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Introduction
The defining feature of chronic obstructive pulmonary
disease (COPD) is irreversible airflow limitation
measured during forced expiration,1,2 caused by either
an increase in the resistance of the small conducting
airways,3,4,5 an increase in lung compliance due to
emphysematous lung destruction,6 or both. The units
for airway resistance are cm H2O/L per s and for
compliance are L/cm H2O, and their product (time),
provides the time constant for lung emptying.7 This
constant is reflected in measurements of the volume of
air that can be expired in one second (FEV1) and its ratio
to forced vital capacity (FEV1/FVC), which are reliable
screening tools because they are affected by both airway
obstruction and emphysema.

Figure 1 reproduces classic data from Fletcher and
colleagues8 showing the different rates of decline in
FEV1 with age for non-smokers and smokers who either
do or do not develop COPD. The horizontal lines have
been added to show the boundaries of COPD severity
recommended by a global initiative on obstructive lung
disease (GOLD).1,2 Fletcher and colleagues8 showed that
the rate of decline in FEV1 of most people who smoke is
similar to that for non-smokers, in that they remain in
the GOLD 0 and 1 category with greater than 80%
predicted FEV1. These investigators also showed that in
a susceptible minority of tobacco smokers (estimated at
15–20% of the total), lung function declines rapidly to
levels consistent with moderate (GOLD 2), severe
(GOLD 3), and very severe (GOLD 4) COPD. Their data
also showed that stopping smoking had a beneficial
effect at any age. Findings based on post mortem
examination,9,10 resected lung specimens,11,12 biopsies,13

induced sputum,13,14 and bronchoalveolar lavage,13,15 all
indicate that the lung inflammation is present in
everyone with a tobacco smoking habit. The reason why
only a minority of smokers experiences an excessive
decline in FEV1 is unknown, but preliminary evidence
suggests that the lung inflammatory response is
amplified in the susceptible group.12,16 The purpose of
this review is to discuss the nature of the lesions
associated with airflow limitation in terms of the host
defence of the lung. 

Host defence of the lung 
The cause of COPD is attributed to the total burden of
toxic gases and particles that individuals inhale during
their lifetime.1,2 Although atmospheric pollution
contributes to this burden, the smoking of tobacco
products is the major risk factor.1,2,17 The host defence
system against this type of insult is provided by the
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Summary
The airflow limitation that defines chronic obstructive pulmonary disease (COPD) is the result of a prolonged time

constant for lung emptying, caused by increased resistance of the small conducting airways and increased

compliance of the lung as a result of emphysematous destruction. These lesions are associated with a chronic

innate and adaptive inflammatory immune response of the host to a lifetime exposure to inhaled toxic gases and

particles. Processes contributing to obstruction in the small conducting airways include disruption of the epithelial

barrier, interference with mucociliary clearance apparatus that results in accumulation of inflammatory mucous

exudates in the small airway lumen, infiltration of the airway walls by inflammatory cells, and deposition of

connective tissue in the airway wall. This remodelling and repair thickens the airway walls, reduces lumen calibre,

and restricts the normal increase in calibre produced by lung inflation. Emphysematous lung destruction is

associated with an infiltration of the same type of inflammatory cells found in the airways. The centrilobular

pattern of emphysematous destruction is most closely associated with cigarette smoking, and although it is initially

focused on respiratory bronchioles, separate lesions coalesce to destroy large volumes of lung tissue. The panacinar

pattern of emphysema is characterised by a more even involvement of the acinus and is associated with �1

antitrypsin deficiency. The technology needed to diagnose and quantitate the individual small airway and

emphysema phenotypes present in people with COPD is being developed, and should prove helpful in the

assessment of therapeutic interventions designed to modify the progress of either phenotype. 
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Figure 1: Rate of decline in FEV1 with age
Adapted from references 2 and 8. 
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innate and adaptive inflammatory and immune
response. 

