion, a nd Va scul opath y

Catabolism of Hemoglobin
A complex biochemical and cellular system clears 
and detoxifies the hemoglobin that red cells re-
lease into the plasma during normal oxidative and 
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mechanical stress.65 The hemoglobin dimer binds 
with an unusually high protein–protein affinity 
to haptoglobin.66 The resulting complex exposes a 
neoepitope recognized by the hemoglobin scaven-
ger protein CD163, a transmembrane glycopro-
tein that initiates the uptake of hemoglobin into 
macrophages and monocytes. The uptake of he-
moglobin by these cells activates interleukin-10 
and induces expression of heme oxygenase-1 and 
biliverdin reductase.67-69 These enzymes catabo-
lize heme and signal potent antiproliferative, anti-
oxidant, and antiinflammatory reactions.68-70 The 
downstream activities of these molecules take 
place in response to the oxidative and inflamma-
tory effects of free heme, iron, and oxygen: the 
binding of haptoglobin to hemoglobin limits 
heme-mediated lipid peroxidation,71 biliverdin re-
ductase catalytically generates NADPH and reduc-
es glutathione,69 and heme oxygenase-1 generates 
carbon monoxide and biliverdin, both of which 
limit proliferative and thrombotic vascular inju-
ry.68 New therapeutic approaches, such as hapto-
globin infusions, inhaled carbon monoxide gas 
and carbon monoxide–releasing compounds, and 
genetic or pharmacologic induction of heme oxy-
genase are being studied in animal models for the 
treatment of vascular injury in sickle cell disease.72

Hemolysis
Effect on Nitric Oxide
In sickle cell disease, the hemoglobin and heme 
scavenging systems are saturated and over-
whelmed, even in the steady state.73,74 Free plasma 
hemoglobin, in addition to generating reactive 
oxygen species, such as the hydroxyl and super-
oxide radicals (through the Fenton and peroxidase 
and auto-oxidation chemical reactions),75,76 is also 
a potent scavenger of nitric oxide.74,77 Nitric oxide, 
which is normally produced by the endothelium, 
regulates basal vasodilator tone; inhibits platelet 
and hemostatic activation; inhibits transcriptional 
expression of nuclear factor κB–dependent adhe-
sion molecules, such as vascular-cell adhesion 
molecule 1, intercellular adhesion molecule 1, 
and the selectins; and reduces superoxide levels 
through radical–radical scavenging.78-82 The half-
life of nitric oxide in the blood is extremely short 
because of its rapid reaction with hemoglobin to 
form methemoglobin and nitrate.83 Actually, the 
vasodilator activity of nitric oxide is possible only 
because most hemoglobin is normally compart-

mentalized within erythrocytes. Flowing blood 
produces a cell-free zone along the endotheli-
um; this zone and an area of nonflowing blood 
around the outside of the erythrocyte (called the 
unstirred layer) constitute major diffusion barriers 
against nitric oxide entry into red cells.84-86 These 
barriers reduce the rate at which nitric oxide reacts 
with intracellular hemoglobin by two to three 
orders of magnitude. The release of hemoglobin 
into plasma during hemolysis circumvents these 
diffusion barriers and serves as a potent inhibi-
tor of all nitric oxide bioactivity, leading to a 
clinical state of endothelial-cell dysfunction and 
nitric oxide resistance.14,74,77,87-92

Effect on Arginine
Hemolysis also releases erythrocyte arginase 1 into 
plasma. Arginase metabolizes plasma arginine 
into ornithine, reducing the required substrate for 
nitric oxide synthesis and compounding the re-
duction in the bioavailability of nitric oxide in 
sickle cell disease (Fig. 1).93 In one study, the 
plasma levels and enzymatic activity of arginase 
1 were significantly increased in 228 patients with 
sickle cell disease as compared with black control 
subjects; moreover, arginase 1 modulated the 
metabolic profile of arginine by reducing argi-
nine levels and increasing the production of orni-
thine relative to that of citrulline.93 These abnor-
malities were associated with severe pulmonary 
hypertension and an increased risk of death. Intra-
vascular hemolysis has also been shown to be 
associated with reduced availability of nitric oxide 
and arginine in animal models and in humans 
with severe falciparum malaria.94,95 In the study 
of malaria, impairment of nitric oxide–dependent, 
flow-mediated vasodilatation developed and was 
associated with hemolysis and high levels of ar-
ginase and lactate dehydrogenase.95

