CHEST

Official publication of the American C ollege of Chest Physicians

Predicting Success in Weaning From Mechanical Ventilation

Maureen Meade, Gordon Guyatt, Deborah Cook, Lauren Griffith, Tasnim Sinuff, Carmen Kergl, Jordi Mancebo, Andres Esteban and Scott Epstein

Chest 2001;120;400S-424S DOI 10.1378/chest.120.6_suppl.400S

The online version of this article, along with updated information and services can be found online on the World Wide Web at: http://chestjournal.chestpubs.org/content/120/6_suppl/400S.fu II.html

CHEST is the official journal of the American College of Chest Physicians. It has been published monthly since 1935. Copyright 2001 by the American College of Chest Physicians, 3300 Dundee Road, Northbrook, IL 60062. All rights reserved. No part of this article or PDF may be reproduced or distributed without the prior written permission of the copyright holder. (http://chestjournal.chestpubs.org/site/misc/reprints.xhtml)

(http://chestjournal.chestpubs.org/site/misc/reprints.xhtmi, ISSN:0012-3692

Downloaded from chestjournal.chestpubs.org by guest on October 4, 2009 © 2001 American College of Chest Physicians

Predicting Success in Weaning From Mechanical Ventilation*

Maureen Meade, MD; Gordon Guyatt, MD; Deborah Cook, MD; Lauren Griffith, MSc; Tasnim Sinuff, MD; Carmen Kergl, RRT; Jordi Mancebo, MD; Andres Esteban, MD; and Scott Epstein, MD

We identified 65 observational studies of weaning predictors that had been reported in 70 publications. After grouping predictors with similar names but different thresholds, the following predictors met our relevance criteria: heterogeneous populations, 51; COPD patients, 21; and cardiovascular ICU patients, 45. Many variables were of no use in predicting the results of weaning. Moreover, few variables had been studied in > 50 patients or had results presented to generate estimates of predictive power. For stepwise reductions in mechanical support, the most promising predictors were a rapid shallow breathing index (RSBI) < 65 breaths/min/L (measured using the ventilator settings that were in effect at the time that the prediction was made) and a pressure time product < 275 cm H₂O/L/s. The pooled likelihood ratios (LRs) were 1.1 (95% confidence interval [CI], 0.95 to 1.28) for a respiratory rate [RR] of < 38 breaths/min and 0.32 (95% CI, 0.06 to 1.71) for an RR of > 38 breaths/min, which indicate that an RR of < 38 breaths/min leaves the probability of successful weaning virtually unchanged but that a value of > 38 breaths/min leads to a small reduction in the probability of success in weaning the level of mechanical support. For trials of unassisted breathing, the most promising weaning predictors include the following: RR; RSBI; a product of RSBI and occlusion pressure < 450 cm H₂O breaths/min/L; maximal inspiratory pressure (PImax) < 20 cm H₂O; and a knowledge-based system for adjusting pressure support. Pooled results for the power of a positive test result for both RR and RSBI were limited (highest LR, 2.23), while the power of a negative test result was substantial (ie, LR, 0.09 to 0.23). Summary data suggest a similar predictive power for RR and RSBI. In the prediction of successful extubation, an RR of < 38 breaths/min (sensitivity, 88%; specificity, 47%), an RSBI < 100 or 105 breaths/min/L (sensitivity, 65 to 96%; specificity, 0 to 73%), PImax, and APACHE (acute physiology and chronic health evaluation) II scores that are obtained at hospital admission appear to be the most promising. After pooling, two variables appeared to have some value. An RR of > 38 breaths/min and an RSBI of > 100 breaths/min/L appear to reduce the probability of successful extubation, and Pimax < 0.3, for which the pooled LR is 2.23 (95% CI, 1.15 to 4.34), appears to marginally increase the likelihood of successful extubation. Judging by areas under the receiver operator curve for all variables, none of these variables demonstrate more than modest accuracy in predicting weaning outcome. Why do most of

these tests perform so poorly? The likely explanation is that clinicians have already considered the results when they choose patients for trials of weaning. (CHEST 2001; 120:400S-424S)

Key words: extubation; mechanical ventilation; metaanalysis; methods; modes; reintubation; systematic reviews; weaning

Abbreviations: APACHE = acute physiology and chronic health evaluation; CABG = coronary artery bypass grafting; CI = confidence interval; CVICU = cardiovascular ICU; FIO_2 = fraction of inspired oxygen; LR = likelihood ratio; NIF = negative inspiratory force; OR = odds ratio; $P_{0.1}$ = airway pressure 0.1 s after the occlusion of the inspiratory port of a unidirectional balloon occlusion valve; PImax = maximal inspiratory pressure; ROC = receiver operating characteristic; RR = respiratory rate; RSBI = rapid shallow breathing index

C ritical-care clinicians must carefully weigh the benefits of rapid liberation for mechanical ventilation against the risks of premature trials of spontaneous breathing and extubation. The need for accurate prediction applies to all phases of weaning, beginning with reductions in mechanical support, as patients are increasingly able to support their own breathing, followed by trials of unassisted breathing, which often precede extubation, and ending with extubation.

Patients may fail to wean as a result of impaired respiratory center drive or, more frequently as a result of neuromuscular abnormalities including respiratory muscle fatigue, impaired lung mechanics, or impaired gas exchange capability. Patients may successfully be weaned to minimal levels of respiratory support but may still fail extubation as a result of airway abnormalities. Based on experimental data in healthy individuals¹ and animals,² and based on observational data from patients that suggest the development of respiratory muscle fatigue during unsuccessful weaning,³⁻⁶ some investigators postulate that failed trials of discontinuation of mechanical ventilation may precipitate respiratory muscle injury and, ultimately, prolong the duration of mechanical ventilation. Therefore, criteria have been sought to identify patients who are likely to fail, so that premature trials of spontaneous

^{*}From the Departments of Medicine (Drs. Meade, Guyatt, Cook, and Sinuff) and Clinical Epidemiology & Biostatistics (Ms. Griffith), McMaster University, Hamilton, Canada; the Department of Respiratory Therapy (Ms. Kergl), Hamilton Health Sciences Corporation, Hamilton, Canada; the Department of Intensive Care (Dr. Mancebo), University of Barcelona, Hospital de Sant Pau, Barcelona, Spain; the Department of Intensive Care (Dr. Esteban), Hospital Universitario de Getafe, Madrid, Spain; and the Department of Medicine (Dr. Epstein), New England Medical Center, Tufts University, Boston, MA.

This article is based on work performed by the McMaster University Evidence-based Practice Center, under contract to the Agency for Healthcare Research and Quality (Contract No. 290-97-0017), Rockville, MD.

Correspondence to: Deborah Cook, MD, McMaster University, Faculty of Health Sciences Center, Department of Clinical Epidemiology, 1200 Main St West, Hamilton, Ontario, Canada; e-mail: debcook@mcmaster.ca

breathing can be avoided. Moreover, failed trials of extubation have been associated with excess hospital mortality, prolonged ICU and hospital stays, and increased need for tracheostomy.^{7,8}

The predictors of weaning that clinicians currently use, and that investigators have studied, include an assortment of demographic characteristics (ie, age and diagnostic categories), subjective signs (*ie*, diaphoresis and agitation), vital signs and hemodynamic variables (ie, heart rate and BP), lung mechanics (ie, tidal volume and respiratory rate [RR]), gas exchange (ie, PaO₂ and PaCO₂ levels), and severity-of-illness measures (ie, biochemical variables, comorbidities, levels of respiratory support, and levels of nonrespiratory support). Investigators have tested these variables individually, as composite scores or derivations, and as complex systems. Since the reasons that patients fail weaning may vary among different patient populations, the predictors of weaning also may vary. For instance, predictor variables that are useful in patients undergoing cardiac surgery may differ from those that are of value in patients with COPD, and both may differ from predictors that are useful in a general case mix of ICU patients.

