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ARDS is associated with poor clinical outcomes, with a pooled mortality rate of approximately

40% despite best standards of care. Current therapeutic strategies are based on improving

oxygenation and pulmonary compliance while minimizing ventilator-induced lung injury. It has

been demonstrated that relative hypoxemia can be well tolerated, and improvements in

oxygenation do not necessarily translate into survival benefit. Cardiac failure, in particular right

ventricular dysfunction (RVD), is commonly encountered in moderate to severe ARDS and is

reported to be one of the major determinants of mortality. The prevalence rate of

echocardiographically evident RVD in ARDS varies across studies, ranging from 22% to 50%.

Although there is no definitive causal relationship between RVD and mortality, severe RVD is

associated with increased mortality. Factors that can adversely affect RV function include

hypoxic pulmonary vasoconstriction, hypercapnia, and invasive ventilation with high driving

pressure. It might be expected that early diagnosis of RVD would be of benefit; however,

echocardiographic markers (qualitative and quantitative) used to prospectively evaluate the

right ventricle in ARDS have not been tested in adequately powered studies. In this review, we

examine the prognostic implications and pathophysiology of RVD in ARDS and discuss available

diagnostic modalities and treatment options. We aim to identify gaps in knowledge and

directions for future research that could potentially improve clinical outcomes in this patient

population. CHEST 2017; 152(1):181-193
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ARDS is characterized by the acute
development of hypoxemia and bilateral
lung infiltrates.1 Five decades after it was
first described and despite lung-protective
mechanical ventilation strategies2,3 and

other therapeutic advances such as prone
positioning, fluid restrictive therapy, and
neuromuscular blockade,4-6 ARDS is still
associated with substantial morbidity and
mortality. In a systematic review and
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meta-analysis that included 89 ARDS studies (53
observational, 36 randomized controlled trials [RCTs]),
Phua et al7 found that the overall pooled weighted
mortality was 44.3% (95% CI, 41.8-46.9). In a recent
RCT comparing conservative (oxygen saturation as
measured by pulse oximetry, 88%-92%) vs a liberal
oxygenation target ($ 96%), there were no significant
differences in organ dysfunction or mortality between
the two groups. These results suggest that patients can
survive short periods of relative hypoxemia without
significant adverse effects and that hypoxemia may not
be the leading cause of mortality in ARDS.8 Conversely,
hemodynamic instability in the context of ARDS
appears to be strongly associated with mortality.9 One
potential mechanism is the dysfunction of the right
ventricle and pulmonary vasculature, which is often
underappreciated in ARDS.10 As a result, the right
ventricle fails to deliver adequate cardiac output to the
left-sided circulation, thus resulting in systemic
hypoperfusion and multiple organ dysfunction.11

The aim of the current review is to discuss the
epidemiology of right ventricular dysfunction (RVD) in
ARDS and its effect on clinical outcomes, examine the
current state of knowledge of the pathophysiology of
RVD, identify gaps, and explore the use of novel imaging
markers and preventive and therapeutic strategies.
Unanswered questions such as the effectiveness of “low-
lung-stress” ventilation, timing of prone positioning and
whether RVD alone should be an indication for prone
positioning, the role of extracorporeal life support, and
the natural history of RVD in ARDS survivors is also
discussed.

Definitions
There are various definitions for RVD and RV failure
(RVF) in the literature, with the terms being used
interchangeably at times. According to the American
Society of Echocardiography (ASE), RVD is present
when the parameters to quantify RV function are less
than the lower value of the normal range: tricuspid
annular plane systolic excursion (TAPSE) < 17 mm,
pulsed Doppler S wave < 9.5 cm/s, RV fractional area
change (RVFAC) < 35%, and RV ejection fraction
< 45%. RVFAC has been used to grade the degree of
RVD as mild (25%-35%), moderate (18%-25%), and
severe (< 18%).12,13 RVF is defined as the inability of the
right ventricle to provide adequate blood flow through
the pulmonary circulation at a normal central venous
pressure (CVP).11 Acute cor pulmonale (ACP) refers to
acute dilatation or dysfunction (or both) of the right

ventricle in the context of acute lung disease (eg, ARDS)
and associated pulmonary vascular dysfunction.14 ACP
is a form of RVD that is due to an acute increase in
RV afterload that may lead to RVF and is defined
echocardiographically as septal dyskinesia with a ratio of
right ventricular end-diastolic area (RVEDA) to left
ventricular end-diastolic area (LVEDA) > 0.6 (> 1 for
severe dilatation). In the right ventricle focused view, RV
diameter > 41 mm at the base and > 35 mm at midlevel
indicates chamber dilatation.12,13 In this review, we have
chosen to use the term RVD instead of ACP, as it
provides a broader overview of RV pathology in acute
lung disease. Assessment of the right ventricle by
echocardiography is discussed further in the section on
diagnosis in this review.

Epidemiology and Prognosis
The reported incidence of RVD in ARDS varies across
studies (22%-50%) (Table 1).15-24 Although there is
no robust evidence to support a definitive causal
relationship between RVD and mortality in ARDS, it has
been shown that RVD has a negative impact on the
course of ARDS and that severe RVD is associated
with increased mortality even during lung-protective
mechanical ventilation.

