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Cardioprotection: chances and challenges of its translation 
to the clinic
Gerd Heusch

Myocardial infarct size is a major determinant of prognosis. Ischaemic preconditioning with brief coronary occlusion 
and reperfusion before a sustained period of coronary occlusion with reperfusion delays infarct development. 
Ischaemic postconditioning uses repetitive brief coronary occlusion during early reperfusion of myocardial infarction 
and reduces infarct size. Remote ischaemic preconditioning uses brief ischaemia and reperfusion of a distant organ 
to protect the myocardium. These conditioning protocols recruit a complex signal cascade of sarcolemmal receptor 
activation, intracellular enzyme activation, and ultimately mitochondrial stabilisation and inhibition of death 
signalling. Conditioning protocols have been successfully used in patients undergoing elective coronary 
revascularisation and reperfusion after acute myocardial infarction. Pharmacological recruitment of cardioprotective 
signalling has also been used to reduce infarct size, but so far without prognostic benefi t. Outcomes of cardioprotection 
are aff ected by age, sex, comorbidities, and drugs, but also by technical issues related to determination of infarct size 
and revascularisation procedure.

Introduction
Cardioprotection is a broad term that refers to all strat-
egies aimed at the attenuation of injurious results of 
myocardial ischaemia and reperfusion. Such injury 
consists of arrhythmias, impairment of cardiac con-
tractile function and coronary blood fl ow, and myo cardial 
infarction. Whereas arrhythmias and impairment of 
contractile function and coronary blood fl ow can be 
either reversible or irreversible, myocardial infarction is 
irreversible. As a binary event (dead or alive), myocardial 
infarction is the most robust endpoint of all studies into 
cardioprotection. Cardioprotection is achieved through 
recruitment of endogenous mechanisms that are acti-
vated by physical interventions or chemical substances. 
It attenuates all injurious results of myocardial ischaemia 
and reperfusion, albeit to diff erent extents. In this 
Review, I focus on the reduction of myocardial infarct 
size. Infarct size is not only an unambiguous endpoint 
of studies into cardioprotection, but also a major deter-
minant of prognosis.1

Infarct size and its determinants
Infarct size can be accurately measured in experimental 
settings; the gold standard is triphenyltetrazolium 
chloride staining. The major determinant of infarct size 
is the area of myocardial ischaemia—ie, the size of the 
perfusion territory of the coronary artery distal to the 
site of its occlusion. In most studies, infarct size is 
therefore normalised to this area at risk. The area is 
delineated either by microspheres, which demarcate 
the hypo perfused myocardium during ischaemia, or by 
post-mortem reocclusion of the culprit coronary artery 
with systemic dye injection, which stains all non-
risk myocardium.

The second major determinant of infarct size is the 
duration of ischaemia to which the area at risk is 
subjected. A period exists during which even complete 
coronary occlusion induces only reversible injury; this is 
about 30–40 min in large mammals but is shorter in 

small rodents with high heart rates. Infarction begins in 
the inner myocardial layers of the core of the area at risk 
and then spreads in a wavefront laterally and trans-
murally. This pattern of infarct development is true of 
large mammals, but somewhat diff erent in mice, in 
which the left ventricular free wall is so thin that inner 
layers are served by diff usion and infarction is mostly 
midmyocardial or subepicardial.

The third major determinant of infarct size is the 
amount of residual blood fl ow in the area at risk—ie, 
collateral blood fl ow. Systemic haemodynamics, notably 
heart rate, are only minor determinants of infarct size, 
and whether they act through their eff ect on myocardial 
oxygen demand or on coronary or collateral blood fl ow 
is unclear.2

The temporal and spatial development of infarction 
depends on the interaction of these determinants and is 
species-dependent: in small rodent hearts with low 
collateral blood fl ow, full infarct size is reached within 
30–60 min. In large mammals with complete coronary 
occlusion and little collateral blood fl ow, infarction 
begins after 30–40 min and develops over several hours. 
Infarct development is slower in dogs than in pigs, which 
have less collateralisation. At some residual blood fl ow, 
perfusion-contraction matching (hibernation) can be 
maintained for up to 12 h in pigs without infarction.3 
Since the onset of coronary occlusion in people is rarely 
observable, few and somewhat unreliable data exist for 
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Search strategy and selection criteria

