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The term cardiorenal syndrome (CRS) increasingly has been used without a consistent or well-accepted defini-
tion. To include the vast array of interrelated derangements, and to stress the bidirectional nature of heart-
kidney interactions, we present a new classification of the CRS with 5 subtypes that reflect the pathophysiology,
the time-frame, and the nature of concomitant cardiac and renal dysfunction. CRS can be generally defined as a
pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of 1 organ may induce
acute or chronic dysfunction of the other. Type 1 CRS reflects an abrupt worsening of cardiac function (e.g.,
acute cardiogenic shock or decompensated congestive heart failure) leading to acute kidney injury. Type 2 CRS
comprises chronic abnormalities in cardiac function (e.g., chronic congestive heart failure) causing progressive
chronic kidney disease. Type 3 CRS consists of an abrupt worsening of renal function (e.g., acute kidney isch-
emia or glomerulonephritis) causing acute cardiac dysfunction (e.g., heart failure, arrhythmia, ischemia). Type 4
CRS describes a state of chronic kidney disease (e.g., chronic glomerular disease) contributing to decreased car-
diac function, cardiac hypertrophy, and/or increased risk of adverse cardiovascular events. Type 5 CRS reflects a
systemic condition (e.g., sepsis) causing both cardiac and renal dysfunction. Biomarkers can contribute to an
early diagnosis of CRS and to a timely therapeutic intervention. The use of this classification can help physicians
characterize groups of patients, provides the rationale for specific management strategies, and allows the de-
sign of future clinical trials with more accurate selection and stratification of the population under
investigation. (J Am Coll Cardiol 2008;52:1527–39) © 2008 by the American College of Cardiology Foundation

A large proportion of patients admitted to hospital have
various degrees of heart and kidney dysfunction (1). Primary
disorders of 1 of these 2 organs often result in secondary
dysfunction or injury to the other (2). Such interactions
represent the pathophysiological basis for a clinical entity
called cardiorenal syndrome (CRS) (3). Although generally
defined as a condition characterized by the initiation and/or
progression of renal insufficiency secondary to heart failure
(4), the term CRS is also used to describe the negative
effects of reduced renal function on the heart and circulation
(5). The absence of a clear definition and the complexity of
this cluster of conditions contribute to lack of clarity with
regard to diagnosis and management (6). This is unfortu-
nate, because recent advances in basic and clinical sciences
have improved our understanding of organ crosstalk and
have demonstrated the efficacy of some therapies in atten-
uating both cardiac and renal injury (7). Thus, a more
articulated definition in terms of clinical presentation, patho-
physiology, diagnosis, and management is needed to explore
the complex nature of CRS and its different clinical subtypes.

CRS: A Definition

The simplistic view of CRS is that a relatively normal
kidney is dysfunctional because of a diseased heart, with the
assumption that, in the presence of a healthy heart, the same
kidney would perform normally (8). This concept has been
recently challenged, and a more articulated definition of the
CRS has been advocated (5). The CRS includes a variety of
acute or chronic conditions, where the primary failing organ
can be either the heart or the kidney (9).

Previous terminology did not allow physicians to identify
and fully characterize the chronology of the pathophysio-
logical interactions that characterize a specific type of
combined heart/kidney disorder. A diseased heart has nu-
merous negative effects on kidney function but, at the same
time, renal insufficiency can significantly impair cardiac
function (9). Thus, direct and indirect effects of each organ
that is dysfunctional can initiate and perpetuate the com-
bined disorder of the 2 organs through a complex combi-
nation of neurohormonal feedback mechanisms. For this
reason, a subdivision of CRS into 5 different subtypes seems
to provide a more concise and logically correct approach.
CRS type 1 (acute CRS). Type 1 CRS is characterized by
a rapid worsening of cardiac function, leading to acute
kidney injury (AKI) (Fig. 1). Acute heart failure (HF) may
be divided into 4 subtypes: hypertensive pulmonary edema
with preserved left ventricular (LV) systolic function,
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acutely decompensated chronic
HF, cardiogenic shock, and pre-
dominant right ventricular fail-
ure (10). Type 1 CRS is a com-
mon occurrence. More than 1
million patients in the U.S. are
admitted to the hospital every
year with either de novo acute
HF or acutely decompensated
chronic HF (11). Among these
patients, pre-morbid chronic re-
nal dysfunction is a common oc-
currence and predisposes them to
AKI (12,13). The mechanisms
by which the onset of acute HF
or acutely decompensated chronic
HF leads to AKI are multiple
and complex (4) (Fig. 1). The
clinical importance of each
mechanism is likely to vary from
patient to patient (e.g., acute car-
diogenic shock vs. hypertensive
pulmonary edema) and situation
to situation (acute HF secondary
to perforation of a mitral valve
leaflet from endocarditis vs.