The Hypercoagulable State
Chronic depletion of nitric oxide and arginine 
may also contribute to the hypercoagulable state 
in hemolytic diseases. Since nitric oxide is a po-
tent inhibitor of platelet activation, the depletion 
of nitric oxide and arginine (the substrate for ni-
tric oxide synthesis) in sickle cell disease allows 
for platelet activation.96 Arginine consumption is 
compounded by increased intracellular platelet 
expression of arginase.97

Recent studies of sickle cell disease showed 
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correlations between the intrinsic rate of hemo-
lysis and the levels of procoagulant factors in 
blood.98-100 In addition to the release of free 
hemoglobin, hemolysis is associated with the for-
mation of red-cell microvesicles containing phos-
phatidylserine, an activator of tissue factor.100,101 
Patients with sickle cell disease who have func-
tional asplenia and patients with thalassemia 
who have undergone surgical splenectomy have 
increased levels of plasma hemoglobin and red-
cell microvesicles, which are potential mecha-
nisms for the hypercoagulability associated with 
both diseases, with possible exacerbation by asple-
nia.100

Additional support for the idea that hemolysis 
impairs nitric oxide signaling comes from trans-
genic mouse models of sickle cell disease and 
spherocytosis and from mouse models of allo-
immune hemolysis and malaria.42,94,102 In these 
models, there is impaired vasodilatation in re-
sponse to nitric oxide donors and endothelial-
dependent vasodilators, and pulmonary hyperten-
sion and right heart failure develop.42,102

Pul mona r y H y pertension  
in Sick le Cell Dise a se

A major risk factor for pulmonary hypertension 
in sickle cell disease is the severity of hemolytic 
anemia, which can be determined by measuring 
steady-state hemoglobin levels and levels of lac-
tate dehydrogenase, indirect bilirubin, and retic-
ulocytes.12,19,23,103,104 An association between the 
development of pulmonary hypertension and the 
intensity of hemolytic anemia has been observed 
in three prospective screening studies of adults 
with sickle cell disease12,103,104 and in a growing 
number of pediatric studies.105-108 Pulmonary 
hypertension is a reported complication of other 
forms of chronic hereditary or acquired hemo-
lytic anemia, including thalassemia intermedia 
and thalassemia major, paroxysmal nocturnal 
hemoglobinuria, spherocytosis, stomatocytosis, 
pyruvate kinase deficiency, alloimmune hemo-
lytic anemia, glucose-6-phosphate dehydrogenase 
deficiency, unstable hemoglobin variants, and the 
microangiopathic hemolytic anemias.65,109 Al-
though data from cohort screening studies are 
available only for sickle cell disease and thalas-
semia, there are growing numbers of case reports 
and case series involving pulmonary hypertension 

in other chronic hereditary and acquired hemo-
lytic anemias.

Echocardiography
Three prospective screening studies using echo-
cardiography have shown that 20% of adults with 
sickle cell disease have borderline or mild pul-
monary hypertension, defined by a pulmonary 
artery systolic pressure greater than 35 mm Hg; 
10% of these adults have moderate to severe pul-
monary hypertension, defined by a pressure great-
er than 45 mm Hg.12,103,104 Despite pulmonary 
artery systolic pressures that are much lower than 
those in idiopathic or hereditary pulmonary hyper-
tension, in sickle cell disease borderline or mild 
pulmonary hypertension is associated with an 
extremely high risk of death.12,103,104,110-112 It re-
mains to be determined whether elevations in 
pulmonary pressures are a marker for vasculopa-
thy and a risk factor for cardiovascular death or 
whether the elevations contribute directly to death 
due to progressive or acute right heart failure. 
The implications of borderline elevations in pul-
monary artery systolic pressure in the pediatric 
population remain unknown.

Adults with sickle cell disease should be 
screened for pulmonary hypertension with trans-
thoracic Doppler echocardiography.12 The thin 
body habitus of these adults, along with dilated 
and hyperdynamic heart chambers, allows easy 
detection of the regurgitation of blood backward 
across the tricuspid valve during right ventricu-
lar systole (Fig. 3). The tricuspid regurgitant jet 
velocity is used to estimate the right ventricular 
and pulmonary-artery systolic pressures (which 
are approximately four times the tricuspid regur-
gitant jet velocity squared) after the addition of 
an estimate of the central venous pressure. In 
sickle cell disease, these estimated pulmonary 
systolic pressures correlate well with measure-
ments obtained by means of right heart catheter-
ization.12 A value of 2.5 m per second or more 
corresponds to an estimated pulmonary-artery 
systolic pressure of 35 mm Hg, which is approxi-
mately 2 SD above the normal mean value; for 
patients less than 40 years of age, the reference 
value for the mean pulmonary-artery systolic 
pressure, estimated with the use of Doppler echo-
cardiography, is 27.5±14.2 mm Hg (95% confi-
dence interval [CI], 19.3 to 35.5).113 Although a 
more traditional definition of pulmonary hyper-
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tension would be a tricuspid regurgitant jet veloc-
ity of 3.0 m per second or more, values between 
2.5 and 2.9 m per second are associated with an 
increased risk of death among patients with 
sickle cell disease.12,103,104 A follow-up analysis 
of the National Institutes of Health (NIH) pulmo-
nary-hypertension screening cohort12 showed that 
with a tricuspid regurgitant jet velocity of 2.5 to 
2.9 m per second, as compared with a velocity of 
less than 2.5 m per second, the rate ratio for death 