I identifi ed references from Medline, Current Contents, and 
PubMed using the search terms “cardioprotection”, “human”, 
“infarct size”, “ischemic preconditioning”, “ischemic 
postconditioning”, “patient”, and “remote preconditioning”. 
I included those reports published up to April, 2012 in 
English, or with an abstract in English, that provided data for 
infarct size in human beings.
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infarct development in human beings. The timing of 
infarct development during ischaemia in people seems 
to be between that in dogs and that in pigs, although 
salvageable myocardium in human hearts exists for 
more than 12 h.4

Reperfusion injury and gentle reperfusion
In 1972, John Ross Jr and his collaborators fi rst reported 
reduced infarct size by reperfusion after 3 h coronary 
occlusion in dogs.5 In the same year, calcium overload 
during reperfusion of irreversibly injured ischaemic 
myocardium6 and the contribution of glucose to the 
maintenance of myocardial integrity and the potential for 
recovery during reperfusion7 were reported. Sub-
sequently, cardioplegic solutions were developed to 
attenuate myocardial injury during surgical coronary 
revascularisation, and several drugs and interventions 
were reported to reduce infarct size in experiments.

Reduction of infarct size by reperfusion in patients 
with acute myocardial infarction, initially by thrombolysis 
and subsequently by primary percutaneous coronary 
intervention, was quickly translated to clinical practice, 
and results of large studies, such as the GISSI8 and ISIS9 
trials, lent support to the strategy. However, reperfusion 
can also induce injury.10 Aside from arrhythmias and 
reversible contractile dysfunction (stunning), reperfusion 
initiates a microvascular no-refl ow11 and contributes to 
ultimate infarct size.12,13 Several interrelated mechanisms 
contrib ute to reperfusion injury, including excess 
formation of reactive oxygen species, intracellular 
calcium overload, mitochondrial dysfunction, activation 
of intracellular proteolysis, and uncoordinated excess 
contractile activity.13,14 Ultimate proof of the existence of 
the long-debated lethal reperfusion injury was derived 
from its attenuation by modifi ed reperfusion. Gentle 
reperfusion by slow restoration of coronary blood fl ow or 
perfusion pressure in the fi rst 20–30 min of reperfusion 
after myocardial ischaemia reduced infarct size.12 Notably, 
for full cardioprotection to be realised, some form of 
reperfusion after the sustained index ischaemia is 
necessary, which supports the notion that cardio-
protection might mainly attenuate those mechanisms 
that cause reperfusion injury.15

Types of conditioning
Ischaemic preconditioning
Ischaemic preconditioning refers to protection not by 
cardioplegia or a surgical technique, but by brief epi-
sodes of ischaemia and reperfusion. Preconditioning has 
become the archetype of cardioprotection, since it is 
most consistent and the magnitude of protection 
achieved is larger than that from any other intervention 
or drug. Its discovery in 1986 was a case of serendipity. 
When analysing the cumulative eff ects of several brief 
coronary occlusions with reperfusion compared with 
those of a sustained coronary occlusion of the same total 
duration on ATP depletion and necrosis in dogs, Murry 

and colleagues16 showed that four cycles of 5 min 
coronary occlusion and 5 min reperfusion, before a 
sustained coronary occlusion for 40 min followed by 
4 days reperfusion, substantially reduced infarct size; 
protection was independent of collateral blood fl ow. 
However, when coronary occlusion was of 3 h duration, 
ischaemic preconditioning did not reduce infarct size, 
such that irreversible injury was delayed rather than 
ultimately reduced by ischaemic preconditioning. This 
acute form of preconditioning has been reported in all 
species studied so far, including human beings, with 
various endpoints—notably infarct size reduction—and 
with several preconditioning algorithms.

Several forms of ischaemic preconditioning exist, 
diff erentiated with respect to the interval between the 
preconditioning cycle or cycles and the sustained index 
ischaemia from which protection is sought. For the 
classic form of acute ischaemic preconditioning, the 
interval between preconditioning and the sustained 
index ischaemia should not exceed 2 h. There is a second 
(delayed) window of protection at 24–72 h after the 
preconditioning cycle or cycles, which provides more 
sustained, but less powerful, protection from infarc-
tion.17,18 A third window of protection has been observed 
6 h after coronary microembolisation.19 The mechanisms 
that underlie the acute and delayed forms of precondi-
tioning are diff erent: whereas acute preconditioning 
relies on the activation of existing signalling molecules, 
the delayed forms are associated with the increased 
expression of signalling molecules.