worsening right HF secondary to noncompliance with
diuretic therapy). In acute HF, AKI appears to be more
severe in patients with impaired LV ejection fraction com-
pared with those with preserved LV function, achieving an
incidence !70% in patients with cardiogenic shock (14).
Furthermore, impaired renal function is consistently found
as an independent risk factor for 1-year mortality in acute
HF patients, including patients with ST-segment elevation
myocardial infarction (15). A plausible reason for this
independent effect might be that an acute decline in renal
function does not simply act as a marker of illness sever-
ity but also carries an associated acceleration in cardiovas-
cular pathobiology through activation of inflammatory
pathways (9,16).

In CRS type 1, a salient clinical issue is how the onset of
AKI impacts on prognosis and treatment of acute HF. The
first clinical principle is that the onset of AKI in this setting
implies inadequate renal perfusion until proven otherwise,
which should prompt clinicians to consider the diagnosis of
a low cardiac output state and/or marked increase in venous
pressure leading to kidney congestion through the use of
physical examination, ancillary signs, imaging, and labora-
tory findings.

The second important consequence of type 1 CRS is
decreased diuretic responsiveness. In a congestive state,
decreased response to diuretics may result from the physi-
ological phenomena of diuretic braking (diminished diuretic
effectiveness secondary to postdiuretic sodium retention)
(17) and post-diuretic sodium retention (18). In addition,
concerns of aggravating AKI by the administration of

diuretics at greater doses or in combination also can act as an
additional, iatrogenic mechanism. Diuretics are best pro-
vided to HF patients with evidence of systemic fluid
overload with the goal of achieving a gradual diuresis. Loop
diuretics may be titrated according to renal function, systolic
blood pressure, and history of chronic diuretic use. High
doses may cause tinnitus, and a continuous low-dose di-
uretic infusion might be more efficient (19).

Measurement of cardiac output (arterial pressure monitoring
combined with pulse contour analysis or by Doppler ultra-
sound) and venous pressure may help ensure adequate and
targeted diuretic therapy (20–22) and allow safer navigation
through the precarious situation of combined HF and AKI.
If diuretic-resistant fluid overload exists despite an opti-
mized cardiac output, removal of isotonic fluid can be
achieved by the use of extracorporeal ultrafiltration (23,24).

The presence of AKI with or without concomitant
hyperkalemia may also affect patient outcome by inhibiting
the prescription of angiotensin-converting enzyme (ACE)
inhibitors, angiotensin receptor blockers (ARBs), and aldo-
sterone inhibitors (drugs that have been shown in large
randomized controlled trials to increase survival in the
setting of heart failure and myocardial infarction) (25).
However, provided there is close monitoring of renal function
and potassium levels, the potential benefits of these interven-
tions often outweigh their risks, even in these patients.

The acute administration of beta-blockers in the setting
of type 1 CRS generally is not advised. Such therapy should
wait until the patient has stabilized physiologically and until
concerns about a low output syndrome have been resolved.
In some patients, stroke volume cannot be increased, and
relative or absolute tachycardia sustains the adequacy of
cardiac output. Blockade of such compensatory tachycardia
and sympathetic system-dependent inotropic compensation
can precipitate cardiogenic shock with associated high
mortality (26). Particular concern applies to beta-blockers
excreted by the kidney, such as atenolol or sotalol, alone or
in combination with calcium antagonists (27). This should
not inhibit the slow, careful, titrated administration of beta-
blockers later on, once patients are hemodynamically stable.

In patients with kidney dysfunction, undertreatment after
myocardial infarction is common (28). Attention should be
paid to preserving renal function, perhaps with the same
vigor as we attempt to salvage and protect cardiac muscle.
Worsening of renal function during admission for ST-
segment elevation myocardial infarction is a powerful and
independent predictor of in-hospital and 1-year mortality
(14,15). In patients who receive percutaneous coronary
intervention or cardiac surgery, even a small increase in
serum creatinine (!0.3 mg/dl) is associated with increased
hospital stay and mortality (29,30). In this context, an
increase in creatinine is not simply a marker of illness
severity but, rather, it represents the onset of AKI acting as
a causative factor for cardiovascular injury acceleration
through the activation of neurohormonal, immunological
and inflammatory pathways (9,16). No specific kidney-