In this article, we separate studies into three groups according to the following target populations: a relatively heterogeneous mix of ICU patients; patients with COPD; and patients who had undergone cardiac surgery (Table 1). One can think of three stages in the weaning process. In the first, the clinician progressively reduces, in a stepwise fashion, the level of support. In the second stage, the patient undergoes a trial of unassisted breathing. In the final stage, the clinician extubates the patient. Investigators have addressed prediction at each stage of the process. Thus, we also classified studies according to what the investigators were trying to predict in the following way: the success of stepwise reductions in mechanical support; unassisted breathing trials; extubation; and the result of trials of unassisted breathing plus extubation (Table 1). We include as trials of "unassisted" breathing those trials completed on a low level of pressure support to overcome the additional work of breathing through a ventilator circuit or those completed on a low level of continuous positive airway pressure to offset the loss of physiologic continuous positive airway pressure caused by the presence of an endotracheal tube.

Table	1-Po	pulations	and	Outcomes
-------	------	-----------	-----	----------

Characteristics	Description
Populations	Heterogeneous ICU patients; COPD patients; and cardiac surgery patients
Outcomes that investigators are trying to predict	Success in reducing mechanical ventilatory support; Successful trial of unassisted breathing; Success of extubation; and Successful unassisted breathing and extubation trials

Eligibility Criteria

We sought studies that included any patients receiving mechanical ventilation in an ICU setting that examined potential predictors of success in stepwise reductions in mechanical ventilation, trials of spontaneous breathing, extubation, or any combination of these outcomes.

We also included studies of the predictors of the duration of mechanical ventilation in cardiac surgery patients and COPD patients. Randomized trials and controlled clinical trials were included. We excluded predictors of self-extubation. Although they are representative of an important body of literature in this field, we excluded studies that were designed primarily to evaluate the reproducibility in the measurement of various predictors of weaning success or duration of ventilation.

Search for Relevant Studies

To identify relevant studies, we searched MEDLINE, Excerpta Medica Database, HEALTHStar, CINAHL (Cumulative Index to Nursing and Allied Health Literature), the Cochrane Controlled Trials Registry, and the Cochrane Data Base of Systematic Reviews from 1971 to September 1999, and personal files. We examined the reference lists of all included articles for other potentially relevant citations. In addition, we hand-searched the respiratory therapy journal *Respiratory Care* from 1997 to 1999. We did not explicitly search for unpublished literature. Our search strategies are available on request.

Two reviewers examined each title and abstract. Reviewers included either two of the investigators or one investigator and a senior respiratory therapist. We took a comprehensive approach and retrieved all articles that either reviewer considered to be possibly eligible. Two reviewers also examined the full text and made final decisions regarding eligibility based on the inclusion and exclusion criteria described above. These decisions were made unblinded to the source, authors, and conclusions of each study. Disagreements were resolved by consensus.

Data Abstraction

Data were abstracted and methodological quality was assessed in duplicate by two of five respiratory therapists and five intensivists. One of the senior investigators rechecked the final data abstraction.

Depending on the data available to us, we reported the results of studies of weaning predictors in a variety of ways. These include the following: the means or medians in patients who were successfully and unsuccessfully weaned; the proportions of patients with results more extreme than the specified thresholds; sensitivity, specificity, likelihood ratios (LRs), or predictive values; Pearson correlation coefficients; and χ^2 tests, Student's *t* tests, analysis of variance, and univariate and multivariate regressions. We implemented a process for data abstraction that allowed for the recording of all data types.

Study results may be influenced by the extent to which investigators control for important potential sources of bias in predicting weaning success and failure. Therefore, we also recorded aspects of study design, including the following: (1) whether investigators enrolled a representative sample of patients (or, alternatively, whether *selection bias* was evident); and (2) whether those making weaning decisions or assessing outcomes were aware of predictor variables (*ie*, blinding). Finally, the applicability of study results depends on the adequate reporting of information related to patient populations and experimental methods. We recorded this information as well.

Relevant Predictors

Because of the very large number of predictor variables, our goal was a manageable presentation of the data. We present the results only for those studies in which predictors showed even a modest potential for differentiating success from failure in weaning. We developed a number of guidelines for what we considered to be a modest potential for differentiating success from failure.

- 1. We present all clearly specified predictors for which results could be recorded in 2×2 tables if there was an associated biologically sensible LR of > 2 or < 0.5.
- 2. When investigators presented results as means and SDs of the success and failure groups, we present predictors if the

difference in means between the two groups was greater than one half of the smaller of the SDs of the two groups.

3. When there was no information about the power of the predictor in terms of either LRs or the distributions of predictor results in the success and failure groups, we included predictors with a statistically significant association with the outcome of interest (for instance, on multiple regression analysis).

In many instances, a predictor met one of these three criteria in some but not all studies. When the results differed across studies within one of the three populations, we included the predictor, unless it was not predictive in the majority of studies and in the majority of patients. For example, if only one of many studies found a predictor to be of value, we present the results with this predictor if the study sample size was > 50% of the total sample size of all studies that examined that predictor.

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Ve, L/min	G, T	Linton et al ¹² /1994	27	8.8†	
VE, 10 L/min	S	Rivera and Weissman ¹³ /1997	40	8.1‡ 90 (78–102)§ 50 (18–82)	
RR	G, T	Linton et al ¹² /1994	27	14† 12‡	< 0.01
	G	Stroetz and Hubmayr ¹⁴ /1995	31	14.7 (3.4)¶ 19.8 (5)#	0.39
RR, 22 breaths/min	S	Rivera and Weissman ¹³ /1997	40	84 (70–98)§ 76 (49–103)	
VT (mL)	G, T	Linton et al ¹² /1994	27	542† 602‡	
	S	Rivera and Weissman ¹³ /1997	40	410 (100)** 380 (90)††	0.38
VC, L	G, T	Linton et al ¹² /1994	27	1.1† 0.9‡	
RSBI, 65 breaths/min/L	S	Rivera and Weissman ¹³ /1997	40	90 (78–102)§ 80 (55–105)	
PImax, cm H ₂ O	G	Stroetz and Hubmayr ¹⁴ /1995	31	42 (5)¶ 28 (6)#	0.08
$\mathrm{P_{0.1},\ cm\ H_2O}$	G, T	Linton et al ¹² /1994	27	-0.46^{\dagger} 2.3 [‡]	
$P_{0.1}, 4.5 \text{ cm H}_2O$	S	Rivera and Weissman ¹³ /1997	40	100§ 100	
Pressure time product, 275 cm $\rm H_2O/L/s$	S	Rivera and Weissman ¹³ /1997	40	100§ 80 (55–105)	
Total PEEP, cm $\rm H_2O/L/s$	S	Rivera and Weissman ¹³ /1997	40	6.9 (2.3)** 8.9 (2.7)††	0.02
Oxygen consumption during controlled ventilation, mL/min	G, CVS	Oh et al ¹⁵ /1991	20	233.3 (59.0)** 205.4 (44.3)††	0.29

 Table 2—Predictors of Success in Reducing Mechanical Ventilatory Support*

 $*\dot{V}E$ = minute ventilation; VT = tidal volume; VC = vital capacity; G = general medical/surgical ICU case mix; T = trauma; S = surgical ICU; CVS = cardiovascular surgery patients; PEEP = positive end-expiratory pressure.

[†]Median of success.

‡Median of failure.

§Sensitivity (range).

||Specificity (range).

¶Mean (SE) of success.

#Mean (SE) of failure.

**Mean (SD) of success.

††Mean (SD) of failure.

