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WHAT’S NEW IN INTENSIVE CARE

The airway occlusion pressure (P0.1) 
to monitor respiratory drive during mechanical 
ventilation: increasing awareness of a 
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Importance of monitoring respiratory drive 
during mechanical ventilation
An inadequate respiratory drive under mechanical ven-
tilation, either too high or too low, has recently been 
incriminated as a risk factor for both lung [1] and dia-
phragmatic injury [2]. Monitoring and controlling the 
drive to breathe might, therefore, be important for 
clinical practice. However, respiratory drive assessment 
has mostly been limited to research purposes, with few 
techniques available at the bedside [3]. A simple non-
invasive measure, the airway occlusion pressure (P0.1), 
i.e. the pressure developed in the occluded airway 100 ms 
after the onset of inspiration (Fig. 1), was first described 
40  years ago. Currently, nearly all modern ventilators 
provide a means of measuring P0.1. Despite having a bet-
ter understanding of the importance of the respiratory 
drive during mechanical ventilation, no recommenda-
tions exist about its use.

Original description and rationale
In healthy subjects, Whitelaw et  al. [4] performed ran-
dom, short end-expiratory occlusions through a special 
circuit during both resting and  CO2 rebreathing. They 
found that the decrease in airway pressure (Paw) during 
the first 100 ms (i.e. 0.1 s) of an occluded breath was rela-
tively constant, consistent for each patient in each con-
dition, and correlated better with end-tidal  CO2 than 

minute ventilation. They named this new parameter air-
way occlusion pressure or P0.1 (Fig. 1).

Several characteristics make P0.1 a good measure of res-
piratory center output. There is no conscious or uncon-
scious reaction to the mechanical load during the first 
milliseconds of an unexpected occlusion. Since it starts 
from end-expiratory lung volume, any drop in Paw is 
independent of the recoil pressure of the lung or tho-
rax. Because the flow is interrupted, P0.1 is independent 
of resistance, and there is no change in lung volume that 
could induce inhibitory reflexes or modify the force–veloc-
ity relationship. Finally, there is a good correlation between 
P0.1 and inspiratory effort measured either by the work 
of breathing (WOB) or the pressure–time product [5, 6]. 
Importantly, P0.1 is still reliable during respiratory muscle 
weakness if spontaneous breathing is preserved [7].

Range of values
In healthy subjects, P0.1 varies between 0.5 and 
1.5  cmH2O [3]. In stable, non-intubated patients with 
COPD, P0.1 varies between 2.5 and 5.0  cmH2O [3]. 
Ranges of P0.1 from 3.0 to 6.0 cmH2O have been reported 
in patients with ARDS under mechanical ventilation, and 
from 1.0 to as high as 13 cmH2O during weaning.

Sources of errors and potential pitfalls
There is a significant breath-to-breath variability of P0.1, 
and an average of 3–4 values of P0.1 in one patient in one 
clinical condition should be obtained to represent a reli-
able index of respiratory drive [8]. In patients with intrin-
sic positive end-expiratory pressure (PEEPi), there is a 
delay between the onset of inspiratory effort and the drop 
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in airway pressure during an end-expiratory occlusion. 
P0.1 measured at the mouth in non-intubated patients can 
underestimate respiratory drive [9]. However, Conti et al. 
[10] proved that measurement of P0.1 from the drop in 
Paw, since flow reaches zero during the triggering phase 
of the ventilator, is a reliable surrogate of the decay in 
esophageal pressure during the first 100 ms of the effort. 
The difference between the two measurements is small 
and clinically acceptable (− 0.3 ± 0.5 cmH2O).

Specific aspects are important when interpreting P0.1 
displayed by ventilators: decompression of air in the 
circuit can result in underestimation of P0.1, and venti-
lators use different methods to measure P0.1. Some ven-
tilators perform a short end-expiratory occlusion when 
a manoeuver is activated, but others display a breath-to-
breath estimation based on the trigger phase. The trig-
ger phase in modern ventilators is often less than 50 ms, 
which could result in underestimation of P0.1 especially if 
the inspiratory effort is high [11].