Abbreviations
and Acronyms

ACE ! angiotensin-
converting enzyme

AKI ! acute kidney injury

ARB ! angiotensin
receptor blocker

BNP ! B-type natriuretic
peptide

CKD ! chronic kidney
disease

CRS ! cardiorenal
syndrome

GFR ! glomerular filtration
rate

HF ! heart failure

ICU ! intensive care unit

IL ! interleukin

LV ! left ventricular

NGAL ! neutrophil
gelatinase-associated
lipocalin

TNF ! tumor necrosis
factor
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protective treatments have yet emerged for this condition.
Despite some initial promising results, the use of nesiritide
remains controversial, and a recent negative randomized
controlled trial in these very patients (31) suggests that this
agent is unlikely to have significant clinical benefit.

A very specific and common threat to kidney function in
the setting of acute cardiac disease relates to the adminis-
tration of radiocontrast for heart imaging procedures. This
topic, recently reviewed in the Journal (32), would require
separate detailed discussion and is beyond the scope of this
article. Suffice it to say that this high-risk group requires
appropriate prophylaxis to avoid radiocontrast nephropathy.
Given that the presence of type 1 CRS defines a population
with high mortality, a prompt, careful, systematic, multi-
disciplinary approach involving cardiologists, nephrologists,
critical care physicians, and cardiac surgeons is both logical
and desirable.

In CRS type 1, the early diagnosis of AKI remains a
challenge (33). This is also true in CRS type 3, where AKI
is believed to be the primary inciting factor leading to

cardiac dysfunction. In both cases, classic markers such as
creatinine increase when AKI is already established and very
little can be done to prevent it or to protect the kidney. An
interesting evolution in the early diagnosis of CRS has been
the discovery of novel AKI biomarkers. With the use of a
complementary deoxyribonucleic acid microarray as a
screening technique, a subset of genes whose expression is
up-regulated within the first few hours after renal injury has
been discovered (34,35).

Neutrophil gelatinase-associated lipocalin (NGAL) ap-
pears to be one of the earliest markers detected in the blood
and urine of humans with AKI (36–39). Urine and serum
NGAL are early predictors of AKI both in adult and
children either in cardiac surgery or patients in the intensive
care unit (ICU) (40,41). In these patients, an increase in
creatinine is observed only 48 to 72 h later (42). NGAL
is also a biomarker of delayed graft function in kidney
transplantation (43), AKI caused by contrast-media (44),
and AKI in critically ill patients admitted to intensive
care (45).

Figure 1 CRS Type 1

Pathophysiological interactions between heart and kidney in type 1 cardiorenal syndrome (CRS) or “acute CRS” (abrupt worsening of cardiac function, e.g., acute cardio-
genic shock or acute decompensation of chronic heart failure) leading to kidney injury. ACE " angiotensin-converting enzyme; ANP " atrial natriuretic peptide; BNP "
B-type natriuretic peptide; CO " cardiac output; GFR " glomerular filtration rate; KIM " kidney injury molecule; N-GAL " neutrophil gelatinase-associated lipocalin; RAA
" renin angiotensin aldosterone. Figure illustration by Rob Flewell.
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Cystatin C appears to be a better predictor of glomerular
function than serum creatinine in patients with chronic
kidney disease (CKD) because its blood levels are not
affected by age, gender, race, or muscle mass (46). Cystatin
C predicts AKI and the requirement for renal replacement
therapy earlier than creatinine (47). Serum cystatin C has
been compared with NGAL in cardiac surgery-mediated
AKI (48). Both biomarkers predicted AKI at 12 h, although
NGAL outperformed cystatin C at earlier time points.
Considering them together, they may represent a combina-
tion of structural and functional damage of the kidney.

Kidney injury molecule 1 is a protein detectable in the
urine after ischemic or nephrotoxic insults to proximal
tubular cells (49–51) and seems to be highly specific for
ischemic AKI. Combined with NGAL which is highly
sensitive, it may represent an important marker in the early
phases of AKI.