Terminology

We use the following terminology in our interpretation and presentation of test results. We classify a test result as positive if it increases the likelihood of successful weaning (sensitivity is therefore the proportion of patients who have experienced successful weaning who have a positive test result) and as negative if it decreased the likelihood of successful weaning (specificity is then the proportion of patients whose weaning failed who had a negative test result). When using LRs, an LR of 1 means that the posttest probability is the same as the pretest probability and, thus, that the test result is unhelpful. Values of 1 to 2 (which raise probability as much as values of 1 to 0.5 lower the probability) change probability very little, values of 2 to 5 or 0.5 to 0.2 lead to small changes in probability, and values of > 10 or < 0.1 lead to large changes in probability.

Statistical Analysis

If we identified more than one study examining a relevant predictor and presenting these data in a manner allowing the creation of a 2×2 table, we summarized data in the form of LRs.9 The majority of studies, however, presented data only as group means and SDs. To transform these data into LRs, we tested the assumption of normality by inspecting the mean and SD for skewness. To do so, we noted the occasions on which the value obtained by adding 2 SDs to the mean and subtracting 2 SDs from the mean yielded clinically implausible values. If we could assume normality, knowing the total sample size and the number of patients in the successfully and unsuccessfully weaned groups of patients, we estimated the number of patients in each cell of a 2×2 table. We used the predictor threshold that was most often provided by the investigators to create these LRs. We calculated confidence intervals (CIs) for all summary measures.¹⁰

Where appropriate, we pooled data across studies to narrow the 95% CIs around estimates of accuracy in prediction. Using these data transformations, we calculated the pooled LR of a positive test result, the pooled LR of a negative test result, the pooled sensitivity and specificity of a given predictor threshold, and an associated pooled odds ratio (OR).¹¹ We did not pool LRs across studies in which some investigators presented their results as binary variables while others presented their results as continuous variables. Whenever we could pool three or more studies, we also constructed a summary receiver operating characteristic (ROC) curve. We tested ROC curves for the presence of a threshold effect (*ie*, the presence of a natural cutoff, or threshold, value), and for accuracy (using Q tests and area under the curves).

Definitions of Predictor Variables

Investigators defined two variables, maximal inspiratory pressure (PImax) and negative inspiratory force (NIF), in many different ways (*ie*, "PImax," "NIF," negative inspiratory pressure ["NIP"], and maximal inspiratory pressure ["MIP"]). For the purposes of this report, we refer to PImax when investigators described PImax that was measured in an occluded airway after 20 s starting from residual volume, and we refer to NIF when negative pressure was measured after at least 1 s of inspiratory effort against an occluded airway and the most negative value of three attempts was recorded.

Results

We identified 65 observational studies^{12–76} of weaning predictors that were reported in 70 publications, of which 2 studies^{75,76} are not included in our tables. Of these, 41 studies included heterogeneous ICU populations, 6 included only patients with COPD, and 16 studies evaluated weaning predictors in the cardiovascular ICU (CVICU). We found 462 putative weaning predictors. After grouping together predictors with similar names but different thresholds (*ie*, grouping together RR, RR < 35 breaths/ min, and RR < 38 breaths/min), the following numbers of predictors met our relevance criteria in each group: heterogeneous populations, 51; COPD patients, 21; and CVICU patients, 45.

In general, this literature is limited by a lack of blinding; that is, caregivers making decisions about weaning were aware, to some extent (either explicitly or vaguely), of the values of the predictor variables and may have included this information in their bedside assessments. For most predictor variables, this methodological limitation was unavoidable. Only a few notable studies appeared to achieve blinding of both caregivers (*ie*, those deciding on whether or not to reduce mechanical support, to end a trial of unassisted breathing, or to extubate) and outcome assessors. Lack of blinding, which was characteristic of the remaining studies, usually results in inflated estimates of predictive accuracy.

Predictor	Study/Threshold	Study LR + (95% CI)	Summary LR +(95% CI)	Summary LR –(95% CI)	Summary Sensitivity (95% CI)	Summary Specificity (95% CI)
RR (continuous data)	Stroetz and Hubmayr ¹⁴ /38 breaths/min	1.14 (0.87–1.50)	1.10 (0.95–1.28)	0.32 (0.06–1.71)	0.97 (0.92–1.02)	0.13 (0.04–0.22)
	Rivera and Weissman ¹³ /38 breaths/min	1.08 (0.90–1.29)				

Table 3—Pooled Results for Predictors of Success in Reducing Mechanical Ventilatory Support*

*LR + = LR associated with a positive test result; LR - = LR associated with a negative test result.

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Duration of mechanical ventilation prior to weaning					
h	G, N, T	Frutos et al ¹⁶ /1995	73	144.0 (122.4)† 273.6 (120.0)‡	0.003
	R	Del Rosario et al ¹⁷ /1997	49	163.2 (175.2)† 324.0 (506.4)‡	0.10
10 h prior to weaning	R, N, CVS	Dojat et al ¹⁸ /1996	38	$\begin{array}{c} 71 \; (47 94) \\ 62 \; (40 84) \ \end{array}$	
ΫE L/min	R	Del Rosario et al ¹⁷ /1997	49	12.8 (0.6)¶	0.44
10 L/min	R, N	Chatila et al ¹⁹ /1996	100	13.9 (1.6)# 79 (69–89)§ 32 (16–48)	
12 L/min	R, N (men only)	Sassoon and Mahutte ²⁰ /1993	45	40 (23-57) 50 (14-86)	
R breaths/min	R, N	Jabour et al ²¹ /1991	38	26.2 (8.3)†	0.09
	G, N, T	Frutos et al ¹⁶ /1995	73	30.3 (7.5)‡ 24.1 (5.3)†	< 0.001
	R, T	Saura et al 22/1996	30	30.4 (5.5)‡ 21 (1)¶ 22 (2)#	0.35
	R	Del Rosario et al ¹⁷ /1997	49	23 (2)# 25.1 (1.1)¶ 35.2 (3.4)#	< 0.001
30 breaths/min	R, N, CVS	Dojat et al ¹⁷ /1996	38	100§ 76 (57–96)	
38 breaths/min	R, N (men only)	Sassoon and Mahutte ²⁰ /1993	45	97 (91-103) 30 (-3-63)	
√T mL	R, T	Saura et al $^{22}/1996$	30	$450~(20)\P$	0.80
	R	Del Rosario et al ¹⁷ /1997	49	440 (30)# 530 (28)¶	0.13
325 mL	R, N (men only)	Sassoon and Mahutte ²⁰ /1993	45	436 (62)# 94 (86–102)§ 40 (5–75)∥	
	R, N, CVS	Dojat et al ¹⁸ /1996	38	53 (27-79) 76 (57-96)	
Standardized to weight, mL/kg	R, N	Jabour et al ²¹ /1991	38	$5.9 (1.7)^{\dagger}$ $4.8 (1.7)^{\ddagger}$	0.03
	G, N, T	Frutos et al ¹⁶ /1995	73	6.8 (1.8)† 6.6 (1.9)‡	0.75
VE/VT, min	R, N	Jabour et al ²¹ /1991	38	$25 (11)^{\dagger}$ $42 (16)^{\ddagger}$	< 0.001
RSBI breaths/min/L	R	Del Rosario et al ¹⁷ /1997	49	54.5 (4.4)¶	< 0.001
100 breaths/min/L	R, N (men only)	Sassoon and Mahutte ²⁰ /1993	45	112.7 (27.3)# 97 (91–103)§ 40 (5–75)∥	
	R, N	Chatila et al 19/1996	100	98 (94-102) 59 (43-75)	
	R, N, CVS	Dojat et al ¹⁸ /1996	38	94 (82–106)§ 81 (63–99)	
RSBI occlusion pressure index, 450 cm H_2O breaths/min/L	R, N (men only)	Sassoon and Mahutte ²⁰ /1993	45	97 (91–103)§ 60 (25–95)	
$ m NIF$ cm $ m H_2O$	G, N, T	Frutos et al ¹⁶ /1995	73	34.6 (13.9)† 31.7 (19.9)‡	0.62
$-25 \text{ cm H}_2\text{O}$	R, N, CVS	Dojat et al ¹⁸ /1996	38	94 (71-100) 24 (8-47)	
$-30 \text{ cm H}_2\text{O}$	R, N	Chatila et al 19/1996	100	$\begin{array}{c} 24 (6-41) \\ 67 (55-79) \\ 69 (54-84) \\ \ \end{array}$	