Innate response
The innate defence system includes mucociliary
clearance of the airways, which works cooperatively with
the monocyte/macrophage system to move deposited
particles up the mucociliary escalator.18,19 Additionally,
tight junctions connecting lung epithelial cells provide a
physical barrier between the tissue and airspace. This

protective barrier is broken down by chronic exposure to
cigarette smoke,20–22 and this epithelial disruption initiates
an acute inflammatory response. The inflammatory cells
that migrate into the epithelium (figure 2A) are delivered
in subepithelial microvessels, and those found in the
outer wall of the airways are delivered in a second
microvascular bed located in the adventitia of the airway
wall (figure 2B). Proteins delivered to the site of
exudation23,24 and produced locally25–27 assist the migrating
phagocytes in taking up and destroying foreign particles.
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Figure 2: Anatomical features of the innate and adaptive inflammatory immune responses
(A) Migration of inflammatory cells in the epithelial layer (white arrows) and entry into the surface mucous layer of a guineapig after exposure to cigarette smoke. 
(B) Histology of bronchial microvasculature. One capillary bed lies between the epithelium and muscle (single arrow) and a second lies in the adventitial compartment
below outside the muscle (double arrow). These two capillary beds are joined by connecting vessels (arrow head) that pass between the muscle bundles. 
(C) Lymphoid follicle in BALT with a germinal centre (GC). The follicle is covered by a specialised epithelium containing M cells (between the arrows), which transport
antigens from the lumen into the subepithelial tissue. (D) Diagram of a regional lymph node, which differs from BALT in that it has afferent lymphatic vessels that
penetrate a capsule surrounding the node and an efferent lymphatic vessel that leaves at the hilum. The blood supply to the follicle forms a network around the outer
edge of the follicles in both lymph nodes and BALT. The vessels that form this network around the follicles located in BALT arise from the outer vascular plexus
shown in (B).
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The cells that participate in the innate response include
polymorphonuclear cells (PMNs), eosinophils,
macrophages, natural killer cells, and mast cells.
Uncommitted B cells and CD4 and CD8 lymphocytes can
also be mobilised during an innate response, but antigen
presentation and lymphocyte interaction are needed to
initiate the cellular and humoral components of the
adaptive immune response.28

Airways below the larynx are normally sterile but the
nasal passages and oropharynx are permanently
colonised by microbes.29 Aspiration from the upper
airway into the lower respiratory tract is common in
healthy people, especially during sleep, and brings large
numbers of microorganisms into the lung. The normal
host response is sufficient to remove these micro-
organisms and maintain sterility,29 but suppression of
this response by chronic cigarette smoke exposure allows
some of these microbes to invade the natural tissue
barriers and overcome the local host defence system to
produce infection.30

Adaptive response
The innate system can recognise antigens deposited on
the lung surface and react to them but it has a limited
memory of previous exposure.31 By contrast, the cellular
and humoral immune components of the adaptive
response have exquisite memory for both soluble and
particulate antigens that are aspirated or inhaled into the
lung.32–36 Antigens deposited on the epithelial surface of
the airways may either be transported across the intact
epithelium in specialised epithelial M cells located in the
surface epithelium covering bronchial associated
lymphatic tissue (BALT; figure 2C), or penetrate the
epithelium at the site of injury. Dendritic cells arranged
in a network at the base of the epithelium and in the
lamina propria beneath the basement membrane34–36 pick
up these antigens and transport them to the BALT (figure
2C) or to regional lymph nodes (figure 2D). BALT differs
from regional lymph nodes in that it does not have a
capsule or afferent lymphatics, and receives antigen
transported from the epithelial surface.

Antigen presentation links innate and adaptive
responses 
The lymphoid follicles in the BALT and regional lymph
nodes (figure 2C and D) greatly enhance the
opportunities for antigen presentation, which is the
critical link between the innate and adaptive response.
Lymphocytes migrate out of the blood at the venous end
of the microvasculature that supplies the follicle (figure
2D) by attaching to specialised high endothelial cells that
line the venules.37 The B cells leaving the blood
accumulate near the edge of the follicles and the T cells
accumulate in the parafollicular areas (figure 2D). This
accumulation allows the antigen-presenting cells
percolating through the regional lymph nodes and BALT
to present antigen to separate concentrations of T and B