Biomarkers such as N-acetyl-!-(D)glucosaminidase (52),
interleukin (IL)-18 (53) and others reported in Table 1 have
been proposed as an interesting and promising contribution
to diagnosis of AKI and progression of CKD. The most
likely evolution will be a “panel” of biomarkers that include
several molecules both in serum and urine that combine
their best characteristics in terms of specificity and sensitiv-
ity of each marker molecule.
CRS type 2 (chronic CRS). Type 2 CRS is characterized
by chronic abnormalities in cardiac function (e.g., chronic
congestive HF) causing progressive CKD (Fig. 2). Wors-
ening renal function in the context of HF is associated with
adverse outcomes and prolonged hospitalizations (32). The
prevalence of renal dysfunction in chronic HF has been
reported to be approximately 25% (54). Even slight de-
creases in estimated glomerular filtration rate (GFR) signif-
icantly increase mortality risk (54) and are considered a
marker of severity of vascular disease (55). Independent
predictors of worsening function include old age, hyperten-
sion, diabetes mellitus, and acute coronary syndromes.

The mechanisms underlying worsening renal function
likely differs based on acute versus chronic HF. Chronic HF

is likely to be characterized by a long-term situation of
reduced renal perfusion, often predisposed by microvascular
and macrovascular disease. Although a greater proportion of
patients with low estimated GFR have a worse New York
Heart Association functional class, no evidence of associa-
tion between LV ejection fraction and estimated GFR can
be consistently demonstrated. Thus, patients with chronic
HF and preserved LV function appear to have similar
estimated GFR than patients with impaired LV (ejection
fraction #45%) (55).

There is very limited understanding of the pathophys-
iology of renal dysfunction in the setting of even ad-
vanced cardiac failure. In this setting, where one would
intuitively consider hemodynamic issues to be dominant,
the ESCAPE (Evaluation Study of Congestive Heart Fail-
ure and Pulmonary Catheterization Effectiveness) trial (56)
found no link between any pulmonary artery catheter-
measured hemodynamic variables and serum creatinine in
194 patients. The only link was with right atrial pressure,
suggesting that renal congestion may be more important
than appreciated. Clearly, hypoperfusion alone cannot ex-
plain renal dysfunction in this setting. More work needs to
be performed to understand the mechanisms at play to develop
targeted and physiologically sound approaches to treatment.

Neurohormonal abnormalities are present with excessive
production of vasoconstrictive mediators (epinephrine, an-
giotensin, endothelin) and altered sensitivity and/or release
of endogenous vasodilatory factors (natriuretic peptides,
nitric oxide). Pharmacotherapies used in the management
of HF may worsen renal function. Diuresis-associated
hypovolemia, early introduction of renin-angiotensin-
aldosterone system blockade, and drug-induced hypoten-
sion have all been suggested as contributing factors (4).

More recently, there has been increasing interest in the
pathogenic role of relative or absolute erythropoietin defi-
ciency contributing to a more pronounced anemia in these
patients than might be expected for renal failure alone (57).
Erythropoietin receptor activation in the heart may protect
it from apoptosis, fibrosis, and inflammation (58,59). Pre-
liminary clinical studies show that erythropoiesis-
stimulating agents in patients with chronic HF, CKD, and
anemia lead to improved cardiac function, reduction in LV
size, and the lowering of B-type natriuretic peptide (BNP)
(60). Patients with type 2 CRS are more likely to receive
loop diuretics and vasodilators and also to receive greater
doses of such drugs compared with those patients with
stable renal function (61). Treatment with these drugs may
participate in the development and progression of renal
injury. However, such therapies may simply identify patients
with severe hemodynamic compromise and, thus, a predis-
position to renal dysfunction rather than being responsible
for worsening function.

Renal insufficiency is highly prevalent among patients
with HF and is an independent negative prognostic factor in
both diastolic and systolic ventricular dysfunction and severe
HF (62). The logical practical implications of the plethora