In a prospective multicenter study (N ¼ 200), Lhéritier
et al19 showed that patients with ARDS and RVD
(assessed by transthoracic echocardiography [TTE] or
transesophageal echocardiography [TEE] and defined
as ACP), received prone mechanical ventilation and
vasoactive therapy more frequently and required a
higher dose of inhaled nitric oxide (iNO) as a rescue
therapy than did those without RVD. The incidence
of RVD in this study was 22.5% (95% CI, 19.9%-28.9%).
In a prospective observational study20 that enrolled
226 patients with moderate to severe ARDS (Berlin
definition),25 RVD was detected in 22% and was found
to be an independent predictor of 28-day mortality
(P < .01). A secondary analysis22 of the Fluid and
Catheter Treatment Trial (FACTT) examined the
association between pulmonary vascular dysfunction,
(defined as elevated transpulmonary gradient [TPG] or
increased pulmonary vascular resistance index [PVRi]
assessed by pulmonary artery catheter [PAC]) and
outcomes in patients with ARDS. Increased baseline
TPG was associated with higher 60-day mortality (30%
vs 19%; P < .02), and PVRi was statistically higher in
nonsurvivors (326 [209-518] vs 299 [199-416]; P ¼ .01).
Of note, the median PVRi was highest (304.6 [204.3-
430.9]) early in the course of ARDS (day 0 and day 1).
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TABLE 1 ] Characteristics of Studies Evaluating the Prognostic Value of Right Ventricular Dysfunction Assessed by Echocardiography for Mortality in Patients
With ARDS

Study/Year Type

ARDS Definition/
Ventilation
Strategy No.

Diagnostic
Modality:
TTE/TEE/

PAC

Timing of
Echocardiography

Following
Diagnosis of ARDS Definition of RVD

Prevalence of
RVD Outcome

Nonsurvivors
(No.)

Nonsurvivors
With RVD
(No.)

P Value (< .05
Statistically
Significant)

Wadia
et al15/
2016

Retrospective Berlin/LPV 14 TTE Within 2 wk Not defined
(authors
examined
changes in
TAPSE, MPI,
FAC before and
after ARDS)

42.9% 30-d
mortality

8 (57%) . . . .002 (for
TAPSE)

Shah
et al16/
2016

Retrospective Berlin/LPV 38 TTE Within 2 wk TAPSE < 17 mm 55% 30-d
mortality

18 (47%) . . . .004

Mekontso
Dessap
et al17/
2016

Prospective
observational

Berlin/LPV 752 TEE Within 3 d Septal dyskinesia
with dilated
right ventricle
(RVEDA/LVEDA
> 0.6)

22% Hospital
mortality

322 (43%) 78/164
(48%)

(31 of 54
[57%])
in severe
RVD)

.17

.03

Lazzeri
et al18/
2016

Prospective
observational

Berlin/LPV 21 TEE/TTE Prior to
VVECMO
implantation

sPAP
> 40 mm Hg or

dilated right
ventricle

or
septal dyskinesia

with dilated
right ventricle
(RVEDA/LVEDA
> 0.6)

or
TAPSE

< 16 mm Hg

90.5%
9.5%
47.6%

ICU
mortality

12 (57.1%) . . . .004
.04

Lhéritier
et al19/
2013

Prospective
observational

American and
European
consensus/
LPV

201 TEE/TTE Within 48 h Septal dyskinesia
with dilated
right ventricle
(RVEDA/LVEDA
> 0.6)

22.5% 28-d
mortality

46 (23%) 11 of 45
(24%)

.79

Boissier
et al20/
2013

Prospective
observational

Berlin/LPV 226 TEE Within 3 d Septal dyskinesia
with dilated
right ventricle
(RVEDA/LVEDA
> 0.6)

22% 28-d
mortality

ICU
mortality

114 (50%) 28 of 49
(57%)

31 of 49
(63%)

< .01
.04
.02

(Continued)
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TABLE 1 ] (Continued)

Study/Year Type

ARDS Definition/
Ventilation
Strategy No.

Diagnostic
Modality:
TTE/TEE/

PAC

Timing of
Echocardiography

Following
Diagnosis of ARDS Definition of RVD

Prevalence of
RVD Outcome

Nonsurvivors
(No.)

Nonsurvivors
With RVD
(No.)