Ischaemic postconditioning
With the background of protection by modifi ed reper-
fusion and ischaemic preconditioning, Vinten-Johansen 
and colleagues20 fi rst advanced the idea of protection by 
ischaemic postconditioning: in anaesthetised dogs, they 
used a protocol of three cycles of 30 s reocclusion and 
30 s reperfusion, immediately at the onset of reperfusion 
after 60 min complete coronary occlusion. Diff erent 
from ischaemic preconditioning, which delays the devel-
opment of infarction, postconditioning actually reduces 
reperfusion injury (fi gure 1).21 Various preparations and 
algorithms have been used; although no optimum 
protocol has been defi ned, the postconditioning inter-
vention must be done during the fi rst few minutes of 
reperfusion.

Remote ischaemic preconditioning
Both ischaemic preconditioning and postconditioning 
involve manipulation of the culprit coronary lesion that 
will initiate or has initiated acute myocardial infarction, 
and as such they carry the risk of coronary microem-
bolisation, with additional microvascular and myocardial 
injury.22 Remote ischaemic preconditioning is therefore 
especially attractive. In Przyklenk and colleagues’23 
original study, four cycles of 5 min ischaemia and 5 min 
reperfusion in the left circumfl ex coronary artery 
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perfusion territory reduced infarct size when it preceded 
60 min ischaemia with reperfusion in the left anterior 
descending coronary artery perfusion territory. Such 
protection-at-distance was subsequently extended from 
cardiac to non-cardiac tissue, and reduction of infarct 
size has been elicited from several organs, including 
brain, kidney, intestine, skin, and skeletal muscle. The 
mechanism of transfer of the cardioprotective signal 
from the distant organ is unclear: some investigators 
have suggested a neuronal transmission because pro-
tection is eliminated by ganglionic blockade with hexa-
methonium, whereas others have suggested a humoral 
transmission, because hexamethonium fails to abrogate 

protection, or because the signal can be trans ferred by 
blood from one individual to another.24 Protection from 
remote preconditioning seems to be as strong as that 
from postconditioning, but an optimum organ and 
protocol have not been defi ned.24

Signal transduction
An abundance of cardioprotective signalling events have 
been identifi ed in diff erent species and in diff erent 
preparations, ranging from isolated subcellular elements 
(eg, mitochondria) and cells over saline-perfused hearts 
to in-vivo experiments. Because of the diff erent proto-
cols of preconditioning and postconditioning, endpoints 

Figure 1: Eff ects of ischaemic postconditioning
As shown by triphenyltetrazolium staining (A), infarct size was smaller after ischaemic postconditioning (top) than after immediate full reperfusion (bottom). 
Averaged data of infarct size in perecentage of area at risk (B) support this fi nding. Inhibition of signal transducer and activator of transcription 3 (STAT3) activation 
by AG490 abrogated infarct size reduction (C). Western blot (D) from isolated cardiomyocyte mitochondria revealed increased tyrosine-705 phosphorylation of 
STAT3 (pSTAT3 vs STAT3) after ischaemic postconditioning (E). Electron microscopy of mitochondria isolated from the postconditioned myocardium (F). 
ADP-stimulated complex I respiration was greater after postconditioning than after immediate full reperfusion (G). This fi gure is modifi ed from reference 21, by 
permission of the American Heart Association. Error bars show standard error. 
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of protection, and methods to assess signalling (eg, 
biochemical measurements of signalling molecules, 
western blots of protein expression and post-translational 
modifi cation through phosphorylation, oxidation, or 
nitrosylation, and the use of pharmacological antag-
onists) little of the data are directly comparable, and 
apparent contradictions might arise from diff erent 
experimental approaches. Despite all these caveats, a 
consensus pattern of cardioprotective signalling has 
emerged.25 There are three hierarchical levels of signal 
transduction: triggers, an intracellular mediator cascade, 
and eff ectors. Triggers are molecules such as adenosine, 
bradykinin, or opioids that are formed and released from 
various cell types (cardiomyocyte, endothelium, neuron, 
leucocyte) during ischaemia, and act on sarcolemmal 
membrane receptors. Sarcolemmal receptor activation 
initiates an intracellular cascade of enzyme, mostly 
protein kinase, activation that ultimately acts on the 
eff ectors—sub cellular elements, such as mitochondria 
or cytoskeleton, that stabilise the jeopardised cardio-
myocyte and prevent it from undergoing cell death.