lymphocytes.38,39 The T cells activated by an antigen
migrate out of the parafollicular areas to the edge of the
follicle, where their chance of meeting B cells that have
recognised the same antigen is improved several times
compared with the likelihood of doing so in peripheral
blood, where only one in 105 or 106 lymphocytes
recognises the same antigen. The signals delivered from
the CD4 T-helper lymphocytes to B cells that have been
activated by the same antigen initiate B-cell proliferation
at the edge of the follicle and migration into the germinal
centre where they begin to produce antibody.38,39 B cells
that produce high affinity antibody capable of binding
antigen presented by a separate set of follicular dendritic
cells survive to become either memory cells or antibody-
producing B cells. These cells re-enter the circulating
blood as the lymph drains into the central venous system
and home back to the site of injury. The IgM and IgG
antibodies manufactured by the plasma cells can
neutralise extracellular microbial toxins and initiate a
much more efficient process of opsonisation and
phagocytic killing than can be mounted by the innate
response. Th-2 subpopulations of CD4 T-helper cells
stimulate B-cells to manufacture greater amounts of IgE
by secreting interleukin 4, whereas transforming growth
factor (TGF) � and interleukin 5 stimulate another
population of B-cells to produce IgA.40–43 

The cell-mediated component of the adaptive host
response assists in the destruction of microbes taken up
and processed by alveolar macrophages during the innate
response. A Th-1 subpopulation of CD 4 T-helper
lymphocytes recognises an antigen complex displayed on
the surface of these macrophages and secretes interferon
� to activate the macrophages and destroy the particles
inside.28 A subpopulation of CD8 lymphocytes that also
recognises antigen expressed on macrophages assists in
this process by secreting additional interferon �. A
second component of the cell-mediated response
provides a different population of CD8-positive cytotoxic
lymphocytes, which recognise all nucleated cells infected
by intracellular pathogens and destroy them. This
destruction occurs in stages, including: a recognition
step, in which the cytotoxic CD8 lymphocyte uses its T
cell receptor to bind to antigen displayed on the target cell
surface; a second step, in which the molecule perforin
creates holes that connect the cytotoxic T-cell to the target
cell, and delivers granzyme into the cytoplasm; and a
third step, in which target cell caspases are activated by
granzyme to initiate the intracellular signals that result in
apoptosis of the target cell.28

Cytokine control of host response
Two important cytokines (tumour necrosis factor (TNF�
and interleukin 1�) initiate and orchestrate the innate
response and have a broad stimulating effect on the B
and T cells needed to develop an adaptive response.23,28,44

Experiments designed to overexpress these two cytokines
individually have shown that both induce a substantial
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local inflammatory reaction that disappears when
cytokine expression stops. But only interleukin 1�
overexpression stimulates the collagen deposition
associated with the repair process.45,46 Cytokines such as
TGF�, which have multiple roles—including antibody
isotype switching, immunosuppression, and the
initiation of connective tissue matrix production—are
important in the transition from the inflammatory
immune response to the repair process.47,48

The surface epithelial cells and migrating
inflammatory cells attracted to the site of injury are a
major source of the cytokines that initiate and control
the host response.49–55 When exposed to atmospheric
particles in vitro, macrophages increase their
production of TNF�, interleukin 1�, macrophage
inflammatory protein 1�, granulocyte-macrophage
colony-stimulating factor (GM-CSF), interleukin 6, and
interleukin 8;49,50 and bronchial epithelial cells increase
their production of interleukin 1� and leukaemia
inhibitory factor.51–53 Stimulation of bronchial
epithelial cells with conditioned media from
macrophages also indicates that interactions between
these two cell types enhance the production of GM-
CSF, interleukin 6, and possibly interleukin 8.54

Endothelial cells seem to regulate the degranulation of
PMN.55 

Some of the cytokines generated at the site of injury
in the lung have an endocrine function that stimulates

the hypothalamus to induce fever (TNF�, interleukin
1�), the liver to increase synthesis of acute-phase
proteins (TNF�, interleukin 1�) and the bone marrow
to increase production and release of leucocytes and
platelets (TNF�, GM-CSF, interleukin 6).23,24 The
production of interleukin 8 and macrophage inflam-
matory protein 1� is important to the recruitment of
both PMN and monocytes into sites of injured lung.
GM-CSF, a haemopoietic growth factor, has been
identified as an important degranulation factor that
enhances tissue damage induced by granulocytes. The
endocrine function generated during an acute
response is relevant to human disease in that heavy
exposure to toxic dust and fumes stimulates a rise in
body temperature56 and chronic cigarette smoking
increases the production of acute phase proteins in the
liver and stimulates the bone marrow to increase the
production and release of circulating leucocytes.57,58