P Value (< .05
Statistically
Significant)

Hospital
mortality

33 of 49
(67%)

Guervilly
et al21/
2012

Prospective
randomized

American and
European
consensus/
CMV
vs HFOV

16 (CMV
vs HFOV)

TEE Within 48 h RVEDA/LVEDA
> 0.6 (RVD)

RVEDA/LVEDA
> 0.9 (RVF)

56% (during
CMV)

25% (during
HFOV)

ICU
mortality

9 (56%) . . . < .01

Bull
et al22/
2010

Retrospective
observational

American and
European
consensus/
LPV

475 PAC . . . TPG > 24 mm Hg
(assessed
pulmonary
vascular
dysfunction)

. . . 60-d
mortality

49% 41 .0006

Osman
et al23/
2009

Prospective
observational

American and
European
consensus/
LPV

145 PAC After 24 h (1) mPAOP
> 25 mm Hg
and (2) CVP
> PAOP and (3)
SVI < 30mL/m2

9.6% 28-d
mortality

90-d
mortality

98 (68%) 9 of 14
(64%)

.75

.56

Vieillard-
Baron
et al24/
2001

Prospective American and
European
consensus/
LPV

75 TEE After 2 d of
respiratory
support

RVEDA/LVEDA
> 0.6 þ septal
dyskinesia
(ACP)

RVEDA/LVEDA > 1
(severe ACP)

25% 28-d
mortality

24 (32%) . . . < .2

ACP ¼ acute cor pulmonale; CMV ¼ conventional mechanical ventilation; CVP ¼ central venous pressure; FAC ¼ fractional area change; HFOV ¼ high-frequency oscillatory ventilation; LVEDA ¼ left ventricular
end-diastolic area; LPV ¼ lung-protective ventilation; mPAOP ¼ mean pulmonary artery occlusion pressure; MPI ¼ myocardial performance index; PAC ¼ pulmonary artery catheter; PAOP ¼ pulmonary artery
occlusion pressure; RVD ¼ right ventricular dysfunction; RVEDA ¼ right ventricular end-diastolic area; RVF ¼ right ventricular failure; sPAP ¼ systolic pulmonary arterial pressure; SVI ¼ stroke volume index;
TAPSE ¼ tricuspid annular plane systolic excursion; TEE ¼ transesophageal echocardiography; TPG ¼ transpulmonary gradient; TTE ¼ transthoracic echocardiography; VVECMO ¼ venovenous extracorporeal
membrane oxygenation.
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Mekontso Dessap et al17 undertook a large prospective
observational study (N ¼ 752) in which patients with
moderate to severe ARDS receiving the least damaging
mechanical ventilation (low tidal volume and plateau
pressure < 30 mm Hg) were assessed using TEE.
Twenty-two percent of the cohort (95% CI, 19%-25%)
had RVD (defined as ACP) and 7.2% of patients had
severe RV dilatation (RVEDA to LVEDA > 1). Hospital
mortality did not differ between patients with and those
without RVD but was significantly higher in patients
with a severely dilated right ventricle (31 of 54 [57%)]
vs 291 of 698 [42%]; P ¼ .03), which was also found to
be an independent predictor of mortality. This could be
explained by the fact that this subset of patients had
established RVF that was unresponsive to therapeutic
interventions aimed at decreasing RV afterload and
“protecting” the right ventricle.17 Conversely, patients
with a mildly dilated right ventricle and septal dyskinesia
included in the RVD group may have had preserved RV
systolic function, and this might explain the insignificant
difference in mortality between the patients with
and those without RVD as defined by the authors.
Patients enrolled had only a single transesophageal
echocardiographic study during the first 3 days of ARDS
diagnosis, and therefore the natural history of RVD in
ARDS remains unknown.17

Those studies assessing RV function in ARDS have
not examined the impact of temporal changes in RV
function on mortality, the natural history of RV function
in survivors, or the reversibility of RVD with
progression of ARDS (Table 1). Whether patients with
ARDS experience RV diastolic dysfunction that might
affect clinically important outcomes also remains
unknown. In most studies, RVD is defined as RV
dilatation with or without septal dyskinesia. The clinical
significance of isolated RV dilatation as a “red flag”
and its impact on mortality remain unclear. Only two
studies used an ASE criterion (TAPSE) to define RVD
(Table 1).15,16 There is a need for a consensual definition
that reflects the pathophysiology of RVD in the context
of ARDS and positive-pressure ventilation. This will
enable intensive care specialists to identify patients at
risk of RVF and implement strategies that may protect
the right ventricle.

Pathophysiology
The right ventricle is responsible for maintaining
adequate pulmonary perfusion pressure to deliver
desaturated mixed venous blood to the respiratory
membrane and low systemic venous pressure to prevent

organ congestion. The right ventricle is sensitive to
changes in afterload because it is anatomically adapted
for the generation of low-pressure perfusion.11,26

Why Is the Right Ventricle Failing in ARDS?

RVD is not always associated with an increase in PVR
and pulmonary arterial hypertension; it can also be
secondary to primary contractile impairment.11 As a
result, low cardiac output with low mean arterial
pressure can occur. This can develop into a vicious
cycle, leading to a progressive downward spiral and
cardiogenic shock.11,26

Mekontso Desapp et al,17 reported four parameters (one
clinical and three physiological) that were identified as
statistically significant predictors of RVD in ARDS: (1)
lower respiratory tract infection as a cause of pulmonary
ARDS, (2) PaO2 to FIO2 ratio < 150 mm Hg, (3) PaCO2
$ 48 mm Hg, and (4) driving pressure (plateau pressure
– total positive end-expiratory pressure) $ 18 cm H2O.
These variables had a statistically significant correlation
with RVD. Patients with an RVD score $ 2 had a higher
incidence of RVD (19%, 34%, and 74% for risk scores of
2, 3, and 4, respectively). The authors recommended that
echocardiography be routinely performed in all patients
with ARDS with a score $ 2. There is a lack of data
that illustrate a sequential relationship between any of
the four parameters listed and the severity of RVD.
Although the RVD risk score has not yet been validated,
it may provide a framework whereby researchers could
test the hypothesis that early echocardiography and
early implementation of RV protective measures and
modification of the preceding physiological parameters
might prevent RV failure and reduce mortality in
patients with ARDS.17