was 4.4 (95% CI, 1.6 to 12.2; P<0.001), and with 
a velocity of 3.0 m per second or more, the rate 
ratio was 10.6 (95% CI, 3.3 to 33.6; P<0.001).

Brain Natriuretic Peptide
Another screening method entails measurement 
of plasma levels of the N-terminal fragment of 
the brain natriuretic peptide, released from cardio-
myocytes during pressure or volume stretch.112 
In pulmonary hypertension — both idiopathic and 
the type associated with sickle cell disease — the 
level of brain natriuretic peptide correlates with 
the degree of pulmonary vascular resistance and 
the risk of death (risk ratio, 5.1; 95% CI, 2.1 to 
12.5; P<0.001).112 Analysis of the levels of N-ter-
minal brain natriuretic peptide at study entry for 
patients with sickle cell disease who were en-
rolled in the NIH pulmonary-hypertension screen-
ing study and those enrolled in the Multicenter 
Study of Hydroxyurea in Sickle Cell Anemia re-
vealed that approximately 30% of patients with 
sickle cell disease in both cohorts had elevated 
brain natriuretic peptide values (>160 ng per milli-
liter) and, as compared with patients with lower 
values, had a significantly increased risk of death 
(2.87; 95% CI, 1.2 to 6.6; P = 0.02).112

It is clear that pulmonary pressures rise acute-
ly during vaso-occlusive crisis and even more so 
in the acute chest syndrome.114 A recent study of 
84 consecutively hospitalized patients with the 
syndrome showed that 13% of the patients had 
right heart failure. All five patients who required 
mechanical ventilation and all four patients who 
died during the study had jet velocity values of 
3 m per second or greater.115 These data suggest 
that acute pulmonary hypertension and right heart 
dysfunction are major coexisting conditions in 
the acute chest syndrome.

Cardiac Catheterization
We suggest that patients with evidence of hemo-
dynamically significant pulmonary hypertension 
(echocardiographic evidence of right heart dys-
function or a tricuspid regurgitant jet velocity of 
3.0 m per second or more) should undergo right 
heart catheterization to confirm the diagnosis 
and rule out left heart disease (pulmonary venous 
hypertension). Right heart catheterization in pa-
tients with sickle cell disease and pulmonary 
hypertension reveals a hyperdynamic state simi-
lar to the hemodynamics characteristic of porto-
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Figure 3. Doppler Echocardiogram Showing Increased 
Pulmonary-Artery Pressures (High Tricuspid Regurgitant 
Jet Velocity) and Right Heart Failure in a Patient with 
Sickle Cell Disease and Pulmonary Hypertension.

A Doppler echocardiographic tracing (Panel A) shows 
three measured regurgitant-jet-velocity envelopes across 
the tricuspid valve at values of 4.4, 4.5, and 4.5 m per 
second, which are consistent with a pressure gradient 
from ventricles to atria of approximately 80 mm Hg.  
A value of 2.5 m per second or more constitutes border-
line or mild pulmonary-artery systolic hypertension and 
is a major risk factor for death among patients with sick-
le cell disease. A four-chamber view of the heart (Panel B) 
shows right ventricular (RV) and right atrial (RA) dilata-
tion and tricuspid-valve regurgitation (TR) (blue), mov-
ing from RV to RA during ventricular systole. A video  
of this echocardiogram is available with the full text of 
this article at www.nejm.org. Echocardiogram and im-
age cortesy of Vandana Sachdev, M.D., National Heart, 
Lung, and Blood Institute.
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pulmonary hypertension.64,110 The mean pulmo-
nary-artery pressure in patients with sickle cell 
disease and pulmonary-artery hypertension is ap-
proximately 40 mm Hg, and pulmonary vascular 
resistance is approximately 250 dyn · sec · cm−5. 
The relatively low pulmonary vascular resistance 
is caused by the high cardiac output that is char-
acteristic of anemia. Approximately 60% of cath-
eterized patients with a tricuspid regurgitant jet 
velocity that is 3.0 m per second or more meet 
the definition of pulmonary-artery hypertension, 
indicating that vasculopathy primarily involves the 
pulmonary arterial system. In the other 40% of 
patients, the left ventricular end diastolic pres-
sures are greater than 15 mm Hg, indicating a 
component of left ventricular diastolic dysfunc-
tion.64 Patients with both pulmonary vascular dis-
ease and echocardiographic evidence of diastolic 
dysfunction are at particularly high risk for death 

