UNDERSTANDING THE DISEASE

Understanding hypoxemia on ECCO₂R: back to the alveolar gas equation

Jean-Luc Diehl^{1,2*}, Alain Mercat³ and Antonio Pesenti^{4,5}

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature and ESICM

Extracorporeal CO_2 removal (ECCO₂R) is a promising technique for ARDS and for severe acute exacerbations of COPD [1]. However, ECCO₂R carries its own risk of complications and side effects. Beyond hemorrhagic and thrombotic complications and hemolysis, the occurrence of progressive hypoxemia has been reported in COPD patients treated by ECCO₂R, leading to a tracheal intubation rate of 28% in the prospective series from Braune et al. [2]. Obviously, progressive hypoxemia can be explained by pulmonary complications such as evolving infiltrates, even if other factors such as modification of the respiratory quotient have been proposed [2, 3]. Accordingly, we illustrate such a mechanism, intrinsically linked to the ECCO₂R technique and not involving any worsening of lung function by itself.

A 76-year-old man was admitted because of a very severe hypercapnic acute exacerbation of a chronic respiratory failure due to non-cystic fibrosis bronchiectasis. Invasive mechanical ventilation (Carescape R860 GE Healthcare) was initiated because of non-invasive ventilation failure. ECCO2R was started 24 h later with the goals of limiting hypercapnia and dynamic hyperinflation and promoting a rapid weaning process [4]. The iLA-Activve system (Xenios-Novalung, Heilbronn) was used with a 22-Fr right jugular veno-venous catheter. Since weaning was a very difficult process, the sweep gas flow was progressively increased during the next 7 days from 1 to 9 L/min, while the extracorporeal blood flow varied between 0.8 and 1.2 L/min. During the same period, the PaO₂/FiO₂ ratio progressively decreased from 251 to 145, with no obvious pulmonary complication. Table 1 indicates the corresponding ABG and PaO₂/ FiO₂ values as well as the DA-aO₂ values calculated either using the classical simplified alveolar air equation, i.e., $PAO_2 = PIO_2 - PACO_2/0.8$, or the exact simplified alveolar air equation using the 0.3 value of the respiratory quotient displayed by the ventilator. Despite the apparent changes in PaO_2/FiO_2 ratio, the correct DA-aO₂ and PAO₂ were compatible with clinically negligible changes in intrapulmonary shunt, oscillating around 15%, even if we cannot totally exclude confounding factors inferring with the shunt calculation such as a higher mixed venous PO₂ (even if it is generally believed that ECCO₂R exerts only minimal oxygenation effects), a release of hypoxic pulmonary vasoconstriction due to a higher FiO₂, or a shunt decrease in relation to higher FiO₂ as described in moderate ARDS. The observed changes in PaO₂/FiO₂ were therefore mainly justified by changes in PAO₂ due to changes in the VCO_2/VO_2 ratio of the patient's own lung, rather than to changes in its oxygenation function. Accordingly, no specific pulmonary complication was diagnosed during the following days.

ECCO₂R exerts predominantly an effective extracorporeal CO₂ removal, without significant effect on oxygenation which accordingly occurs very predominantly in the native lungs, resulting in a decreased native lung respiratory quotient. It is therefore very important to use during ECCO₂R the exact calculations of PAO₂ and DA-aO₂ when a suitable monitoring system is available, or at least to interpret with great caution any PaO₂/ FiO₂ worsening, which could, at least in part, reflect an ECCO₂R-induced modification of the alveolar gas content [5].

¹ Department of Intensive Care Medicine, Hôpital Européen Georges

Pompidou, Paris, France

Full author information is available at the end of the article

^{*}Correspondence: jean-luc.diehl@aphp.fr

Table 1 Oxygenation values, ABG values, and invasive mechanical ventilation parameters recorded immediately before initiation of ECCO₂R and under ECCO₂R after raising the sweep gas flow to 9 L/min

	Immediately before ECCO ₂ R	ECCO ₂ R day 7
PaO ₂ /FiO ₂	251	145
PAO ₂ (mmHg) simplified	186	360
PaO ₂ (mmHg) exact	-	248
Da-aO ₂ (mmHg) simplified	98	273
Da-aO ₂ (mmHg) exact	-	161
R (native lungs) measured by the ventilator	-	0.3
рН	7.31	7.38
PaO ₂ (mmHg)	88	87
PaCO ₂ (mmHg)	51	54
Ventilatory mode	ACV	ACV
VT (mL/kg IBW)	б	6
RR (/min)	12	10
PEEP (cmH ₂ O)	0	5
FiO ₂	0.35	0.6

A alveolar, D_{A-aO_2} difference between alveolar and arterial O_2 partial pressures, *R* respiratory quotient displayed by the ventilator, *simplified* assuming that *R* is equal to 0.8, *exact* using the measured value of *R*, *ACV* assist-controlled ventilation, *VT* tidal volume, *RR* respiratory rate

Author details

¹ Department of Intensive Care Medicine, Hôpital Européen Georges Pompidou, Paris, France. ² INSERM, UMR_S1140: Innovations Thérapeutiques en Hémostase, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Paris, France. ³ Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Université d'Angers, Angers, France. ⁴ Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy. ⁵ Department of Anesthesia, Critical Care and Emergency Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, Italy.

Funding information

No specific funding has been dedicated to this publication.

Compliance with ethical standards

Conflicts of interest

Jean-Luc Diehl received fees from Xenios and Alung for consulting and lectures. Funding for research purposes: Alung Technologies (EPHEBE study, NCT02586948). Alain Mercat received fees from ALung for lectures. Antonio Pesenti received fees from Xenios and Getinge for consulting and lectures.

Ethical statement

Treatment with ECCO₂R was performed as part of a specific registry (Registry on the EXperience of Extracorporeal CO_2 Removal in Intensive Care Units, NCT02965079), benefiting from an approval (07 March 2016) from the Ethics Committee of the French Intensive Care Society.

Received: 12 September 2018 Accepted: 6 October 2018 Published online: 15 October 2018

References

- Morelli A, Del Sorbo L, Pesenti A, Ranieri VM, Fan E (2017) Extracorporeal carbon dioxide removal (ECCO2R) in patients with acute respiratory failure. Intensive Care Med 43(4):519–530
- Braune S, Sieweke A, Brettner F, Staudinger T, Joannidis M, Verbrugge S et al (2016) The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case–control study. Intensive Care Med 42(9):1437–1444
- Del Sorbo L, Fan E, Nava S, Ranieri VM (2016) ECCO2R in COPD exacerbation only for the right patients and with the right strategy. Intensive Care Med 42(11):1830–1831
- Diehl J-L, Piquilloud L, Richard J-CM, Mancebo J, Mercat A (2016) Effects of extracorporeal carbon dioxide removal on work of breathing in patients with chronic obstructive pulmonary disease. Intensive Care Med 42(5):951–952
- Gattinoni L, Kolobow T, Tomlinson T, White D, Pierce J (1978) Control of intermittent positive pressure breathing (IPPB) by extracorporeal removal of carbon dioxide. Br J Anaesth 50(8):753–758