Protein Biomarkers forthe Early Detection of Acute Kidney Injury

Table 1 Protein Biomarkers for
the Early Detection of Acute Kidney Injury

Biomarker Associated Injury

Cystatin C Proximal tubule injury

KIM-1 Ischemia and nephrotoxins

NGAL (lipocalin) Ischemia and nephrotoxins

NHE3 Ischemia, pre-renal, post-renal AKI

Cytokines (IL-6, IL-8, IL-18) Toxic, delayed graft function

Actin-actin depolymerizing F Ischemia and delayed graft function

"-GST Proximal T injury, acute rejection

#-GST Distal tubule injury, acute rejection

L-FABP Ischemia and nephrotoxins

Netrin-1 Ischemia and nephrotoxins, sepsis

Keratin-derived chemokine Ischemia and delayed graft function

GST " glutathione S-transferase; IL " interleukin; KIM " kidney injury molecule; L-FABP " L-type
fatty acid binding protein; NGAL " neutrophil gelatinase-associated lipocalin; NHE " sodium-
hydrogen exchanger.
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of data linking CKD with cardiovascular disease are that
more attention needs to be paid to reducing risk factors and
optimizing medications in these patients and that under-
treatment due to concerns about pharmacodynamics in this
setting may have lethal consequences at an individual level
and huge potential adverse consequences at a public health
level. Nonetheless, it is equally important to acknowledge
that clinicians looking after these patients often are faced
with competing therapeutic choices and that, with the
exception of MERIT-HF (Metoprolol Controlled-Release
Randomised Intervention Trial in Heart Failure) (63), large
randomized controlled trials that have shaped the treatment
of chronic HF in the last 2 decades have consistently
excluded patients with significant renal disease. More on the
use of specific agents is covered in the sections on type 3 and
4 CRS.
CRS type 3 (acute renocardiac syndrome). Type 3 CRS is
characterized by an abrupt and primary worsening of kidney
function (e.g., AKI, ischemia, or glomerulonephritis), lead-
ing to acute cardiac dysfunction (e.g., HF, arrhythmia,

ischemia). Type 3 CRS appears less common than type 1
CRS, but this may only be due to the fact that, unlike type
1 CRS, it has not been systematically studied. AKI is a
growing disorder in hospital and ICU patients. When the
RIFLE (risk, injury, and failure; loss; and end-stage kidney
disease) consensus definition is used, AKI has been identi-
fied in close to 9% of hospital patients (64). In a large ICU
database, AKI was observed in more than 35% of patients
(65). Acute kidney injury can affect the heart through
several pathways (Fig. 3), whose hierarchy is not yet
established. Fluid overload can contribute to the develop-
ment of pulmonary edema. Hyperkalemia can contribute to
arrhythmias and may cause cardiac arrest. Untreated uremia
affects myocardial contractility through the accumulation of
myocardial depressant factors (66) and pericarditis (67).
Acidemia produces pulmonary vasoconstriction (68), which
can significantly contribute to right-sided HF. Acidemia
appears to have a negative inotropic effect (69) and might,
together with electrolyte imbalances, contribute to an in-
creased risk of arrhythmias (70). Finally, renal ischemia

Figure 2 CRS Type 2

Pathophysiological interactions between heart and kidney in type 2 cardiorenal syndrome (CRS) or “chronic CRS” (chronic abnormalities in cardiac function,
e.g., chronic heart failure) causing progressive chronic kidney disease (CKD). Figure illustration by Rob Flewell. LVH " left ventricular hypertrophy; RAA " renin angioten-
sin aldosterone.
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itself may precipitate activation of inflammation and apo-
ptosis at cardiac level (9).

A unique situation leading to type 3 CRS is bilateral
renal artery stenosis (or unilateral stenosis in a solitary
kidney). Patients with this condition may be prone to
acute or decompensated HF because of diastolic dysfunc-
tion related to chronic increase of blood pressure from
excessive activation of the renin-angiotensin-aldosterone
axis, renal dysfunction with sodium and water retention,
and acute myocardial ischemia from an increase in
myocardial oxygen demand related to intense peripheral
vasoconstriction (71,72). In these patients, angiotensin
blockade is generally required to manage the hyperten-
sion and HF. However, the GFR is highly dependent
upon angiotensin and significant decompensation of kid-
ney function may ensue. Although the management of
these unusual patients has not been subject to scrutiny in
large randomized trials, those exhibiting renal decom-
pensation with ACE inhibition or ARB are likely candi-
dates for renal revascularization (72).

Sensitive and specific biomarkers of cardiac injury may
help physicians to diagnose and treat type 3 CRS earlier and
perhaps more effectively (73). Cardiac troponins are bio-
markers for ischemic myocardial injury (74,75), and they

correlate with outcomes in the general population and
specifically in renal patients (76–78). A marker of myocyte
stress is BNP and allows the diagnosis of acute and acutely
decompensated chronic HF (79). It also is an independent
predictor of cardiovascular events and overall mortality in
the general population (80,81) and also in patients with
renal insufficiency (82–84). In HF, despite high levels of
serum BNP, its physiological effects (vasodilatory, diuretic,
and natriuretic) do not appear sufficient to prevent the
disease progression and CRS. Recent findings suggest a
resistance to BNP (85) and/or a relative preponderance of
the biologically inactive precursor of BNP (86). In CRS
type 4 (discussed in the following text), an association
between increased levels of BNP and the accelerated pro-
gression of nondiabetic CKD to end-stage kidney disease
has been observed (87).