P0.1 under mechanical ventilation
P0.1 can be useful to adjust the level of ventilatory support 
due to its close correlation with inspiratory effort. Higher 
values of P0.1 indicate insufficient levels of support while 
lower values correspond to excessive assistance [5], both 
during assist-controlled and spontaneous modes of ven-
tilation. We recently showed that P0.1 can detect exces-
sive levels of inspiratory effort in patients under pressure 
control, intermittent mandatory and synchronized inter-
mittent mandatory ventilation [12]. The optimal thresh-
old of P0.1 was 3.5 cmH2O with a sensitivity of 92% and 
a specificity of 89%. Pletsch-Assuncao et al. [13] recently 
reported an optimal threshold of P0.1  ≤  1.6  cmH2O 
to diagnose overassistance defined by WOB  <  0.3  J/L 
or > 10% ineffective efforts (with a sensitivity of 62% and 
a specificity of 87%). This had a lower performance than 
the presence of a respiratory rate ≤  17  bpm, possibly 
related to the technique to measure P0.1 (manual occlu-
sion) and the definition of overassistance. Interestingly, a 

Fig. 1 Measurement of airway occlusion pressure (P0.1). Airway pressure (Paw in red) and flow (in blue) during an un-occluded breath and a breath 
during an end-expiratory occlusion of two different patients under assisted mechanical ventilation with two very different levels of drive. P0.1 is 
measured from the Paw tracing as the drop in airway pressure during the first 100 ms of the breath against an occluded airway. Patient correspond-
ing to tracing (a) has a lower ventilatory support and higher respiratory drive than patient corresponding to tracing (b). PS pressure support level, 
PEEP positive end-expiratory pressure level
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closed-loop algorithm to automatically adjust the level of 
support based on a target P0.1 has proved feasible [14].
P0.1 can be used to adjust external positive end-expir-

atory pressure (PEEP) in patients with hyperinflation. 
Mancebo et  al. [6] proved that a decrease in estimated 
P0.1 with the addition of external PEEP indicates a drop 
in PEEPi and in WOB with reasonable sensitivity and 
specificity.

More recently, Mauri et al. [15] found that P0.1 is a sen-
sitive indicator of respiratory drive in patients with severe 
ARDS undergoing venous–venous extracorporeal mem-
brane oxygenation. They showed that a change in sweep 
gas flow resulting in a change in  PaCO2 was well reflected 
by P0.1, varying on average between 0.9 and 3.0 cmH2O.
P0.1 has extensively been studied as a predictor of 

weaning success or failure. Originally, a high P0.1 during 
a spontaneous breathing trial was associated with fail-
ure, suggesting that a high respiratory drive could pre-
dict weaning failure. As elegantly proved by Bellani et al. 
[16], patients failing a trial of decrease in support during 
weaning are unable to increase oxygen consumption in 
response to an increased drive (i.e. higher P0.1).

However, overlap in P0.1 values between success and 
failure groups was evidenced as more data were pub-
lished, and no threshold accurately predicts weaning 
outcome using P0.1 alone or combined with other param-
eters [17]. This is explained by the complex pathophysi-
ology of weaning failure and the design of experiments. 
P0.1 was often measured during pressure support, known 
to underestimate inspiratory effort after extubation [18]. 
Despite having no magic value to predict weaning out-
come, clinicians can still get information concerning the 
respiratory drive (high or low). In this context, very high 
values (for example, higher than 6 cmH2O) are associated 
with failure.

Conclusions and future directions
P0.1 is a useful and valid measure of respiratory drive in 
mechanically ventilated patients. Work is needed to build 
a bridge between research and clinical practice since this 
parameter is now easily available. The accuracy of P0.1 
displayed by modern ventilators (using flow or pressure 
trigger), and in different clinical conditions (e.g., presence 
of PEEPi) needs to be studied.

Additionally, a practical approach to the use of P0.1 dis-
played by ventilators needs to be evaluated. P0.1 can be 
used to detect excessive or insufficient levels of inspira-
tory effort and better guide muscle- and lung-protective 
ventilation strategies. The latter should include adjusting 
ventilator settings,  CO2 removal and titration of sedative 
drugs to achieve an acceptable range of inspiratory effort 
for a given clinical condition. In particular, P0.1 could be 

of great value during a sensitive period: transition from 
fully controlled to assisted modes of ventilation.
P0.1 can already provide clinicians with information 

regarding the drive of their patients, it is sensitive to ven-
tilator settings, and may be useful during weaning. Con-
sidering the importance of patients’ respiratory drive 
under mechanical ventilation, it seems that it is time to 
start using it in the clinical setting.
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