Conceptually organised in these three hierarchical 
levels, there are three parallel signalling pathways: one 
that is activated by G-protein-coupled or natriuretic-
peptide receptors and centred on nitric oxide, nitric oxide 
synthase, cyclic guanosine monophosphate, and protein 
kinase G; the reperfusion injury salvage kinase pathway, 
which is activated by G-protein-coupled and growth factor 
receptors and includes protein kinase B, extracellular 
regulated kinase, p70 ribosomal S6 kinase, and glycogen 
synthase kinase 3β;26 and the survival activating factor 
enhancement pathway,27 which is activated by tumour 
necrosis factor α and other gp130 receptor ligands, and 
includes the Janus kinase-signal transducer and activator 
of transcription (STAT) system, notably mitochondrial 
STAT3 (fi gure 1).21 Physical stimuli, such as temperature 
or stretching, and inorganic molecules, such as reactive 
oxygen or nitrogen species, also converge into these 
signalling pathways, insofar as they induce the synthesis 
of proteins (heat shock proteins), activate channels 
(stretching), or modify proteins (reactive species).

This conceptual framework of three hierarchical levels 
and three parallel pathways should not be taken for a 
biological reality. Very few studies have analysed the 
hierarchical order of signalling steps, and we know very 
little about the temporal and spatial organisation of the 
cardioprotective signalling system. Notably, the identity 
of the signal that distinguishes virgin from precon-
ditioned hearts before they undergo sustained index 
ischaemia and reperfusion is unclear. Obviously, only 
after postconditioning was recognised was it understood 
that the cardioprotective signalling scheme at large is the 
same for ischaemic preconditioning and postcondi-
tioning, although detailed comparisons are absent. Nitric 
oxide, protein kinase activation, and mitochondria seem 
to be indispensable elements in all forms and signal 
pathways of cardioprotection.25

The consensus is that immediate reperfusion is the 
crucial phase for protection by ischaemic precon ditioning 
and postconditioning.15 During this phase the kinases of 
the reperfusion injury salvage kinase pathway and the 
survival activating factor enhancement pathway are both 
activated.21 As well as activation of prosurvival-signalling 
protein kinases, the maintenance of acidosis during early 
reperfusion seems to be essential for protection by 
ischaemic postconditioning.28 Acidosis keeps the mito-
chondrial permeability transition pore closed29 and 
inhibits excessive activation of the contractile machinery.14

Mitochondria are crucial signalling elements and 
potential eff ectors. The mitochondrial respiratory chain 
(fi gure 1) generates not only ATP, but also reactive oxygen 
species, which can either serve a signalling function in 
small amounts, or be detrimental in excessive amounts. 
The protein kinase activation cascades all converge on 
the mitochondria.25 Phosphorylation and thus inhibition 
of mitochondrial glycogen synthase kinase 3β seems to 
be an important integration point and is in close 
interaction with mitochondrial connexin 43 and ATP-
dependent potassium channels, which cooperate to 
release small amounts of reactive oxygen species. An 
especially important element in cardio protection is the 
inhibition of the mitochondrial permeability pore.29 This 
is a large-conductance channel that opens in response to 
high concentrations of calcium, inorganic phosphate, 
and reactive oxygen or nitrogen species, or at reduced 
inner-membrane potential—all conditions that prevail 
during myocardial ischaemia and reperfusion. Pore 
opening further reduces inner-membrane potential and 
induces matrix swelling and outer-membrane rupture, 
with subsequent release of proteins, including cyto-
chrome C, into the cytosol and activation of caspases that 
then cause cellular digestion, fragmentation, and death. 
Hausenloy and colleagues30 fi rst proposed inhibition of 
mitochondrial permeability transition pore opening as 
the eff ector of ischaemic preconditioning, and Argaud 
and colleagues31 proposed the same mechanism as the 
eff ector of ischaemic postconditioning.

Other potential eff ectors of cardioprotection are 
inactivation of proteases (and thus improved membrane 
and cytoskeletal stability) and attenuation of calcium 
overload, the result of which is uncoordinated excess 
contractile activation during early reperfusion, which 
tends to disrupt membrane integrity.14 These potential 
eff ectors of cardioprotection are not mutually exclusive, 
but potentially synergistic.