Myeloperoxidase is a marker of altered myocyte metabolism,
oxidative stress, and inflammation, especially in acute coronary
syndrome (88). Oxidative stress may cause myocyte apoptosis
and necrosis, and it is associated with arrhythmias and endo-
thelial dysfunction with a potential role in the pathogenesis of
CRS (89). Cytokines such as tumor necrosis factor (TNF),
IL-1, and IL-6 may have a diagnostic role as early biomarkers
of CRS, but also a pathogenic role causing myocardial cell

Figure 3 CRS Type 3

Pathophysiological interactions between heart and kidney in type 3 CRS or “acute renocardiac syndrome” (abrupt worsening of renal function, e.g., acute kidney failure
or glomerulonephritis) causing acute cardiac disorder (e.g., heart failure, arrhythmia, pulmonary edema). MPO " myeloperoxidase; other abbreviations as in Figure 1.
Figure illustration by Rob Flewell.
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injury and apoptosis (90,91) and mediating myocardial damage
in ischemic AKI (92).

The development of AKI can affect the use of medica-
tions normally prescribed in patients with chronic HF. For
example, an increase in serum creatinine from 1.5 mg/dl
(130 $mol/l) to 2 mg/dl (177 $mol/l), with diuretic therapy
and ACE inhibitors, may provoke some clinicians to de-
crease or even stop diuretic prescription; they may also
decrease or even temporarily stop ACE inhibitors. This
may, in some cases, lead to acute decompensation of HF. It
should be remembered that ACE inhibitors do not damage
the kidney but rather modify intrarenal hemodynamics and
reduce filtration fraction. They protect the kidney by reduc-
ing pathological hyperfiltration. Unless renal function fails
to stabilize, or other dangerous situations arise (i.e., hypo-
tension, hyperkalemia) continued treatment with ACE
inhibitors and ARBs may be feasible.

Finally, if AKI is severe and renal replacement therapy is
necessary, cardiovascular instability generated by rapid fluid
and electrolyte shifts secondary to conventional dialysis can
induce hypotension, arrhythmias, and myocardial ischemia
(93). Continuous techniques of renal replacement, which
minimize such cardiovascular instability, appear physiolog-
ically safer and more logical in this setting (94).
CRS type 4 (chronic renocardiac syndrome). Type 4
CRS is characterized by a condition of primary CKD (e.g.,
chronic glomerular disease) contributing to decreased car-
diac function, ventricular hypertrophy, diastolic dysfunc-
tion, and/or increased risk of adverse cardiovascular events
(Fig. 4). Today, CKD is divided into 5 stages based on a
combination of severity of kidney damage and GFR (95).
When these criteria are used, current estimates of CKD
account for at least 11% of the U.S. adult population (96),
thus becoming a major public health problem. In fact CKD
today includes individuals with serum creatinine levels
previously dismissed as not representative of significant
renal dysfunction.

Individuals with CKD are at extremely high cardiovas-
cular risk (97). More than 50% of deaths in CKD stage 5
cohorts are attributed to cardiovascular disease. The 2-year
mortality rate after myocardial infarction in patients with
CKD stage 5 is estimated to be 50% (98). In comparison,
the 10-year mortality rate post-infarct for the general
population is 25%. Patients with CKD have between a 10-
and 20-fold increased risk of cardiac death compared with
age-/gender-matched control subjects without CKD (98–
100). Part of this problem may be related to the fact that
such individuals are also less likely to receive risk-modifying
interventions compared to their non-CKD counterparts (101).

Less severe forms of CKD also may be associated with
significant cardiovascular risk. Evidence for increasing cardio-
vascular disease morbidity and mortality tracking with mild-
to-moderate renal dysfunction (stages 1 to 3) has mainly
stemmed from community-based studies (102–105). These
studies documented an inverse relationship between renal

function and adverse cardiovascular outcomes (consistently
occurring at estimated GFR levels #60 ml/min/1.73 m2).

Among high-risk cohorts, baseline creatinine clearance is
a significant and independent predictor of short-term out-
comes, namely death and myocardial infarction (99). Similar
findings also were noted among patients presenting with
ST-segment elevation myocardial infarction (106), an effect
independent of the Thrombolysis In Myocardial Infarction
risk score (107).

In large-scale studies (e.g., SOLVD [Studies Of Left
Ventricular Dysfunction], TRACE [Trandolapril Cardiac
Evaluation], SAVE [Survival And Ventricular Enlarge-
ment], and VALIANT [Valsartan in Acute Myocardial
Infarction]) in which the authors excluded individuals with
baseline serum creatinine of %2.5 mg/dl, reduced renal
function was associated with significantly greater mortality
and adverse cardiovascular event rates (108–111).