Pathology of COPD
The lungs of people that smoke 1–2 packages of
cigarettes per day receive a cyclic exposure to toxic
gases and particles that is repeated 20 to 40 times every
day. Those with a 50 pack-year smoking history receive
this type of daily stimulus for 25–50 years. The cough
and sputum production that are the defining features
of chronic bronchitis are a manifestation of the innate
response to the toxic particles and gases in cigarette
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Figure 3: Key lesions in chronic bronchitis
(A) Histology of bronchus with epithelial lining that extends from lumen into gland duct and gland. (B) Enlarged glands from a patient with chronic bronchitis. 
(C) One of these gland at higher magnification showing inflammatory cells (arrow and arrowhead). Reproduced from reference 2 with permission.
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smoke. But the airflow limitation that defines COPD is
associated with lesions that obstruct the small
conducting airways,3–5 produce emphysematous
destruction of the lung’s elastic recoil force,6 or both. 

Chronic bronchitis 
The inflammation associated with chronic bronchitis is
located in the epithelium of the central airways (larger
than 4 mm in internal diameter) where it extends along
the gland ducts into the mucus-producing glands.59,60

This inflammatory process is associated with increased
production of mucus, defective mucociliary clearance,
and disruption of the epithelial barrier provided by the
innate host defence system.20–22 Inflammatory cells
from both the innate and adaptive host response
participate in this process.60–62 Reid63 noticed that the
bronchial mucous glands were enlarged in chronic
bronchitis (figure 3) and used the ratio of gland to
bronchial wall thickness (now referred to as the Reid

index) as a diagnostic yardstick for the pathological
diagnosis of chronic bronchitis. Thurlbeck and Angus64

reported that the Reid index was normally distributed
with no clear break between patients with and without
bronchitis, but most studies have shown a fairly small
overlap with higher values in patients with chronic
bronchitis.65,66 Chronic bronchitis is also associated
with thickening of the bronchial walls that is mainly
related to an increase in connective tissue deposition.65

Growth factors such as TGF� have been shown to be
present in the central airways,67 but the complexity of
their role in this remodelling is beyond the scope of
this review. 

The recognition that the normal bacterial sterility in
the lower airways is lost in the presence of chronic
bronchitis68 led to the hypothesis that there was a
natural progression from the simple mucus
hypersecretion associated with cigarette smoking to
purulent hypersecretion and obstructive bronchitis.69
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Figure 4: Small airway obstruction
(A) Normal small airway. (B) Small airway containing plug of mucus with relatively few cells, which could have been produced in the glands of the larger airways and
aspirated into the smaller airways. (C) Acutely inflamed airway with thickened wall in which the lumen is partly filled with an inflammatory exudate of mucus and
cells, which has probably been produced in the small airway. (D) Airway surrounded by connective tissue, which appears as if it might restrict normal enlargement of
the lumen and unfolding of the epithelial lining that occurs with lung inflation.
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But the longitudinal studies undertaken by Peto and
colleagues,70 and the Copenhagen group71 have shown
that the symptoms of chronic bronchitis do not predict
the subsequent rapid decline in FEV1 that leads to
COPD (figure 1). However, acute lower respiratory
tract infections in current smokers who already have
COPD might result in a more rapid fall in FEV1.72

Small airway obstruction
Although the terms chronic bronchitis and airway
obstruction are often used interchangeably, the major
site of obstruction is actually found in the smaller
conducting airways (less than 2 mm in diameter).3–5

These airways are spread out between the fourth and
14th generation of airway branching, since the human
bronchial tree branches in a non-dichotomous fashion.73

The increase in the numbers of airways with
progressive branching rapidly expands their total cross
sectional area and lowers their resistance. In the healthy
lung, about 75% of total lower-airway resistance is
located in the central conducting airways larger than 2
mm in internal diameter, compared with 25% in the
smaller bronchi and bronchioles.3,5 Furthermore,
because the airways below the larynx account for only
50% of total resistance measured at the mouth, the
airways smaller than 2 mm in internal diameter only
account for 10–15% of total airway resistance. For this
reason, Mead74 referred to the peripheral conducting
airways as the lungs’ silent zone, where disease might
accumulate for many years with very little effect.