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Pbreath/PImax ratio	R, N	Jabour et al ²¹ /1991	38	0.31 (0.1)†	0.03
				0.39 (0.14)‡	
PImax					
$cm H_2O$	R, N	Jabour et al ²¹ /1991	38	49 (11)†	< 0.001
				35(15)‡	
	R	Del Rosario et al ¹⁷ /1997	49	$43.4~(3.4)\P$	0.14
				33.2 (4.4)#	
$20 \text{ cm H}_2\text{O}$	R, N (men only)	Sassoon and Mahutte ²⁰ /1993	45	91 (81–101)§	
				30(-3-63)	
P _{0.1}					
$cm H_2O$	R	Del Rosario et al ¹⁷ /1997	49	3.2 (0.2)¶	0.01
				5.2 (1.3)#	
$5.5 \text{ cm H}_2\text{O}$	R, N (men only)	Sassoon and Mahutte ²⁰ /1993	45	97 (91 - 103)	
				$40(5-75)\ $	
P _{0.1} /PImax	R	Del Rosario et al ¹⁷ /1997	49	$0.090~(0.015)\P$	0.03
				0.165 (0.038)#	
Pressure time index	R, N	Jabour et al ²¹ /1991	38	0.12 (0.03)†	0.004
				0.17 (0.07)‡	
2-h T-piece trial	R, N, CVS	Dojat et al ¹⁸ /1996	38	100§	
				$76~(57 – 95) \ $	
Cardiac index, L/m ² /min	G, CVS, T	Kennedy et al ²³ /1977	20	$3.4~(0.4)\P$	0.06
				2.5 (0.2)#	
Left atrial pressure, mm Hg	G, CVS, T	Kennedy et al ²³ /1977	20	9 (3)¶	0.18
				14 (2)#	
Knowledge-based system	R, N, CVS	Dojat et al ¹⁸ /1996	38	100§	
				91(77-104)	
SBP, mm Hg	G, N, T	Frutos et al ¹⁶ /1995	73	132.6 (23.5)†	0.07
				147.0 (21.0)‡	
SAPS at hospital admission	R, N, CVS	Dojat et al ¹⁸ /1996	38	77 (55–98)§	
				$33~(1255)\ $	
APACHE at hospital admission	G, N, T	Frutos et al $^{16}/1995$	73	19.1 (7.0)†	0.53
				17.6 (7.0)‡	

 Table 4—Continued

N = neurology/neurosurgical; R = patients with respiratory failure, including cardiac, COPD, and acute lung injury; SBP = systolic BP; SAPS = simplified acute physiology score; Pbreath = peak airway pressure on mechanical ventilation for the corresponding ventilator VT. See Table 2 for other abbreviations not used in the text.

†Mean (SD) of success.

#Mean (SD) of failure.

§Sensitivity (range).

||Specificity (range).

¶Mean (SE) of success.

#Mean (SE) of failure.

The importance of selection bias in this literature was difficult to assess because the reporting of patient selection in individual studies was not detailed. For the vast majority of studies, selection bias was not evident.

Many studies omitted to report information bearing on the applicability of their results. For instance, most studies did not mention whether patients with a tracheostomy were included, how decisions to perform tracheostomy were handled in the study protocol, or whether this procedure was taken into account during the analysis. Patients with a tracheostomy might fare differently on numerous tests for weaning, and systematically excluding these patients would alter the patient population and the corresponding test properties.

Weaning Predictors in Heterogeneous Patient Populations

Tables 2 to 9 summarize the studies evaluating weaning predictors in heterogeneous populations of mechanically ventilated patients in ICUs.

For stepwise reductions in mechanical support, the most promising weaning predictors are a rapid shallow breathing index (RSBI) of < 65 breaths/min/L made using the ventilator settings that were in effect at the time the prediction is made and a pressure time product of < 275 cm H₂O/L/s (Table 2).^{12–15} The small sample size of the study that reported these results (40 patients) limits the associated strength of inference.

Table 3 presents the pooled results for the only predictor (RR) for which data were amenable to pooling. The pooled LRs are 1.1 (95% CI, 0.95 to 1.28) for an RR of < 38 breaths/min and 0.32 (95% CI, 0.06 to 1.71) for an RR of > 38 breaths/min, indicating that an RR of < 38 breaths/min leaves the probability of successful weaning

virtually unchanged but a value of > 38 breaths/min leads to a small reduction in the probability of success in weaning the level of mechanical support. The wide CI around the LR leaves even this estimate open to considerable uncertainty.

For trials of unassisted breathing, the most promising

Predictor	Study/Threshold	Study LR + (95% CI)	Summary LR +(95% CI)	Summary LR –(95% CI)	Summary Sensitivity (95% CI)	Summary Specificity (95% CI)
	Sassoon and Mahutte ²⁰ /12 L/ min	0.81 (0.40–1.64)	1.13 (0.88–1.43)	0.88 (0.48–1.61)	0.60 (0.22–0.98)	0.41 (0.24–0.57)
Binary data	Chatila et al ¹⁹ /10 L/	$1.18\ (0.91 - 1.52)$				
Continuous data	Del Rosario et al ^{17/} 12 L/min	$1.12\ (0.492.55)$	$1.12\;(0.492.55)$	$0.93 \ (0.56 - 1.55)$	0.42~(0.280.55)	0.63 (0.50–0.76)
RR	Dojat et al ^{18/} 30 breaths/min	3.89(1.88 - 8.05)	2.23 (0.83-6.03)	$0.09\ (0.020.40)$	0.97 (0.93–1.00)	0.53 (0.11–0.96)
Binary data	Sassoon and Mahutte ^{20/} 38 breaths/min	1.41 (0.93–2.12)				
Continuous data	Del Rosario et al ¹⁷ / 38 breaths/min	1.63 (1.01–2.62)	1.11 (0.98–1.24)	0.23 (0.08–0.63)	0.97 (0.95–1.00)	0.18 (0.06–0.30)
	Jabour et al ^{21/} 38 breaths/min	1.08 (0.87–1.35)				
	Frutos et al ^{16/38} breaths/min	1.12 (0.90–1.40)				
	Saura et al ²² /38 breaths/min	1.05 (0.86–1.27)				
VT	Dojat et al ^{18/} 325 mL	2.11 (0.91-4.92)	1.70(1.10 - 2.61)	$0.38\ (0.11-1.34)$	$0.74\ (0.34{-}1.13)$	$0.58\;(0.250.91)$
Binary data	Sassoon and Mahutte ²⁰ /325 mL	1.57 (0.96–2.60)				
Continuous data	Del Rosario et al ¹⁷ / 325 mL	1.27 (0.85–1.89)	1.10 (0.87–1.40)	0.49 (0.17–1.37)	0.88 (0.81–0.95)	0.22 (0.04–0.40)
RSBI	Saura et al ²² /325 mL Dojat et al ¹⁸ /100 breaths/ min/L	1.02 (0.75–1.37) 1.22 (0.93–1.61)	1.66 (1.08–2.55)	0.11 (0.03–0.37)	0.97 (0.94–0.99)	0.42 (0.21–0.63)
	Sassoon and Mahutte ^{20/} 100 breaths/min/L	1.62 (0.99–2.66)				
Binary data	Chatila et al ^{19/} 100 breaths/ min/L	2.39 (1.63–3.52)				
Continuous data	Del Rosario et al ¹⁷ / 100 breaths/min/L	2.10 (1.12–3.95)	2.10 (1.12–3.95)	0.11 (0.03–0.41)	0.94 (0.88–1.01)	0.55 (0.41–0.69)
NIF	Dojat et al ¹⁸ /25 cm H ₂ O	1.22 (0.93–1.61)	$1.57\ (0.892.77)$	0.47 (0.32–0.70)	$0.79\ (0.54-1.04)$	0.48 (0.04–0.91)
Binary data	Chatila et al ^{19/} 30 cm H ₂ O	2.19 (1.31–3.67)				
Continuous data	Frutos et al ¹⁶ /25 cm H_2O	$1.21 \ (0.75 - 1.97)$	1.21 (0.75–1.97)	0.65 (0.28–1.56)	0.75 (0.65–0.85)	0.38 (0.27–0.49)
PImax						
Binary data	Sassoon and Mahutte ^{20/} 20 cm H ₂ O	1.32 (0.87–2.01)	1.32 (0.87–2.01)	0.31 (0.08–1.14)	0.90 (0.82–0.99)	0.32 (0.19–0.45)
Continuous data	Del Rosario et al ¹⁷ / 20 cm H_2O	1.09(0.79 - 1.49)	$1.15\ (0.98-1.35)$	0.50 (0.15–1.66)	0.92 (0.81–1.04)	0.19 (0.11–0.27)
	Jabour et a ^{l21} /20 cm H ₂ O	1.18 (0.97–1.42)				