Pulmonary Vascular Tone

Elevated pulmonary vascular tone in ARDS could be
due to a variety of causes, including an imbalance
between vasoconstrictors and vasodilators, endothelial
injury, arteriolar hypoxic pulmonary vasoconstriction,
hypercapnia, acidemia, in situ thrombosis, and
muscularization of nonmuscular arteries (pulmonary
vascular remodeling).27-29 Raised PVR may lead to acute
distention of the thin-walled and “afterload-sensitive”
right ventricle, resulting in increased oxygen demand,
decreased right coronary artery perfusion pressure with
reduced oxygen delivery, and tricuspid annular
dilatation worsening tricuspid regurgitation and
exacerbating volume overload. In addition, RV
dilatation can cause shifting of the interventricular
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septum toward the left, impeding LV diastolic filling and
reducing LV stroke volume, potentially leading to
systemic hypotension. This phenomenon is known as
ventricular interdependence.26,30 It has been shown
that pulmonary hypertension may cause RV diastolic
dysfunction, which is related to impaired RV mechanical
compliance and elevated RV afterload and does
improve by reducing the afterload. RV diastolic
dysfunction and diastolic ventricular interaction again
has not been systematically studied in the context of
ARDS.31

The Role of CO2

Contributors to acute hypercapnia in ARDS include
physiological factors such as increased alveolar dead
space causing ventilation-perfusion mismatch and
clinical factors such as a low tidal volume/high
respiratory rate ventilatory strategy to reduce the risk of
ventilator-induced lung injury. The role of acute
hypercapnic acidemia in the pathophysiology of ARDS
is not fully understood. Despite its potentially beneficial
anti-inflammatory effect on pulmonary cytokines,32,33

hypercapnia could also exacerbate hypoxic pulmonary
vasoconstriction or induce direct vasoconstriction of the
pulmonary vasculature by increasing extracellular Ca2þ

influx.34,35 Pulmonary vasoconstriction induces an
increase in arterial elastance (Ea) of the pulmonary
vascular system, whereas the RV system is characterized
by RV elastance (Ees). The ratio Ees to Ea reflects the
mechanoenergetic aspects of right ventricle/pulmonary
vascular coupling, which is of paramount importance for
cardiovascular performance, as it determines RV systolic
pressure and RV stroke volume. When the Ees to Ea
ratio is > 1, the system is coupled, providing adequate
RV performance, stroke work, and right coronary
blood flow. A hypercapnia-induced increase in RV
afterload results in increased Ea, and RVD may develop
due to uncoupling between the RV and pulmonary
circulations.36,37 Experimental studies have shown that
the buffering of respiratory acidosis is associated with
worsening of ARDS.38 This observation suggests that
some of the beneficial anti-inflammatory effects of
respiratory acidosis are likely to be due to the acidemia
rather than to hypercapnia alone.38 A secondary
analysis of the ARDS Network trial data3 showed that
hypercapnic acidemia in patients with ARDS who
underwent mechanical ventilation with high tidal
volumes (12 mL/kg predicted body weight) was
associated with reduced 28-day mortality. However,
the authors did not examine the effect of hypercapnic
acidemia on outcomes at various time points or over

time, and because of its observational nature, this
study could not prove a cause-effect relationship
between hypercapnic acidemia and mortality benefit.39

It has been demonstrated that patients with severe
ARDS and hypercapnic acidemia induced by low tidal
volume ventilation and high positive-end expiratory
pressure (PEEP) at a constant plateau pressure are likely
to experience RVD.40 Vieillard-Baron et al24 found that
PaCO2 is an independent predictor of RVD in patients
with ARDS receiving protective ventilation (P < .0001).
In another study that included 200 patients with
moderate to severe ARDS, PaCO2 > 60 mm Hg was
strongly associated with RVD (OR, 3.70; 95% CI,
1.32-10.38; P ¼ .01].19

Positive-Pressure Ventilation

Patients with ARDS typically have considerably reduced
functional residual capacity (FRC) and overall lung
compliance and a need for elevated airway pressure to
adequately maintain alveolar recruitment. This approach
may have deleterious hemodynamic consequences.41

Positive-pressure mechanical ventilation causes an
increase in transpulmonary pressure (difference between
alveolar and pleural pressure), which worsens
nonphysiological lung “stress” and strain (ratio between
tidal volume and functional residual capacity).42 PEEP,
tidal volume, and lung compliance are the main
determinants of lung stress caused by positive-pressure
invasive ventilation, which highlights the need for optimal
mechanical ventilation strategies. When transpulmonary
pressure exceeds pulmonary venous pressure, it acts as a
back pressure for pulmonary venous return and may
increase RV afterload.43,44