Many studies have shown that there are structural
abnormalities in the small airways of smokers who
might or might not have COPD.75–90 Some investigators
suggest that accumulation of mucus obstructs the small
airways of patients with COPD, but this “mucus
plugging” has also been attributed to a postmortem
artefact related to the events leading to death. However,
a recent study based entirely on surgically resected lung
tissue from patients at all stages of the GOLD
classification of COPD showed a relation between the
accumulation of inflammatory exudates containing
mucus in the airway lumen and severity of COPD.90

Although some of this mucus might be produced by the
glands in the more central bronchi and aspirated into
the peripheral airways, most seems to be added to
inflammatory exudates that form in the lumens of the
small airways (figure 4). 

The cells that migrate through the epithelium of the
small airway lumen are delivered by the subepithelial
vessels, but the lymphoid follicles associated with the
BALT are centred on the vessels in the adventitial layer
(figure 2). Any increase in tissue between the airway
smooth muscle and the lumen surface will encroach on
lumen calibre and raise resistance. Furthermore, this
effect may be amplified by smooth-muscle contraction
to account for the airway hyper-responsiveness noted in
COPD.91 Matsuba and Thurlbeck10 showed preferential

deposition of connective tissue in the adventitial
compartment of the airway wall in advanced
emphysema. Our more recent findings90 have
confirmed this observation and suggested that this
peribronchiolar fibrosis might contribute to fixed airway
obstruction by restricting the enlargement of airway
calibre that occurs with lung inflation (figure 4D). The
inflammatory process in the adventitial compartment of
the small airways might also destroy the support the
small airways receive from the alveoli attached to their
outer walls. Although a decrease in the number and
strength of these attachments has been implicated in
small airway obstruction92,93 and correlates with the
decline in FEV1,94 direct measurements of peripheral
airway resistance indicate that this loss of alveolar
support is a less important cause of obstruction than the
pathology in the airway wall and lumen.3

Previous reports have also shown that B cells and CD4
and CD8 lymphocytes are present in the airway tissue of
patients with COPD, and that increases in CD8
lymphocytes95–97 and B cells98 are associated with a
decline in FEV1. This increase in lymphocytes is also
associated with an increase in BALT which is rarely
found in healthy non-smokers, is more frequent in
cigarette smokers,99 and shows a further sharp increase
in patients with severe (GOLD 3) and very severe
(GOLD 4) COPD.90 This increase in lymphocyte sub-
types and the appearance of BALT at this stage of COPD
suggest the development of an adaptive immune
response that might be driven by microbial colonisation
and infection.30 

Emphysema
Emphysematous lung destruction reduces maximum
expiratory flow by decreasing the elastic recoil force
available to drive air out of the lung.6 The lesions
produced by emphysema were first described by
Laennec100 and are defined by dilatation and destruction
of lung tissue beyond the terminal bronchiole.101,102 The
practice of examining the postmortem lung in the
inflated state led to the modern descriptions of the
various forms of emphysematous lung destruction.103–110

The unit of lung anatomy on which these descriptions
are based is defined by its surrounding connective
tissue septa (figure 5A) and is commonly referred to as
the secondary lobule of Miller. This unit is visible on the
surface of the lung to the naked eye and contains several
acini, defined as the unit of lung supplied by a single
terminal bronchiole (figure 5B). The centrilobular or
centriacinar form of emphysema results from dilatation
and destruction of the respiratory bronchioles (figure
5C and D). This type of emphysema is most closely
associated with tobacco smoking109 and is most often
found in the upper lobes of the lung, where separate
lesions may coalesce to produce larger cavities
(figure 6A). The panacinar form of emphysema is
usually associated with �1 anti-trypsin deficiency,106,107,110
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and is more common in the lower lobes (figure 6B)
where it causes a more even dilation and destruction
over the entire acinus. Kim and colleagues110 have
presented data suggesting that one or the other of these
types of emphysema usually dominates in advanced
disease, and that dominance of the centriacinar form is
associated with more severe small-airway obstruction.
Paraseptal emphysema is defined by destruction of the
outer part of the lobule near the septa and irregular
emphysema that occurs in relation to scars are
discussed elsewhere.109

The relation between cigarette smoking and the
presence of emphysema (figure 7A) shows a rough
dose-response curve between pack-years of smoking
and the presence of emphysema, but only about 40% of
heavy smokers develop substantial lung destruction,

even at the very highest levels of smoking.111 This
observation should not be confused with the fact that
only 15% of people develop COPD,8 because
emphysema is sometimes found in people who
maintain normal lung function.111 This type of
observation has become more common since the
introduction of the CT scan, but the hypothesis that this
early form of emphysema predicts a rapid decline in
function and subsequent development of COPD has not
been tested. The fact that about 40% of heavy smokers
develop emphysema and only 15% develop airflow
limitation reflects the long subclinical course of COPD.