Table 5—Pooled Results	for Predictors of	of Success in Trials o	f Unassisted Breathing*
------------------------	-------------------	------------------------	-------------------------

*See Tables 2 and 3 for abbreviations not used in the text.

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Duration of mechanical ventilation	R, N	Tahvanainen et al ²⁴ /1983	47	112.8 (12.0)†	0.32
prior to weaning, h	R, N	Lee et $al^{25}/1994$	52	144.0 (28.8)‡ 110.4 (93.6)§ 230.4 (163.2)	0.004
	General pediatric/neonatal (except N)	Khan et al ^{26} /1996	213	230.4 (103.2)∥ 120.0 (9.6)†	0.84
	-			124.8 (14.4)‡	
	R (age $> 70 \text{ yr}$)	Krieger et al $^{27}/1997$	49	132 (144)§ 312 (264)	0.005
	R, N	Afessa et al ²⁸ /1999	118	256.8 (153.6)§ 283.2 (187.2)	0.36
Ϋ́Ε L/min	R, N	Tahvanainen et al ²⁴ /1983	47	6.16 (0.55)†	0.81
	R (age > 70 yr)	Krieger et al ²⁷ /1997	49	$5.96\ (0.66)\ddagger \\ 6.4\ (2.5) \$$	0.72
	R, N	Afessa et al ²⁸ /1999	118	$\begin{array}{c} 6.1 \ (2.1) \ \\ 10.7 \ (3.4) \$ \end{array}$	0.046
10 L/min	G	Leitch et al ²⁹ /1996	163	9.5 (4.2)∥ 50 (42–58)¶	
	G, N, T	Mergoni et al ³⁰ /1996	51	67 (- 50-184)# 60 (44-76)¶	
	, , ,	0		53 (37–69)#	
15 L/min	R, N	Yang ³¹ /1993	31	81 (60–102)¶ 20 (- 2–42)#	
No cut point reported	S	Gologorskii et al ³² /1997	127	66 (56–76)¶ 66 (51–81)#	
RR breaths/min	R, N	Tahvanainen et al ²⁴ /1983	47	23.6 (1.2)†	0.14
	G, CVS	Kline et al ³³ /1987	50	19.6 (2)‡ 21.5 (4.8)§	0.41
	Esophageal cancer only	Ochiai et al $^{34}/1993$	38	$\begin{array}{c} 22.7 \ (5.4) \ \\ 14.4 \ (2.9) \\ \end{array}$	0.95
	R (age $>70~{\rm yr})$	Krieger et $al^{27}/1997$	49	$\begin{array}{c} 14.5 \ (5.6) \ \\ 22 \ (7) \$ \end{array}$	0.01
	R, N	Afessa et al ²⁸ /1999	118	$\begin{array}{c} 28 \ (5) \ \\ 27.4 \ (7.8) \\ \end{array}$	0.53
30 breaths/min	Т	DeHaven et al $^{35}/1996$	589	28.5 (9.5) 82 (79–85)¶	
	G, N, T	Mergoni et al ³⁰ /1996	51	17 (6–29)# 70 (55–85)¶	
38 breaths/min	R, N	Yang ³¹ /1993	31	66 (50–82)# 88 (71–105)¶	
No cut point reported	S	Gologorskii et al ³² /1997	127	47 (19–75)# 70 (60–80)¶	
VT				72 (58–86)#	
mL	R, N	Tahvanainen et al ²⁴ /1983	47	270 (20)† 310 (30)‡	0.36
	G, CVS	Kline et al ³³ /1987	50	340 (80) 400 (80)	0.01
	R (age $>70~{\rm yr})$	Krieger et al 27/1997	49	311 (137) 221 (76)	0.04
325 mL	R, N	Yang ³¹ /1993	31	100¶	
No cut point reported	S	Gologorskii et al ³² /1997	127	67 (41–93)# 73 (63–83)¶ 75 (61–80)#	
Standardized to weight, mL/kg	Esophageal cancer only	Ochiai et al ³⁴ /1993	38	75 (61–89)# 9.67 (2.94)§ 10.08 (1.97)	0.62
4 mL/kg	General pediatric/neonatal (except N)	Khan et $al^{26}/1996$	213	$\begin{array}{c} 10.08 \ (1.97) \\ 84 \ (78 - 89) \\ 28 \ (12 - 44) \\ \end{array} $	
	(except 1)				continues)