Increased PVR occurs at the extremes of lung volume.
At low volumes, it is caused by the elastic recoil forces of
the lung parenchyma causing extra-alveolar vessel and
terminal airway collapse, leading to alveolar hypoxia and
hypoxic pulmonary vasoconstriction. At high lung
volumes, increased PVR may occur due to collapse of
the alveolar vessels consequent to the tension of the
alveolar wall. When PVR is graphically plotted against
lung volume, a U-shaped relationship is observed, with
the lowest PVR occurring at the FRC.45

In ARDS, the distribution of intrapulmonary gas is
heterogeneous with collapsed alveoli coexisting with
normally aerated lung areas.46 High PEEP levels can
cause hyperinflation of the normally aerated alveoli and
intra-alveolar vessel compression, leading to high PVR
and increased RV afterload.47 The effect of PEEP on RV
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outflow impedance in the context of ARDS has been
evaluated by pulmonary artery flow velocity using TEE.
High PEEP (13 # 4 cm H2O) was associated with a
significant reduction in RV stroke index.47 High plateau
pressure (> 27 cm H2O) has been associated with a high
incidence of RVD (up to 60%) and high mortality rates
(up to 42%) in ARDS.48 Driving pressure (as a surrogate
of lung stress) has recently been found to be a ventilation
variable that is strongly associated with survival and
RVD risk.17,49 This suggests that it is the stress and
strain on the lung that poses risks of abnormal RV
physiology. Unfortunately, there is a lack of prospective
data on whether a “low-pressure” ventilatory approach
is “protective of the right ventricle.” Also, it remains
unknown as to how much the chest wall contributes to
the calculated airway pressures and whether this needs
to be taken into account when attempting to risk stratify
patients for RVD in ARDS.

Sepsis

In sepsis-related ARDS (pulmonary or extrapulmonary),
RVD can be an early phenomenon and appears to be
associated with increased circulating levels of
endothelin-1 (ET-1).50 High ET-1 levels in sepsis are
inversely correlated with RV function. A proposed
mechanism for RVD in sepsis is increased PVR due to
endothelial dysfunction and altered vasoreactivity,
despite systemic vasodilatation (SVR).26,50,51

Diagnosis of Acute RVD

Hemodynamic Monitoring

Standard hemodynamic monitoring can provide direct
and indirect evidence suggesting the development of
acute RVD. It is important to identify and diagnose
patients with RVD early so that interventions aimed at
reducing sequelae may be initiated.

Arterial line monitoring can detect the development of
pulse pressure variation (PPV) and allows real-time BP
monitoring. PPV refers to dynamic changes of arterial
pulse pressure (systolic blood pressure – diastolic blood
pressure) induced by mechanical ventilation, which can
be derived from the arterial pressure waveform analysis
and is thought to predict fluid responsiveness. In the
context of low tidal volumes and a low pulmonary
compliance state such as in ARDS, the presence of PPV
may signify either volume responsiveness or elevated RV
afterload.52-54 Of note, for the assessment of PPV to be
valid, the patient must not be breathing spontaneously
and must be receiving an appropriate controlled tidal

volume and have a regular heart rhythm. If the patient
is deemed to be potentially volume responsive, a
volume challenge may be given that will both confirm
hypovolemia and subsequently improve RV outflow.
If the PPV is due to elevated RV afterload (and not
secondary to reduced RV preload), a fluid challenge
will not reduce the PPV and may in fact worsen RV
outflow. In such cases, PPV cannot be used as a reliable
predictor of fluid responsiveness. However, in patients
with elevated PPV who are “fluid-unresponsive,” RVD
due to elevated RV afterload should be suspected and
investigated promptly with echocardiography.55

CVP monitoring directly measures right atrial pressure,
and although it is considered a poor predictor of fluid
responsiveness, it could be useful when values are
particularly low or high (patients with very low CVP are
likely to be “fluid responsive” and those with very high
CVP are likely to be “nonresponders”). A rapid increase
in CVP following a fluid challenge could serve as an
indicator of impending RVD or RVF when fluid
resuscitation exceeds the normal RV unstressed volume
operation range.56,57

Pulmonary Artery Catheter

The traditional method of diagnosing RVD was to use a
PAC. Given the potential risks of placement and the
development of less invasive methods of investigating
cardiac function, the use of a PAC is now much less
common.57

If a PAC is placed, the usual findings suggestive of
RVD include an elevated CVP (> 20mm Hg), a CVP
greater than pulmonary artery occlusion pressure, a
low cardiac index (< 2 L/min/m2), and mixed venous
oxygen saturation < 55%. The PVR is usually elevated
in ARDS.22 In addition, a PAC can be used to estimate
the transpulmonary gradient (mean PA pressure –
pulmonary artery occlusion pressure), which is also
a marker of pulmonary vascular dysfunction that
better estimates the resistance of the pulmonary
vasculature in ARDS in which West zones 1 and 2 can
be abnormally extended due to increased transpulmonary
pressure.22

The challenges of using the PAC include the risks of
insertion and measurement of the wedge pressure. Its
advantages, once placed, are the ease and rapidity of
performing repeated measurements, particularly if many
physiological interventions are made. However, the use
of a PAC in ARDS should probably be reserved for those
patients with echocardiographic evidence of severe RVD
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who are at risk of RVF or patients with established RVF
to guide inodilator therapy or pulmonary vasodilator
therapy, or both, and monitor the effect of ventilatory
strategy on PVR.