Figure 7B shows data from a study12 in which smokers
who developed severe emphysema had an increase of
about tenfold in neutrophils, macrophages, T lympho-
cytes, and eosinophils present in their lungs, compared
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Figure 5: Anatomy of centrilobular emphysema
Adapted from reference 2. (A) Photograph of the pleural surface with peripheral airways filled with contrast material. The connective tissue border (single arrow)
surrounds a secondary lobule of Miller, and every terminal bronchus (TB) supplies a unit termed an acinus. (B) Low-power photomicrograph with respiratory
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with people who smoked similar amounts but
maintained normal lung function.12 Comparison of
figure 7A and 7B strongly suggests that people who
develop emphysema have an amplified response to
cigarette smoke, but the mechanism of this
amplification is unknown. 

Leucocyte kinetics in smokers
One possibility is that the effect of smoking on
leucocyte kinetics increases the numbers of these cells
in lung tissue. A cardiac output of 6 L/min distributes
about 8640 L of blood to the lung in the pulmonary
circulation every 24 h, and an additional 86 L (about 1%
of the cardiac output) is delivered by the systemic
bronchial vessels. Since each litre of blood contains
about 109 leucocytes, about 8·7�1012 leucocytes flow
through the lung every day. Both direct observations of
the pleural surface in animals and indirect
measurements in human beings have shown that
leucocytes are delayed with respect to erythrocytes as
they pass through pulmonary microvessels.112 Both
leucocytes and erythrocytes are slowed down in lung
microvessels because their maximum diameters are
slightly larger than those of pulmonary capillaries. But
the discoid shape of the erythrocyte allows it to fold and
move through these restrictions much more quickly
than the leucocytes. The arrangement of the alveolar
wall capillary bed into short interconnecting segments
provides a large number of parallel pathways for the
faster-moving erythrocytes to stream around slower-
moving leucocytes (figure 8A). This effect concentrates
leucocytes with respect to erythrocytes, producing a
large pool of marginated leucocytes in the lung

716 www.thelancet.com Vol 364   August 21, 2004 

A

C D

B

D

CLE

Lower lobe

Upper lobe

CLE

Figure 6: Comparison of centrilobular and panacinar emphysema
(A) Photograph of a mid-saggital slice of lung removed from a patient who received a lung transplant for COPD.
Note that the centilobular lesions have coalesced to produce severe lung destruction in the upper lobe. (B) Similar
specimen from a patient who received a lung transplant for �1 antitrypsin deficiency, in which there is less severe
but more extensive involvement of the lower lobe by panacinar emphysema. (C) Low-power photomicrograph of
the early lesions of centrilobular emphysema (CLE) that have destroyed central portions of several acini of a single
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courtesy of Joel Cooper, with permission).
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shown; data from reference 12). Mac=macrophages.
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microvessels. These leucocytes can be rapidly mobilised
back into the circulating pool by stress and exercise.112

Cigarette smoking is known to raise the circulating
leucocyte count58 and to increase the size of the
marginated pool of leucocytes in lung capillaries by
activating PMNs and slowing them down.113,114 As flow
limitation becomes more severe, the time constant for
lung emptying eventually exceeds that for the chest
wall, first during exercise and then at rest. This change
produces dynamic hyperinflation, in which an increase
in alveolar pressure over pleural pressure will result in
capillary compression. Studies in patients who needed
cardiac catheterisation for other reasons have shown
that capillary compression during valsalva manoeuver
increases the pool of marginated leucocytes.115 Further-
more, the PMNs tend to be activated by their
deformation as they pass through this type of
restriction.116 Chronic exposure to cigarette smoke also

stimulates the bone marrow to release into the
circulation more immature cells that are more readily
delayed in the marginated pool in lung microvessels.117

All these factors increase the population of leucocytes in
lung capillaries.