CHEST / 120 / 6 / DECEMBER, 2001 SUPPLEMENT 407S

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
VC L	R, N	Tahvanainen et al ²⁴ /1983	47	0.80 (0.05)†	0.71
% predicted	Esophageal cancer only	Ochiai et al ³⁴ /1993	38	0.76 (0.09)‡ 95.9 (18.7)§ 105.7 (10.7)	0.05
RSBI				105.7 (10.7)	
Breaths/min/L	R, N	Afessa et al ²⁸ /1999	118	79.2 (41.2)§ 103.0 (62.3)	0.06
100 breaths/min/L	R, N	Yang ³¹ /1993	31	94 (81–107)¶ 73 (48–98)#	
	R, N	Epstein ³⁶ /1995	94	92 (86–98)¶ 22 (1–43)#	
	R, N	Epstein and Ciubotaru ³⁷ /1996	218	22 (1-43)# 89 (84-93)¶ 24 (9-38)#	
	G	Leitch et al ²⁹ /1996	163	24 (9–36)# 96 (93–99)¶ 0#	
105 breaths/min/L	R, N	Lee et $al^{25}/1994$	52	72 (58–86)¶	
	G, N, T	Mergoni et al ³⁰ /1996	51	11 (-13-35)# 65 (49-81)#	
	R (age $>70~{\rm yr})$	Krieger et al ²⁷ /1997	49	58 (42–74)# 74 (60–88)¶	
No cut point reported	S	Gologorskii et al ³² /1997	127	73 (43–103)# 84 (76–92)¶	
8 mL/kg	General pediatric/neonatal	Khan et $al^{26}/1996$	213	83 (71–95)# 64 (57–71)¶	
11 mL/kg	(except N) General pediatric/neonatal	Baumeister et al ³⁸ /1997	47	56 (39–73)# 79 (65–92)¶	
RSBI 100 breaths/min and inspiratory pressure/PImax, 0.03	R, N	Yang ³¹ /1993	31	78 (46–110)# 81 (60–102)¶ 93 (79–107)#	
$\begin{array}{c} \mathrm{NIF} \\ \mathrm{cm}~\mathrm{H_2O} \end{array}$	R, N	Yang ³¹ /1993	31	11.48 (1.25)†	0.28
No cut point reported	S	Gologorskii et al ³² /1997	127	14.32 (2.31)‡ 68 (58−78)¶ 62 (47−77)#	
Pīmax				02 (47-77)#	
cm H_2O	R, N	Tahvanainen et al ²⁴ /1983	47	35.7 (1.6)† 39 (1.4)‡	0.34
	G, CVS	Kline et al ³³ /1987	50	36.1 (10.1) 29.0 (7.6)	0.009
	R (age $>70~{\rm yr})$	Krieger et al 27/1997	49	43 (11) 35 (11)	0.04
	R, N	Afessa et al ²⁸ /1999	118	60.8(23.7)§	0.001
$15~{\rm cm}~{\rm H_2O}$	R, N	Yang ³¹ /1993	31	$45.3 (17.2) \parallel$ $100 \P$	
$20~{\rm cm}~{\rm H_2O}$	G	Leitch et al ²⁹ /1996	163	13 (- 6-32)# 97 (94-100)¶	
$30 \text{ cm H}_2\text{O}$	G, N, T	Mergoni et al ³⁰ /1996	51	0# 73 (58–88)¶	
P _{0.1} /PImax 0.14	G, N, T	Mergoni et al ³⁰ /1996	51	40 (24–56)# 85 (73–97)¶	
Dynamic compliance standardized	General pediatric/neonatal	Khan et al ²⁶ /1996	213	36 (21–53)# 3.3 (0.6–18.7)**	
to weight, mL/kg/cm H ₂ O Inspiratory pressure/PImax 0.3	(except N) General pediatric/neonatal	El Khatib et al ³⁹ /1996	50	33 (18–49)¶	
	R, N	Yang ³¹ /1993	31	91 (72–110)# 75 (52–98)¶ 67 (41–92)#	
				67 (41–93)# (Table	e continues

Table	6—	Continued
-------	----	-----------

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Inspiratory flow rate, mL/kg/s	Esophageal cancer only	Ochiai et al ³⁴ /1993	38	7.97 (2.69) 8.46 (1.47)	0.49
	General pediatric/neonatal (except N)	Khan et al ²⁶ /1996	213	3.8 (1.4–10.7)††	
FEV_1 , % predicted	Esophageal cancer only	Ochiai et al 34/1993	38	76.1 (6.7) 71.9 (5.2)	0.04
F10 ₂ , %	General pediatric/neonatal (except N)	Khan et al ²⁶ /1996	213	3.6 (1.2–11.1)††	
	R (age > 70 yr)	Krieger et al 27/1997	49	40(6) 38(6)	0.33
CROP index standardized to weight				х 7 П	
0.1 mL/breaths/min/kg	General pediatric/neonatal	Baumeister et al ³⁸ /1997	47	100¶ 100#	
0.2 mL/breaths/min/kg	General pediatric/neonatal (except N)	Khan et al ²⁶ /1996	213	56 (48–64)¶	
				47 (29–65)#	
Hemoglobin, g/dL	R, N	Tahvanainen et al ²⁴ /1983	47	11.9(0.2)*	0.08
				11.0 (0.4)‡	
Change in intrapleural pressure, cm H_2O	G, CVS	Kline et al ³³ /1987	50	11.2 (2.9)§	< 0.001
				15.2(4.5)	
Change in intrapleural pressure/ NIF	G, CVS	Kline et al ³³ /1987	50	0.32 (0.07)§	< 0.001
				0.53~(0.1)	
Cuff leak test	High-risk airways (ENT disease only)	Fisher and Raper ⁴⁰ /1992	72	89 (81–97)¶ 100#	
Cuff leak test in pediatrics	Children with croup	Adderly and Mullins ⁴¹ /1987	28	75 (58–92)¶ 63 (22–103)#	
Daily screening test	R, N	Ely et al $^{42}/1996$	300	88 (84–92)¶ 67 (57–77)#	
Physiologic shunt	S	Gologorskii et al ³² /1997	127	80 (71–89)¶	
APACHE score at hospital admission	R, N	Afessa et al ²⁸ /1999	118	61 (46–76)# 11.3 (5.2)§ 16.9 (5.5)	< 0.001

*See Tables 2 and 4 for abbreviations not used in the text.

†Mean (SE) of success.

‡Mean (SE) of failure.

§Mean (SD) of success.

 $\| Mean \ (SD) \ of \ failure.$

 $\P Sensitivity \ (range).$

#Specificity (range).

**Multivariate OR (95% CI).

 $\dagger\dagger \mathrm{Univariate}$ OR (95% CI).

weaning predictors from the review of individual studies (Table 4)^{16–23} include the following: RR; RSBI; the product of RSBI and airway pressure 0.1 s after the occlusion of the inspiratory port of a unidirectional balloon occlusion valve (P_{0,1}) (*ie*,RSB-P_{0,1} index) < 450 cm H₂O breaths/min/L; PImax < 20 cm H₂O; and a knowledge-based system for adjusting pressure support. Data allowed pooled estimates for two of these variables (RR and RSBI) (Table 5). Pooled results are consistent across studies that provided binary data and those that provided only continuous data. For both RR and RSBI, the power of a positive test result was very limited (highest LR, 2.23), while the power of a negative

test result was substantial (LR, 0.09 to 0.23). Summary data suggest a similar predictive power of RR and RSBI.

In the prediction of successful extubation (Table 6),^{24–42} an RR of < 38 breaths/min (sensitivity, 88%; 5specificity, 47%), an RSBI of < 100 breaths/min/L or 105 breaths/min/L (sensitivity, 65 to 96%; specificity, 0 to 73%), PImax, and APACHE (acute physiology and chronic health evaluation) II scores measured at hospital admission appear to be the most promising. After pooling (Table 7), two variables appeared to have some value. An RR of > 38 breaths/min and an RSBI of > 100 breaths/min/L appear to reduce the probability of successful extubation, and an inspiratory pressure/PImax