Adverse cardiovascular outcomes in renal patients are
associated with plasma levels of specific biomarkers
(112–114). Troponins, asymmetric dimethylarginine,
plasminogen-activator inhibitor type 1, homocysteine, na-
triuretic peptides, C-reactive protein, serum amyloid A
protein, hemoglobin, and ischemia-modified albumin are
biomarkers whose levels correlate with cardiovascular out-
comes in patients with CKD (115–117). These observations
provide a mechanistic link between chronic inflammation
(118), subclinical infections (119), accelerated atherosclero-
sis, heart–kidney interactions, and negative cardiovascular
and renal outcomes.

The proportion of individuals with CKD receiving ap-
propriate cardiovascular risk modification treatment is lower
than in the general population. This “therapeutic nihilism”
(120) is based on the concern of worsening kidney function
(121,122) and leads to treating #50% of patients with CKD
with the combination of aspirin, beta-blockers, ACE inhib-
itors, and statins (123). In a cohort involving !140,000
patients, 1,025 with documented CKD were less likely to
receive aspirin, beta-blockade, or ACE inhibition after
infarction than patients without CKD. Yet CKD patients
had 30-day mortality risk reductions similar to non-CKD
patients when receiving the drug combination (123).

Potential reasons for this subtherapeutic performance
include concerns about further worsening of renal function,
and/or therapy-related toxic effects due to low clearance
rates (124,125). Many medications necessary for manage-
ment of complications of advanced CKD generally are
considered safe with concomitant cardiac disease. These
include regimens for calcium-phosphate balance and hyper-
parathyroidism, vitamins, and erythropoiesis-stimulating
agents (126–129). The same appears to hold true for novel
regimens, for instance, endothelin system antagonists,
adenosine and vasopressin receptor antagonists, and in-
flammation suppressors (130 –133). For immunosuppres-
sive drugs, controversy exists regarding the effects of
certain agents on the heart, indicating a need for more
research in the area (134).
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Bleeding concerns contribute to the decreased likelihood
of patients with severe CKD receiving aspirin and/or
clopidogrel despite the minor bleeding risk and benefits that
are sustained in these patients (135). Other medications
requiring thorough considerations of pros and cons include
diuretics, digitalis, calcium-channel blockers, and nesiritide
(136–141). Nevertheless, when appropriately titrated and
monitored, cardiovascular medications can be safely admin-

istered to CKD patients with benefits similar to the general
population (142).

Lack of CKD population-specific treatment effect data
makes therapeutic choices particularly challenging. In particu-
lar, in patients with advanced CKD, the initiation or increased
dosage of ACE inhibitors or ARBs can precipitate clinically
significant worsening of renal function or marked hyperkale-
mia. The latter may be dangerously exacerbated by the use of

Figure 4 CRS Type 4

Pathophysiological interactions between heart and kidney in type 4 cardiorenal syndrome (CRS) or “chronic renocardiac syndrome” (chronic kidney disease [CKD], e.g.,
chronic glomerular disease, contributing to decreased cardiac function, cardiac hypertrophy, or increased risk of adverse cardiovascular events). BMI " body mass index;
EPO " erythropoietin; LDL " low-density lipoprotein. Figure illustration by Rob Flewell.
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aldosterone antagonists. Such patients, if aggressively treated,
become exposed to a significant risk of developing dialysis
dependence or life-threatening hyperkalemic arrhythmias. Yet,
if too cautiously treated, they may develop equally life-
threatening cardiovascular complications.

It is comforting to note that up to a 30% increase in
creatinine that stabilizes within 2 months was actually
associated with long-term nephroprotection in a systematic
review of 12 randomized controlled studies (143). This
result leads to the practical advice that ACE inhibitors and
ARBs can be cautiously used in patients with CKD,
provided the serum creatinine does not increase beyond this
amount and potassium remains consistently #5.6 mmol/l.
Regarding patients with end-stage renal disease, and in
particular those with anuria and a tendency to hyperkalemia
interdialytically, the administration of ACE inhibitors or
ARBs may be problematic; however, even the combination
of these medications has been used safely in select popula-
tions (144). At present, most end-stage kidney disease
patients with LV dysfunction seem to be undertreated with
ACE inhibitors or ARBs (145).