Only a small proportion of the cells delivered to an
acute inflammatory site migrate out of the vascular
space into the lung tissue and airspaces.118 This
migratory process is controlled by a complicated series
of molecular events that first prime and then trigger a
graduated response in the circulating cells. This
response begins by stiffening the cells to make them
less deformable and slow them down, followed by
mobilisation of their cytoskeleton to allow them to move
purposefully along the migratory pathway, and the
expression of adhesion proteins that allow them to
adhere to the structural cells and develop the traction
they need to move.119,120 An important series of studies by
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between endothelial cells lining capillaries. Two cells in the same plane (EC1 and EC3) are joined by the flap of a third cell (EC2) that is fastened to the other two, leaving an
open pore that migrating cells use to penetrate the endothelial barrier. (C) Diagram of cross section of a single capillary segment showing that the capillary has a thin side
that bulges into the alveolar lumen and a thick side that is in the plane of the alveolar wall. The pores shown in (B) are located near the thick side of the capillary. 
(D) Pathway of migrating PMN. AL=alveolar lumen. CL= capillary lumen. E= endothelial cell. I=interstitial space. IC=interstitial cell. T1=type 1 epithelial cell. T2 =type 2
epithelial cell. F=fibroblast. P=pericyte. Reproduced courtesy of David Walker from references 120, 121, and 122, with permission.
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Walker and co-workers120–122 has shown that
inflammatory cells begin this migratory process by
seeking out areas of endothelium where gaps form at
corners where three endothelial cells meet (figure 8B).
After they migrate through these gaps they come into
contact with the endothelial basement membrane near
the thick side of the capillary wall (figure 8C). Careful
three-dimensional reconstructions of the alveolar wall
based on serial electron micrographs have shown
(figure 8D) that the PMN migrate through pre-formed
holes in this basement membrane and come into
contact with fibroblasts as they enter the interstitial
space. They then use the surface of the fibroblast as a
guide as they cross the interstitial space and make
contact with the epithelial basement membrane.121,122

The very close association between migrating
inflammatory and interstitial cells suggests that the
interstitial fibroblast may function as the “quarterback”
directing the flow of inflammatory cells through the
interstitial compartment of the airway wall. When the
PMN arrives at the epithelial basement membrane it
passes through existing pores, then migrates between
alveolar type 1 and type 2 cells onto the alveolar surface
of the airspace.

The concept that the pathogenesis of emphysema is
caused by an imbalance between proteolytic enzymes
was introduced by the discovery linking severe
emphysema to �1-antitrypsin deficiency in humans and
by animal experiments showing that the deposition of
powerful enzymes produced emphysema-like lesions in
the lung.123 Although neutrophil elastase is the enzyme
that has been most heavily implicated in this process,
there is growing evidence that other cells and enzyme
systems are involved. Quite recent findings have also
suggested that emphysema can develop with little or no
inflammation, by disturbing proteoglycan synthesis and
by increasing apoptosis in the lung tissue.123

These important observations should be reconciled
with the much larger body of evidence that lung
inflammation provides the link between cigarette
smoking and emphysema. A better understanding of
the migratory behaviour of the inflammatory cells
through the alveolar wall tissue, their interaction with
structural cells, and their activation sequence as they
encounter foreign material in tissue could provide
clearer insight into the pathogenesis of the
disappearance of tissue in emphysema. 

Small-airway-obstructive and emphysema phenotypes
of airflow limitation
Progress toward specific treatments for COPD might be
accelerated by moving beyond measurements of airflow
limitation to the precise diagnosis of the specific targets
responsible for the airflow limitation. This step will
require precise, safe, non-invasive quantitative methods
of diagnosis that will allow both the airway-obstructive
and emphysema phenotypes to serve as measurable

endpoints in clinical trials. The introduction of CT
scanning has provided an objective method for
measuring the extent and severity of emphysema on a
regional basis.124–127 This approach has been used to
measure the effect of replacement therapy on the
progression of emphysema in �1-antitrypsin
deficiency.128,129 Reports from Japan also indicate that it
may be possible to separate emphysematous from
obstructive phenotypes of COPD with high resolution
CT.130 MRI imaging of inhaled hyperpolarised gas holds
a similar promise for the diagnosis of emphysema, and
has the distinct advantage that it eliminates exposure to
ionising radiation.131–135 Although these procedures offer
limited value to practical clinical medicine in the short
term, they could become extremely important for
determining outcomes in clinical trials of any new
treatment for either phenotype of COPD.
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