CHEST / 120 / 6 / DECEMBER, 2001 SUPPLEMENT 409S

Predictor	Study/Threshold	Study LR + (95% CI)	Summary LR +(95% CI)	Summary LR –(95% CI)	Summary Sensitivity (95% CI)	Summary Specificity (95% CI)
Ve						
Binary data	Gologorskii et al ³² /not specified Mergoni et al ³⁰ /10 L/min Yang ³¹ /15 L/min	$\begin{array}{c} 1.91 \; (1.23 2.98) \\ 1.25 \; (0.82 1.91) \\ 1.02 \; (0.71 1.45) \end{array}$	1.31 (0.96–1.79)	0.63 (0.48–0.83)	0.63 (0.51–0.74)	0.52 (0.36–0.67)
Continuous data	Leitch et al ²⁹ /10 L/min Krieger et al ²⁷ /12 L/min Tahvanainen et al ²⁴ /12 L/min	$1.33 (0.37 - 4.77) \\1.02 (0.89 - 1.16) \\1.00 (0.85 - 1.17) \\0.02 (0.75 - 1.17) \\0.02$	0.99 (0.90–1.09)	1.23 (0.74–2.07)	0.86 (0.69–1.03)	0.12 (- 0.01-0.26)
DD	Afessa et al ²⁸ /12 L/min	0.90 (0.70–1.15)				
RR Binary data	Gologorskii et al ³² /not specified Mergoni et al ³⁰ /30 breaths/min DeHaven et al ³⁵ /30 breaths/min Yang ³¹ /38 breaths/min	2.54 (1.52–4.24) 2.01 (1.25–3.25) 1.00 (0.87–1.15) 1.61 (0.97–2.65)	1.64 (1.00–2.68)	0.52 (0.34–0.79)	0.77 (0.69–0.85)	0.51 (0.17–0.84)
Continuous data	Krieger et al ²⁷ /38 breaths/min Kline et al ³³ /38 breaths/min Ochiai et al ³⁴ /38 breaths/min Tahvanainen et al ²⁴ /38 breaths/min Afessa et al ²⁸ /38 breaths/min	$\begin{array}{c} 1.01 & (0.01 \ 2.03) \\ 1.04 & (0.89 - 1.21) \\ 1.01 & (0.93 - 1.09) \\ 1.00 & (0.91 - 1.10) \\ 1.01 & (0.87 - 1.19) \\ 1.08 & (0.94 - 1.24) \end{array}$	1.02 (0.97–1.07)	0.59 (0.25–1.36)	0.96 (0.94–0.99)	0.06 (0.02–0.11)
VT						
Binary data	Gologorskii et al ³² /not specified Yang ³¹ /325 mL	2.92 (1.70–5.01) 2.82 (1.43–5.58)	2.88 (1.89-4.40)	0.20 (0.03–1.26)	0.85 (0.62–1.09)	0.73 (0.66–0.80)
Continuous data	Krieger et al ²⁷ /325 mL Kline et al ³³ /325 mL	3.83 (0.80–18.39) 0.71 (0.49–1.02)	0.92 (0.47–1.81)	1.07 (0.52–2.17)	0.45 (0.32–0.59)	0.54 (0.11–0.98)
RSBI	Tahvanainen et al ²⁴ /325 mL Gologorskii et al ³² /not specified Lee et al ²⁵ /105 breaths/min/L Mergoni et al ³⁰ /105 breaths/min/L	$\begin{array}{c} 0.75 & (0.33 - 1.73) \\ 4.67 & (2.42 - 8.99) \\ 0.84 & (0.61 - 1.16) \\ 1.52 & (0.99 - 2.36) \end{array}$	1.49 (1.11–1.99)	0.39 (0.25–0.62)	0.84 (0.77–0.90)	0.44 (0.24–0.65)
Binary data	Krieger et al ²⁷ /105 breaths/min/L Leitch et al ²⁹ /100 breaths/min/L Epstein ³⁶ /100 breaths/min/L Epstein and Ciubotaru ³⁷ /100 breaths/min/L	$\begin{array}{c} 1.52 & (0.59-2.50) \\ 2.51 & (1.02-6.18) \\ 1.10 & (0.76-1.59) \\ 1.17 & (0.96-1.42) \\ 1.20 & (0.93-1.56) \end{array}$				
	Yang ³¹ /100 breaths/min/L	3.24(1.46 - 7.19)				
Continuous data RSBI standardized to weight (binary data)	Afessa et al ²⁸ /100 breaths/min/L Khan et al ²⁶ /8	1.43 (1.05–1.96) 1.44 (0.98–2.12)	1.43 (1.05–1.96) 1.79 (0.90–3.53)	0.60 (0.38–0.94) 0.46 (0.21–1.01)	0.69 (0.61–0.77) 0.70 (0.56–0.84)	$\begin{array}{c} 0.52 \; (0.43 0.61) \\ 0.65 \; (0.46 0.84) \end{array}$
Pīmax Binary data	Baumeister et al ³⁸ /11 Yang ³¹ /15 cm H_2O Leitch et al ²⁹ /20 cm H_2O	3.13 (1.06–9.27) 1.15 (0.92–1.44) 1.29 (0.58–2.87)	1.17 (0.98–1.40)	0.60 (0.33–1.11)	0.90 (0.79–1.01)	0.27 (0.14–0.40)
Continuous data	Mergoni et al ³⁰ /30 cm H_2O Krieger et al ²⁷ /20 cm H_2O Kline et al ³³ /20 cm H_2O Tahvanainen et al ²⁴ /20 cm H_2O	1.20 (0.87–1.66) 1.10 (0.89–1.37) 1.08 (0.89–1.30) 0.98 (0.83–1.16) 1.03 (0.94–1.13)	1.03 (0.96–1.11)	0.56 (0.22–1.42)	0.95 (0.92–0.98)	0.08 (0.05–0.12)
Inspiratory pressure/ PImax (binary data)	Afessa et al ²⁸ /20 cm H ₂ O el Khatib et al ³⁹ /0.30 Yang ³¹ /0.30	$\begin{array}{c} 1.03 & (0.94 - 1.13) \\ 2.70 & (0.57 - 12.83) \\ 2.14 & (1.03 - 4.46) \end{array}$	2.23 (1.15-4.34)	0.63 (0.36–1.10)	0.53 (0.14–0.92)	0.78 (0.56–0.99)
CROP index (binary data)	Baumeister et al ³⁸ /0.1 mL/breaths/ min/kg Khan et al ²⁶ /0.2 mL/breaths/min/kg	19.7 (1.32–294.3) 1.05 (0.74–1.49)	3.31 (0.20–54.80)	0.14 (0.00-8.87)	0.77 (0.35–1.19)	0.71 (0.24–1.18)

Table 7-Pooled Results for Predictors of Successful Extubation*

*See Tables 2 and 3 for abbreviations not used in the text.

ratio of <0.3 (pooled LR, 2.23; 95% CI, 1.15 to 4.34) appears to marginally increase the likelihood of successful extubation.

Several studies evaluated the ability to predict the combined outcome of a successful trial of unassisted

breathing followed by successful extubation. Predictor variables that showed some promise on review of the individual study results (Table 8)^{43–52} include the following: duration of ventilation prior to weaning; an RR < 38 breaths/min (sensitivity, 92% [100 patients]); tidal volume,

Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support

Downloaded from chestjournal.chestpubs.org by guest on October 4, 2009 © 2001 American College of Chest Physicians

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Duration of mechanical ventilation prior to weaning, h	G (age $>70~{\rm yr})$	Krieger et al ⁴³ /1989	269	62 (98)† 147 (144)‡	< 0.001
11	R, N	Mohsenifar et al ⁴⁴ /1993	29	148.8 (192.0)† 168.0 (96.0)‡	0.76
	G, T	Capdevila et al ⁴⁵ /1995	67	353.0 (316.8)† 293.0 (151.4)‡	0.53
	Pediatric	Farias et $a^{46}/1998$	84	192 (96–312)§ 285.6 (213.6–470.4)	0.03
	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	168 (168)† 288 (288)‡	< 0.001
Ϋ́Е	G (age > 70 yr)	Krieger et al ⁴³ /1989	269	7.9 (3.0)† 8.1 (3.2)‡	0.74
L/min	G, N	Ashutosh et al ⁴⁸ /1992	30	11.33 (4.37)† 10.63 (2.40)‡	0.59
	G, T	Capdevila et al $^{45}/1995$	67	12.61 (3.75)† 12.45 (3.90)‡	0.69
	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	11 (10)† 10 (3)‡	0.35
10 L/min	G, N, CVS	Sahn and Lakshminarayan ^{49/1973}	100	96 (92–100)¶ 47 (21–73)#	
	S	Jacob et al ⁵⁰ /1997	183	76 (69–83)¶ 40 (13–67)#	
12.5 L/min	R (COPD excluded), T	Gandia and Blanco ⁵¹ /1992	30	64 (45–83)¶ 75 (47–103)#	
15 L/min	R, N	Yang and Tobin ⁵² /1991	100	78 (64–92)¶ 18 (3–33)#	
RR Breaths/min	G (age $>70~{\rm yr})$	Krieger et al ⁴³ /1989	269	22 (6)† 23 (8)‡	0.42
	G, N	Ashutosh et al ⁴⁸ /1992	30	22.53 (4.84)† 33.27 (7.97)‡	< 0.001
	G, T	Capdevila et al ⁴⁵ /1995	67	24.16 (7.13)† 28.33 (3.98)‡	0.07
	Pediatric	Farias et al ⁴⁶ /1998	84	40 (31–50)§ 46 (36–59)	
	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	24 (6)†< 29 (8)‡	< 0.001
35 breaths/min	R (COPD excluded), T	Gandia and Blanco ⁵¹ /1992	30	82 (67–97)¶ 75 (47–103)#	
38 breaths/min	R, N	Yang and Tobin ⁵² /1991	100	92 (83–101)¶ 36 (17–55)#	
	R, N	Mohsenifar et al ⁴⁴ /1993	29	100¶ 27 (- 3–57)¶	
VT mL	G (age $>70~{\rm yr})$	Krieger et al ⁴³ /1989	269	371 (149)† 355 (140)‡	0.59
	G, N	Ashutosh et al ⁴⁸ /1992	30	552.73 (213.69)† 326.13 (99.43)‡	< 0.001
					continues)