With respect to aldosterone blockade, drugs such as spi-
ronolactone have been widely used for severe HF patients with
evidence of beneficial effects on morbidity and mortality (146).
Concerns have been raised, however, about the use of aldoste-
rone blockade, particularly in conjunction with angiotensin
blockade, since after publication of RALES (Randomized
Aldactone Evaluation Study) (146), prescriptions for spirono-
lactone and rates of hospitalizations and mortality related to
hyperkalemia increased sharply (147). Proper patient selection,
including patients with diminished LV ejection fraction and
excluding ones with moderate CKD (creatinine level %2.5
mg/dl) or hyperkalemia !5 mmol/l, would help minimize
potential life-threatening hyperkalemia (140).
CRS type 5 (secondary CRS). Type 5 CRS is character-
ized by the presence of combined cardiac and renal dysfunc-
tion due to acute or chronic systemic disorders (Fig. 5).
There is limited systematic information on type 5 CRS,
although there is an appreciation that as more organs fail
in this setting, mortality increases. There is limited
insight into how combined renal and cardiovascular
failure may differentially affect such an outcome com-

Organ 
damage/dysfunction

Sympathetic 
system activation

Neurohormonal stress
inflammation

Hemodynamic changes
Hypoperfusion

Perfusion pressure
RVR

Ischemia/reperfusion

Hypoxia
Oxidative stress

Toxemia

Exogenous toxins
Heme proteins, antibiotics

Contrast media

LPS/endotoxin
Monocyte activation

Cytokines

Heart 
failure

Renal 
insufficiency

Systemic diseases
Diabetes
Amyloidosis
Vasculitis
Sepsis

Figure 5 CRS Type 5

Pathophysiological interactions between heart and kidney in type 5 cardiorenal syndrome (CRS) or “secondary CRS”
(systemic condition, e.g., diabetes mellitus, sepsis, causing both cardiac and renal dysfunction). LPS " lipopolysaccharide (endotoxin); RVR " renal vascular resistance.
Figure illustration by Rob Flewell.
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pared to, for example, combined pulmonary and renal
failure. Nonetheless, it is clear that several acute and
chronic diseases can affect both organs simultaneously
and that the disease induced in one can affect the other
and vice versa. Examples include sepsis, diabetes, amy-
loidosis, systemic lupus erythematosus, and sarcoidosis.
Several chronic conditions such as diabetes and hyper-
tension may contribute to type 2 and 4 CRS.

In the acute setting, severe sepsis represents the most
common and serious condition which can affect both organs. It
can induce AKI while leading to profound myocardial depres-
sion. The mechanisms responsible for such changes are poorly
understood but may involve the effect of TNF and other
mediators on both organs (148,149). The onset of myocardial
functional depression and a state of inadequate cardiac output
can further decrease renal function as discussed in type 1 CRS,
and the development of AKI can affect cardiac function as
described in type 3 CRS. Renal ischemia may then induce
further myocardial injury (9) in a vicious cycle, which is
injurious to both organs. Treatment is directed at the prompt
identification, eradication, and treatment of the source of
infection while supporting organ function with invasively
guided fluid resuscitation in addition to inotropic and vaso-
pressor drug support.

In this setting, all the principles discussed for type 1 and 3
CRS apply. In these septic patients, preliminary data derived
from the use of more intensive renal replacement technology
suggest that blood purification may have a role in improving
myocardial performance while providing optimal small solute
clearance (150). Despite the emergence of consensus defini-
tions (151) and many studies (152,153), no therapies have yet
emerged to prevent or attenuate AKI in critically ill patients.
However, evidence of the injurious effects of pentastarch fluid
resuscitation in septic AKI recently has emerged (154). Such
therapy should, therefore, be avoided in septic patients.

Conclusions

In both chronic and acute situations, an appreciation of the
interaction between heart and kidney during dysfunction of
each or both organs has practical clinical implications. The
depth of knowledge and complexity of care necessary to offer
best therapy to these patients demands a multidisciplinary
approach, combining the expertise of cardiology, nephrology,
and critical care. In addition, achievement of a consensus
definition for each type of cardiorenal syndrome will allow
physicians to describe treatments and interventions that are
focused and pathophysiologically sound. It will also help to
conduct and compare epidemiological studies in different
countries and more easily identify aspects of each syndrome.
This is a priority for improvement and further research.
Randomized controlled trials can then be designed to target
interventions aimed at decreasing morbidity and mortality in
these increasingly common conditions. Developing awareness,
the ability to identify and define, and physiological understand-
ing will help improve the outcome of these complex patients.
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