There is a lack of data demonstrating the links between
the rate of change in PVR and its implications for the
management and prognosis of patients with ARDS. A
potentially novel approach for these patients would be
the use of pulmonary vasodilators early in the course of
ARDS and testing of the hypothesis that this strategy
might improve clinical outcomes.

Echocardiography

The availability of and experience with critical care
echocardiography has increased exponentially over the
past decade. Now echocardiography is generally readily
available and accessible in the ICU. Lhéitier et al19

showed that TEE is superior to TTE for diagnosing RVD
in mechanically ventilated patients with moderate to
severe ARDS. The authors found that using TEE as a
reference, the sensitivity of TTE for diagnosing RVD in
ARDS was only 60% (95% CI, 41%-77%). The main
limitation of the TEE approach is that serial repeated
studies are more labor intensive and are potentially
risky.19,58,59 RVD determined by echocardiography is
commonly defined as the presence of features of
pressure or volume overload (or both) of the right
ventricle.14 RV volume overload is defined as dilatation
of the right ventricle. RV pressure overload is defined as
dyskinetic movement of the septum during end-systole.
RV volume overload can lead to pressure overload and
vice versa.60

There are several qualitative and quantitative methods of
interrogating the right ventricle using echocardiography.
Two-dimensional echocardiography provides a visual
image of the right ventricle. Based on this, RV global
systolic function can be estimated. Measurement of
the RV end-diastolic dimensions and volumes can be
made, and comparison with the left ventricle can be
performed. The right ventricle is considered dilated
when the RVEDA to LVEDA ratio is > 0.6.61,62 In
addition, evidence of systolic and diastolic septal
dyskinesia (suggestive of RV pressure overload) can be
determined on parasternal short-axis and apical four-
chamber views.

Quantitative assessment of RV function can be
performed by several methods. TAPSE can be obtained
routinely and correlates well with RV function.12,15,16,58

Interpretation of TAPSE has two potential pitfalls,

however; it assumes the single segment represents the
function of the entire right ventricle, and its measurement
is angle dependent.63

The role of echocardiographic markers of global RV
systolic function (such as RV index of myocardial
performance, Doppler tissue imaging-derived S’ wave
velocity, RV strain, and RV strain rate or three-
dimensional echocardiographic RV ejection fraction12)
as early predictors of RVD in ARDS have not been
studied to date. The prognostic implications of measures
of diastolic RVD in ARDS (such as the ratio of early
tricuspid inflow to annular diastolic velocity63) have not
been investigated either. It is possible that a predictive
model based on echocardiographic and clinical (Berlin
ARDS criteria and Mekontso Desapp clinical risk score)
data could be developed to facilitate clinical decision-
making in patients with ARDS.

Advanced Cardiac Imaging and Biomarkers

Currently there is a limited role for advanced cardiac
imaging such as cardiac CT or MRI. The latter is
hindered by its availability and also the need for low
heart rates to enable appropriate gating and study
acquisition (this is often technically difficult with
critically ill patients). Attempts to demonstrate cardiac
CT’s ability to predict RV failure have been largely
unsuccessful to date.64,65

Limited data exist on the role of B-type natriuretic
peptide in the prognostication of patients with ARDS
with RVD. In contrast, a recent study looking at patients
with moderate to severe ARDS demonstrated that an
elevated troponin level, in conjunction with
echocardiographic findings of RVD, identified a high-
risk subgroup with elevated mortality.18

Treatment
The treatment of RVD can be divided into several
physiological targets, including optimizing RV preload,
increasing RV contractility, and reducing RV afterload.
Extracorporeal life support (venovenous or venoarterial
extracorporeal membrane oxygenation [ECMO],
extracorporeal CO2 removal [ECCO2R])may be considered
as rescue therapy in refractory cases of ARDS and RVF.

Optimization of RV Preload

Meticulous management of volume status is crucial for a
failing right ventricle, as both low and high filling
pressures may result in reduced cardiac output. In
patients in whom hypovolemia is suspected, volume
loading may increase cardiac output.66 This must be
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done cautiously, as elevated pulmonary pressures (mean
pulmonary artery pressure [PAP] > 30 mm Hg), as seen
in ARDS, may prevent a resultant increase in RV
contractility and cardiac output.30 Excessive volume
loading inhibits stroke volume by altering the geometry
of the right ventricle, resulting in RV dilatation,
ventricular interdependence, and impaired LV diastolic
compliance.67 RV dilatation may also cause increased
tricuspid regurgitation and right-sided venous
congestion. A “mini fluid challenge” (100 mL of colloid
or crystalloid fluid over 1 min) has been shown to
predict fluid responsiveness in patients with circulatory
failure receiving low tidal volume ventilation and may be
a safer, yet rational, approach in patients with suspected
RVD, as a small rise in cardiac filling pressures may
lead to a greater increase in stroke volume during
administration of a “mini fluid bolus” (steep portion of
the Frank-Starling curve).68,69

When found, the treatment of elevated filling
pressures could be instituted in an attempt to restore
RV geometry and reduce RV dilatation and ventricular
interdependence. The use of diuretic agents is the
simplest approach, but hemofiltration and continuous
renal replacement therapy (CRRT) may be required if
renal function is inadequate. However, there is no
empirical evidence to support the routine use of diuretic
agents or CRRT in patients with ARDS with RVF, and
this recommendation is based on clinical experience
only. In addition, overdiuresis or excessive fluid removal
on CRRT may rapidly lead to “underfilling” of the right
ventricle (which is preload dependent) and a decrease in
stroke volume.