Delayed forms of preconditioning rely not only on 
recruitment of acutely available signalling molecules 
but also on increased expression of protective proteins. 
Bolli18 has shown that nitric oxide derived from endo-
thelial nitric oxide synthase during preconditioning 
cycles induces increased expression of inducible nitric 
oxide synthase, cyclo-oxygenase 2, aldose reductase, 
and superoxide dismutase, which contribute to anti-
oxidant defence.18 Upregulation of tumour necrosis 
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factor α is implicated in the delayed protection after 
coronary microembolisation.19

Overall, we have a lot of information about cardio-
protective signalling, but an incomplete understanding of 
its temporal and spatial organisation. Elimination of one 
signalling step can abrogate protection, which suggests 
both a close interaction between signalling modules and 
their operation near threshold. We know less still about 
cardioprotective signalling in human hearts specifi cally. 
Aside from studies that used surrogate protocols, such as 
arm ischaemia, and surrogate endpoints, such as fl ow-
mediated vasodilation, there is so far only one study into 
cardioprotective signalling in human beings,32 in which 
STAT5 activation was identifi ed in the left ventricular 
myocardium at early reperfusion after cardioplegic 
ischaemic arrest, in response to remote preconditioning 
by three cycles of arm ischaemia and reperfusion. The role 
of STAT5 in cardioprotection needs to be further explored.

Cardioprotection in people
Ischaemic preconditioning
Since spontaneous myocardial infarction is unpredictable 
in human beings, a preconditioning manoeuvre can only 
be used during elective interventions—ie, surgery involv-
ing ischaemic cardiac arrest (mostly coronary artery 
bypass grafting) or percutaneous coronary interventions, 
which are usually not associated with myocardial infarc-
tion. Most studies33–48 in surgical settings suggest pro-
tection (shown by reduced release of biomarkers), but 
the sample sizes in these studies are small, so false-
negative results (type II errors) cannot be excluded 
(fi gure 2; appendix pp 1–2).33–96

Studies of ischaemic preconditioning in percutaneous 
coronary intervention have used repetitive brief coronary 
occlusions—ie, the fi rst to precondition and any sub-
sequent as index ischaemia with reperfusion. In one 
study97 the frequency of periprocedural creatine kinase 
elevation was reduced, but most studies have used only 
surrogate markers, such as reduced ST-segment elevation 
during the index ischaemia, reduced pain, and contractile 
dysfunction. However, the use of reduced ST-segment 
elevation as a surrogate of protection is dubious, because 
it can be dissociated from reduction of infarct size. 
Pharmacological antagonist approaches revealed the 
involvement of adenosine, bradykinin, and opioids, and 
the activation of α-adrenoceptors and ATP-dependent 
potassium channels in protection. Additionally, a delayed 
form of protection against the changes associated with 
coronary occlusion can be induced with nitroglycerine.98

Some evidence for ischaemic preconditioning comes 
also from studies into preinfarction angina preceding 
acute myocardial infarction. Reduced infarct size 
(measured by creatine kinase release or imaging), 
improved functional recovery, and ultimately improved 
prognosis have been used to show protection in some 
studies. However, other researchers have reported no 
improvement in creatine kinase release or prognosis. In 

studies of preinfarction angina, protection by collateral 
recruitment cannot be distinguished from that by 
preconditioning. Whether preinfarction angina might 
only aff ord protection by allowing improved reperfusion 
is unclear. Finally, if there is preinfarction angina-related 
preconditioning, whether it is the acute or delayed form 
is uncertain.98,99 

Ischaemic postconditioning
By contrast with ischaemic preconditioning, ischaemic 
postconditioning follows acute myocardial infarction and 
can therefore be used during primary percutaneous 
coronary interventions in a controlled way. After the 
landmark study by Staat and colleagues,49 most, but not 
all, relevant studies that used biomarkers or imaging 
have reported protection by ischaemic postconditioning 
(fi gure 2; appendix p 3).49–60 Again, sample sizes in these 
studies were small, so type II errors might account for 
the negative results.