(relative risk ratio, 12.0; 95% CI, 3.8 to 38.1; 
P<0.001).116

Other Mechanisms of Pulmonary 
Hypertension

There are mechanisms other than intravascular 
hemolysis that contribute to the development of 
pulmonary hypertension in patients with sickle 
cell disease, and they should be identified and 
treated (Table 1). Iron overload, hepatitis C, or 
nodular hepatic regenerative hyperplasia can cause 
liver dysfunction, which can lead to portopulmo-
nary hypertension.12 Chronic renal failure, a com-
mon complication of sickle cell disease, is an 
additional risk factor for the development of pul-
monary hypertension.12,103 In situ thrombosis and 
pulmonary emboli are often identified clinically 
and at autopsy.15 These findings may be risk fac-
tors for death, particularly among patients with 
functional or surgical asplenia.117 Chronic throm-
boembolic pulmonary hypertension occurs in ap-
proximately 5% of patients with sickle cell disease 
and severe pulmonary hypertension.64,118 Although 
it is widely held that repeated episodes of the acute 
chest syndrome cause pulmonary hypertension, 
with resulting chronic lung disease, most retro-
spective and prospective studies show no asso-
ciation between pulmonary hypertension and rates 
of the acute chest syndrome.12,103,104,107,112,119 
This finding supports the view that clinical sub-
phenotypes of sickle cell disease arise from diver-
gent mechanisms.

A lter nati v e H y po theses

We recognize that alternative hypotheses could 
explain the clinical phenotypes associated with 
hemolytic anemia. For example, patients with 
severe hemolytic anemia also have bone marrow 
expansion and leukocytosis, suggesting that hemo-
lysis may be associated with inflammation or may 
merely represent an index of disease severity. It is 
difficult to divorce the effects of hemolysis from 
those of anemia and oxidant stress; both can 
contribute directly to disease pathogenesis, inde-
pendently of any direct effects of cell-free hemo-
globin on vascular function.

Conclusions

Pulmonary complications — namely, the acute 
chest syndrome and pulmonary hypertension — 

Table 1. Proposed Mechanisms Leading to Pulmonary Hypertension  
in Sickle Cell Disease.

Hemolytic anemia

Nitric oxide scavenging through reactions with cell-free plasma hemoglobin

Arginine catabolism to ornithine through reactions with arginase 1, released 
from red cells

Increased platelet activation by cell-free plasma hemoglobin

Increased levels of endothelin 1

Increased endogenous inhibition of nitric oxide synthase; increased production 
of methylated arginine and asymmetric dimethylarginine during hemolysis-
related protein turnover

High cardiac output resulting from anemia

Hypoxia-inducible factors

Increased expression of hypoxia-inducible factor 1α mediated by tissue hypoxia

Increased levels of erythropoietin

Increased levels of endothelin 1

Increased levels of vascular endothelial growth factor 

Anemia-related inhomogeneous ventilation–perfusion resulting from vascular 
instability

Perfusion dysregulation, altering ventilation–perfusion matching

Hypoxemia

Systemic factors

Oxidant stress mediated by iron-overload, free iron, and heme

Renal failure

Increased levels of uric acid

Asplenia (autoinfarction or surgical removal), leading to thrombosis as a 
 result of increased circulating plasma hemoglobin and microparticles, 
thrombocytosis, and increased red-cell phosphatidylserine, which may 
activate tissue factor

 

Copyright © 2008 Massachusetts Medical Society. All rights reserved. 
Downloaded from www.nejm.org by JOHN VOGEL MD on November 19, 2008 . 



Mechanisms of Disease

n engl j med 359;21 www.nejm.org november 20, 2008 2263

are the leading complications associated with 
death in adults with sickle cell disease. In patients 
who die of the acute chest syndrome, abrupt in-
creases in pulmonary pressures and right heart 
failure are common, indicating a major interac-
tion between these clinical entities. The current 
treatment of these complications is based on lim-
ited evidence or expert opinion, highlighting the 
critical need for randomized clinical trials in this 
area. Identification, prevention, and expert man-

agement of these complications by hematologists 
and pulmonologists will be a challenge as the 
population of patients with sickle cell disease 
ages and increases worldwide.
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