Increasing RV Contractility

Ensuring that the right ventricle has an appropriate
heart rate and rhythm can be among the simplest
methods of improving RV contractility. Right atrial
contraction contributes up to 40% of RV filling and is
of more importance when RV compliance is poor.70,71

Maintaining sinus rhythm avoids atrioventricular
dyssynchrony and ensures the contribution of atrial
kick to RV filling. Patients with atrial fibrillation should
be considered for restoration of sinus rhythm by
pharmacologic means or cardioversion. Likewise, if
heart block is present, placement of a temporary atrial
pacemaker could be considered. Tachyarrythmias can
also lead to a reduction in filling time, and thus heart
rate should be optimized to diastolic filling.

Initiation of vasoactive support can be important
not only in improving RV contractility but also in

preventing hemodynamic instability. Hypotension can
lead to RV ischemia and subsequent further impairment
of RV function that can quickly spiral into a vicious
cycle. Targeted systemic pressure should be higher than
pulmonary pressure.

Maintenance of an appropriate systemic pressure while
not excessively increasing or even decreasing PAP are
the traits of an ideal vasopressor. Norepinephrine has
been shown in both animal models and humans to
increase SVR while reducing PAP.71,72 Norepinephrine
at high doses was shown to increase PVR over SVR
preferentially and thus at high doses should be used
cautiously. Phenylephrine has been shown to be not as
effective as norepinephrine and in certain situations to
actually worsen RV function.29 Vasopressin is also
another vasopressor that preferentially increases SVR
over PVR and thus can be useful to maintain systemic
pressure without worsening RV afterload. At low doses
(< 0.03 units/min), vasopressin causes pulmonary
vasodilation, but at higher doses it increases PVR and
causes coronary vasoconstriction and should therefore
be used with caution.73,74

Dobutamine and milrinone are inodilators that provide
inotropism and vasodilation of the systemic and
pulmonary vasculature.75,76 Because of the profound
systemic vasodilating capabilities of these agents,
systemic hypotension can result, and thus they often
need to be paired with a vasoconstrictor. Vasopressin,
in contrast to norepinephrine, has been shown to be
more beneficial at reducing PAP.77 When comparing
dobutamine and milrinone, although there are
equivalent reductions in PVR and improvements in
cardiac output between the agents, there appears to be
a greater reduction in SVR and pulmonary capillary
wedge pressure when using milrinone.78 Levosimendan,
a calcium sensitizing agent with inotropic and
vasodilatory properties, has been shown to improve RV
performance in patients with ARDS and septic shock.79

As an inodilator, it could potentially improve right
ventricle/pulmonary vascular coupling, but it does not
have a proven mortality benefit in the treatment of
patients with ARDS and RVF.79 Levosimendan is
approved for use in Europe but does not have US Food
and Drug Administration approval. The aforementioned
inotropic agents should be used with caution, as they can
cause tachyarrhythmias and hypotension.

Reducing RV Afterload

Reducing RV afterload in patients with ARDS with RVD
can be achieved through the use of pulmonary
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vasodilators, reversal and control of precipitating factors
(hypoxemia, hypercapnia, acidemia, hypothermia) and right
ventricle-protective mechanical ventilation strategies.28

Pulmonary vasodilators: It is strongly recommended
that inhaled rather than systemic pulmonary
vasodilators be used when systemic hypotension is
anticipated.28 iNO increases intracellular cyclic
guanosine monophosphate and has been shown to
transiently improve the PaO2 to FIO2 ratio and cardiac
output in patients with ARDS and RVD.80,81 It is
recommended that iNO be used as a short-term therapy
to improve oxygenation indices in ARDS, as it does not
improve mortality regardless of ARDS severity and has
also been associated with acute kidney injury.28,82,83

Inhaled prostanoids such as prostaglandin I2 (prostacyclin)
and its analogues such as iloprost reduce PVR and improve
RV performance. Use of nebulized iloprost in patients with
ARDS and pulmonary hypertension has been associated
with an improvement in gas exchange without causing
hemodynamic instability.28,84 Oral sildenafil, a
phosphodiesterase-5 inhibitor, has been shown to
decrease RV systolic overload and enhance RV
performance in patients with ARDS and RVD.85

The use of pulmonary vasodilators should be
individualized, as they can worsen oxygenation and shunt
fraction.86 Pulmonary vasodilation early in the course of
ARDS in patients at risk of RVD (eg, RVD risk score > 2)
and its impact on clinical outcomes has not been studied.