Remote ischaemic preconditioning
Remote ischaemic preconditioning protocols use arm or 
leg ischaemia and reperfusion rather than coronary 
manipulation. After initial studies with forearm endo-
thelium-dependent vasomotion as endpoint,100 remote 
preconditioning was used in cardiac surgery and then in 
elective interventions that involve myocardial ischaemia 
and reperfusion, such as coronary artery bypass grafting 
and percutaneous coronary interventions,32,61–67,69–84 and, in 
one study,68 in patients with reperfused acute myocardial 
infarction (fi gure 2; appendix pp 4–5). Most, but not all, 
available studies that used biomarkers, imaging, or both, 
reported protection. Again, sample sizes in these studies 
were small, so type II errors could account for the 
negative results.

Pharmacological recruitment of cardioprotective 
signalling
Several studies have investigated the activation of 
single signalling steps of cardioprotective conditioning 
(fi gure 2; appendix pp 6–7).85–96 Adenosine neither 
reduced infarct size nor improved prognosis.85–88 Main-
tenance of acidosis by inhibition of sodium–proton 
exchange reduced infarct size but did not aff ect prognosis 
in the GUARDIAN trial.89 In the EXPEDITION study,90 
infarct size and the composite incidences of myocardial 
infarction and death were reduced, but mortality and 
incidence of stroke were increased. In the J-WIND trial,91 
atrial natriuretic peptide reduced infarct size, but 
activation of ATP-dependent potassium channels by 
nicorandil did not. Erythropoietin did not reduce infarct 
size.94,95 In animals, activation of the protein kinase C-ε 
isoform is associated with its translocation to the 
mitochondria, whereas activation of the protein kinase 
C-δ isoform is detrimental. Inhibition of protein kinase 
C-δ reduced infarct size in a small safety study in 
patients,92 but benefi t was not shown in the larger 

See Online for appendix
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Figure 2: Clinical studies into 
cardioprotection
Clinical studies into ischaemic 
preconditioning (A), ischaemic 
postconditioning (B), remote 
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and pharmacological 
recruitment of 
cardioprotective signalling (D). 
Error bars represent standard 
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with raised CK-MB (no data on 
mean reduction of CK-MB are 
given). Full details of all studies 
are provided in the appendix. 
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kinase-muscle-brain 
isoenzyme. TnT=troponin T. 
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PROTECTION AMI trial.93 Inhibition of the mito-
chondrial permeability pore with ciclosporin A reduced 
infarct size,96 but patient outcome data are not yet 
available. Overall, the results with pharmacological 
recruit ment of cardioprotection signalling are dis-
appointing. Although reduced infarct size was seen in 
some studies, no prognostic benefi t has been shown.

Endpoints
The nature of periprocedural myocardial injury during 
percutaneous coronary interventions or coronary artery 
bypass grafting (as shown by increased biomarkers, such 
as creatine kinase or troponin) is not wholly clear. 
However, interventional trauma, coronary microembol-
isation without subsequent reperfusion,22 and myocardial 
ischaemia and reperfusion all contribute.

Imaging techniques, such as thallium or sestamibi 
single-photon emission CT and gadolinium contrast-
enhanced MRI, provide reliable data for infarct size in 
human beings. Since the area at risk is the primary 
determinant of infarct size, infarct size is normalised to 
area at risk. Bøtker and colleagues68 used single-photon 
emission CT to measure ischaemic blood fl ow and area at 
risk before reperfusion of acute myocardial infarction, 
but in many other instances this has not been feasible 
for logistical reasons. Therefore, size of dysfunctional 
myocardial zone (ventriculography) or anatomy of coro-
nary perfusion territory (coronary angiography), both 
before reperfusion, are often used to estimate the area at 
risk. More recently, MRI has also been used to assess the 
area at risk from the size of tissue oedema, as shown in 
T2-weighted images, even after established reperfusion. 
However, MRI-derived quantitation of infarct size as a 
proportion of the area at risk or, reciprocally, the salvage 
index (ratio of salvaged myocardium to area at risk) have 
been criticised for technical reasons, but more importantly 
because cardioprotection also reduces tissue oedema, and 
therefore this method artifi cially underestimates the 
degree of protection.101

Confounders
In the laboratory, cardioprotection is investigated in 
young and healthy hearts. However, both myocardial 
tolerance to injury from ischaemia and reperfusion and 
cardioprotection are confounded by age, sex, comorbid-
ities, and drugs—all of which are relevant in patients 
who need cardioprotection. The degree of cardiopro-
tection is reduced with increased age, notably through 
reduced expression of important signalling proteins.102 
Women are generally better protected than men from 
myocardial ischaemia and reperfusion, largely because 
of oestrogen.103 Hypertension, left ventricular hyper-
trophy, hypercholesterolaemia, and diabetes all impair 
cardioprotection and its signalling. Several drugs that 
are common in patients with coronary artery disease 
also impair cardioprotection. Although statins are 
protective, chronic use disrupts cardioprotection.104 

Sulpho nylurea antidiabetic drugs disrupt cardio pro-
tection through inhibition of ATP-dependent potas sium 
chan nels, although the clinical eff ect of such disruption 
is ambiguous.105

Coronary intervention itself also disrupts cardio-
protection, insofar as a residual stenosis might induce 
gentle reperfusion and thus protection, and further 
manipulation of the culprit lesion (eg, with a post-
conditioning manoeuvre) might induce coronary micro-
embolisation and additional damage. Direct stenting can 
be used to avoid coronary microembolisation,106 and the 
use or not of direct stenting might account for some 
discrepancies between studies into ischaemic postcon-
ditioning. The choice of anaesthesia is a confounder 
in surgical settings. Fentanyl, propofol, and volatile 
anaesthetics all induce protection in themselves, but 
propofol specifi cally disrupts protection by remote 
ischaemic preconditioning,79 and use of propofol seems 
to be a common denominator in several studies with 
negative results.

A major confounder—not for individual patients but 
for clinical studies into cardioprotection—is that many 
drugs induce protection in themselves—eg, β blockers, 
angiotensin-converting enzyme inhibitors and angio-
tensin II receptor antagonists, statins, and antiplatelet 
drugs. In fact, during the past decade the outcome of 
clinical trials in acute myocardial infarction has 
constantly and sizeably improved, such that it has 
become increasingly diffi  cult to identify a new cardio-
protective strategy as better than contemporary state-of-
the-art therapy.93 However, notwithstanding all these 
confounders (although they should certainly be con-
sidered), cardioprotection can be achieved in patients 
with typical comorbidities and drugs.

Discussion and conclusions
Despite improvements in prevention and therapy, acute 
myocardial infarction remains a major cause of 
disabling morbidity and death in developed countries, 
and its incidence is rising in developing countries. As 
such, there is undisputed need for improved cardio-
protection. All conditioning strategies seem to attenuate 
reperfusion injury; whereas ischaemic preconditioning 
delays infarct development, ischaemic postconditioning 
actually de creases infarct size. Preconditioning is not 
clinically feasible and therefore probably most impor-
tant only as an experimental archetype of cardio-
protection. Post conditioning is feasible and reduces 
infarct size, but involves further manipulation of the 
culprit lesion, and studies into patient outcomes are 
absent. Intracoronary delivery of cell therapy might be 
able to repair infarcted myocardium, but studies have 
not been adequately controlled for the use of con-
ditioning protocols with a reference group.107 Remote 
ischaemic preconditioning is the most attractive 
method of inducing cardioprotection, as it is both safe 
and easily feasible.
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Studies that have recruited single signalling steps 
for pharmacological cardioprotection have been mostly 
disappointing. As well as the diffi  culties in showing 
superiority compared with contemporary state-of-the-art 
treatments, part of the failure of this approach could be 
because researchers have attempted to target only single, 
fairly upstream, signalling steps in largely interactive 
pathways. This view is lent support by the fact that the 
most promising study into the use of ciclosporin A96 
targeted a far-downstream signalling step, at which point 
most of the pathways are believed to converge. Clearly we 
must develop an improved understanding of cardio-
protective signalling, particularly in human hearts, to 
progress with this approach.

No large study of a cardioprotective intervention has 
shown improved outcomes in patients. A quantitative 
estimate revealed that only patients with an infarct size 
of more than 20% of the left ventricle and with an infarct-
size reduction from 75% or more to less than 40% of the 
area at risk will have a prognostic benefi t.108 The ERICCA 
trial109 on remote ischaemic preconditioning, and the 
CIRCUS trial (NCT01502774) on ciclosporin A at 
reperfusion, are underway to address this issue. From 
existing data, we know that the amount of myocardium 
that can be rescued from infarction by cardioprotection is 
larger than that which can be replaced by contemporary 
cell therapy or tissue engineering. However, cardio-
protection and repair strategies are not in competition, 
but are potentially complementary.
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