Right ventricle-protective ventilation strategies:
Understanding lung-heart clinical crosstalk in ARDS
is likely to be of paramount importance, as RVD does occur
in patients subjected to lung-protective ventilation. The
main proposed components of a right ventricle-protective
ventilation strategy include (1) minimizing lung stress by
limiting plateau and driving pressures, (2) prevention or
reversal of pulmonary vasoconstriction by improving
oxygenation and strict CO2 control, and (3) prone
positioning to unload the right venricle.44,87

It has been shown that “low-stress” ventilation with
plateau pressure < 26 to 28 cm H2O is associated with a
lower incidence of RVD.48 Driving pressure (plateau
pressure – total PEEP) has also been associated with
mortality and the development of RVD in ARDS.20,49,87

It is recommended that plateau pressure be kept at
< 27 cm H2O and driving pressure at < 18 cm H2O.

44

High PEEP recruits collapsed alveoli but can cause
overdistention of functional lung areas. Both atelectasis
and overdistention result in increased PVR and high
RV afterload. The optimal right ventricle-protective

PEEP levels (balance between alveolar recruitment
and overdistention) and titration of PEEP remain
controversial and the effect of a “low lung stress”
ventilation approach on the right ventricle needs to be
validated in large RCTs.

Prone ventilation in ARDS can facilitate reduction in RV
afterload by recruiting collapsed alveoli without causing
overdistention88 and reducing airway pressure, PaCO2, RV
enlargement, and septal dyskinesia.89 A multicenter RCT
(Proning Severe ARDS Patients [PROSEVA]) showed a
mortality benefit in patients with severe ARDS who
underwent ventilation in the prone position.4 In addition,
the prone group had a lower incidence of cardiac arrest
(6.8% vs 13.5%; P < .05) and shock (14.8% vs 21%),
which may suggest a positive impact of prone positioning
on hemodynamics.44 A PaO2 to FIO2 ratio < 150 mm Hg
is an accepted indication for prone positioning,4 but
timing and optimal duration of prone ventilation in
patients with ARDS and RVD have not been established.
Whether prone positioning at the onset of mechanical
ventilation in severe “Berlin” ARDS prevents RVD
remains unknown. A strategy whereby patients with
ARDS undergo ventilation in the prone position based on
their hemodynamic status (presence of RVD) and not the
PaO2 to FIO2 ratio has not been investigated either.

Extracorporeal Life Support

Venovenous ECMO may be used in cases of severe
hypoxemia (PaO2 to FIO2 ratio < 150 mm Hg, on FIO2
$ 0.6 and PEEP $ 5 cm H2O) despite optimization
of mechanical ventilation settings (higher PEEP and
mean airway pressure, lung recruitment maneuvers),
neuromuscular blockade, and inhaled pulmonary
vasodilators.4,90 Venovenous ECMO in ARDS has been
shown to effectively unload the right ventricle by
correcting hypoxemia or hypercapnia, or both, and
facilitating a least-damaging (low-pressure) ventilatory
approach.90

Venoarterial ECMO is an option for mechanical
circulatory support in patients with ARDS and RVF and
cardiogenic shock that is refractory to vasoactive drugs.
Venoarterial ECMO (percutaneous or intrathoracic)
provides respiratory and cardiovascular support as
deoxygenated blood bypasses both the failing right
ventricle and the lungs, enhancing unloading of the right
ventricle.91

Normocapnia in ARDS can be challenging to achieve
with conventional mechanical ventilation. An increase
in mechanically triggered mandatory breaths can cause
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increased auto-PEEP, worsening hypercapnia and
RVD.44 ECCO2R devices can be used as adjuncts to
invasive mechanical ventilation and could potentially
help preserve or restore optimal right ventricle-arterial
coupling and prevent RVF in patients with ARDS.92

Experimental evidence suggests that ECCO2R facilitates
protective ventilation, reduces minute ventilation by
50%, and improves RV function.93

Although extracorporeal life support can theoretically
reverse physiological causes of RVD (hypoxemia/
hypercapnia) and facilitate right ventricle-protective
ventilation, its effect on RVD and ARDS mortality has
yet to be proved in rigorous controlled trials.

Conclusions
RVD and RVF are associated with adverse outcomes in
patients with ARDS. Understanding the pathophysiology
of RVD and the altered cardiopulmonary interactions in
ARDS is crucial for the bedside management of these
patients. Future research should focus on validation of
clinical risk scoring systems to select patients at risk of
RVD, immediate assessment by echocardiography, and
early implementation of therapeutic measures, such as
early pulmonary vasodilation and prone positioning, that
may improve prognosis in ARDS. Echocardiographic
markers such as TAPSE and RV tissue doppler imaging S’
velocity could serve as predictors of early RVD and guide
therapeutic interventions based on temporal changes in
RV function, which is another high-yield area of future
study. Finally, the right ventricle-protective ventilatory
strategy combined with extracorporeal support may be
key in the management of patients with established RVD
and form part of ARDS management guidelines if
validated in prospective pragmatic trials.
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