>4 mL/kg (sensitivity: in 100 adults, 94%; in 84 children, 94%); an RSBI of <100 breaths/min/L; an NIF of <-20 cm H₂O; PImax; P_{0.1} of <5.0 cm H₂O (sensitivity, 87%; and specificity, 91% [in 67 patients]); and P_{0.1}/PImax ratio. Several other studies suggested potentially powerful

predictors but enrolled \leq 30 patients. In all studies, the predictors were measured immediately prior to the trial of unassisted breathing or early during the initiation of the trial. In Table 9, we present the results of pooled analyses. The RSBI yielded a statistically significant pooled LR of

CHEST / 120 / 6 / DECEMBER, 2001 SUPPLEMENT 411S

Table 8—Continued

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
	G, T	Capdevila et al ⁴⁵ /1995	67	527 (161)†	0.07
	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	458 (188)‡ 432 (143)†	0.005
325 mL	R, N	Yang and Tobin ⁵² /1991	100	378 (134)‡ 97 (91–103)¶	
	R, N	Mohsenifar et al ⁴⁴ /1993	29	54 (35–73)# 100¶ 18 (- 8–44)#	
360 mL	R (COPD excluded), T	Gandia and Blanco ⁵¹ /1992	30	75 (58–92)¶ 58 (27–89)#	
4 mL/kg	R, N	Yang and Tobin ⁵² /1991	100	94 (86–102)¶	
	Pediatric	Farias et al ⁴⁶ /1998	84	39 (20–58)# 94 (88–100)¶ 42 (20, 66)#	
VC, L	G, T	Cap devila et al 45/1995	67	43 (20–66)# 1.21 (0.68)† 0.8 (0.25)‡	0.03
	G, N, CVS, T	Vallverdu et al 47/1998	217	0.8 (0.35)‡ 1.63 (0.64)† 1.30 (0.51)‡	< 0.001
RSBI 60 breaths/min/L	G, T	Capdevila et al ⁴⁵ /1995	67	73 (61–85)¶ 75 (47–103)#	
96 breaths/min/L	R (COPD excluded), T	Gandia and Blanco ⁵¹ /1992	30	82 (67–97)¶ 83 (59–107)#	
100 breaths/min/L	S	Jacob et al ⁵⁰ /1997	183	97 (94–100)¶ 33 (7–59)#	
	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	90 (85–95)¶ 36 (26–46)#	
105 breaths/min/L	R, N	Yang and Tobin ⁵² /1991	100	97 (91–103)¶ 64 (45–83)#	
	R, N	Mohsenifar et al ⁴⁴ /1993	29	100¶ 27 (- 3–57)#	
11 mL/kg	Pediatric	Farias et al ⁴⁶ /1998	84	86 (77–95)¶ 48 (25–71)#	
RSBI occlusion pressure index, cm H_2O breaths/min/L	G, N, CVS, T	Vallverdu et al 47/1998	217	241 (177)†	< 0.001
NIF				452 (363)‡	
cm H_2O	G, N	Ashutosh et al ⁴⁸ /1992	30	38.8 (10.40)† 21.0 (6.07)‡	< 0.001
$-$ 20 cm $\rm H_2O$	R, N	Mohsenifar et al ⁴⁴ /1993	29	100¶ 9 (- 10-28)#	
	S	Jacob et al ⁵⁰ /1997	183	96 (93–99)¶ 7 (− 7–21)#	
$-$ 25 cm $\rm H_2O$	G, N, CVS	Sahn and Lakshminarayan ⁴⁹ /1973	100	100¶ 100#	
PImax cm H ₂ O	G (age $>70~{\rm yr})$	Krieger et al ⁴³ /1989	269	$38(14)^{\dagger}$	0.02
	Pediatric	Farias et $al^{46}/1998$	84	32 (14)‡ 45 (36–60)§	
	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	37 (33–54)∥ 65 (21)†	< 0.001
$15~{\rm cm}~{\rm H_2O}$	R, N	Yang and Tobin ⁵² /1991	100	53 (17)‡ 100¶	
$23~{\rm cm}~{\rm H_2O}$	R (COPD excluded), T	Gandia and Blanco ⁵¹ /1992	30	11 (-1-23)# 82 (67-97)¶ 75 (47, 103)#	
$50 \text{ cm H}_2\text{O}$	G, T	Capdevila et al ⁴⁵ /1995	67	75 (47-103)# 80 (69-91)¶ 41 (10, 72)#	
inspiratory effort quotient 0.19	R (COPD excluded), T	Gandia and Blanco ⁵¹ /1992	30	41 (10–72)# 82 (67–97)¶ 100#	
					e continues

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
P _{0.1}					
$3.4 \text{ cm H}_2\text{O}$	R (COPD excluded), T	Gandia and Blanco ⁵¹ /1992	30	61 (42–80)¶ 75 (47–103)#	
$4.5~{\rm cm}~{\rm H_2O}$	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	75 (67–83)¶ 55 (45–65)#	
$5.0~{\rm cm}~{\rm H_2O}$	G, T	Capdevila et al ⁴⁵ /1995	67	87 (78–96)¶ 91 (73–109)#	
P _{0.1} /PImax	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	0.063 (0.032)† 0.103 (0.056)‡	< 0.001
$P_{0.1}/PImax \ 0.09$	G, T	Cap devila et al 45/1995	67	98 (94–102)¶ 100#	
P _{0.1} /PImax 0.14	R (COPD excluded), T	Gandia and Blanco ⁵¹ /1992	30	82 (67–97)¶ 100#	
Maximum expiratory pressure, cm H ₂ O	G, N, CVS, T	Vallverdu et al ⁴⁷ /1998	217	53 (25)† 37 (17)‡	< 0.001
Gastric intramural pH	R, N	Mohsenifar et al 44/1993	29	7.45 (0.13)† 7.36 (0.20)‡	0.15
Gastric intramural pH change	R, N	Mohsenifar et al 44/1993	29	$0.01 (0.01) ** - 0.27 (0.08) \dagger \dagger$	0.001
Gastric PCO ₂ mm Hg	R, N	Mohsenifar et al ⁴⁴ /1993	29	37 (12)† 49 (23)‡	0.08
Change, mm Hg	R, N	Mohsenifar et al ⁴⁴ /1993	29	$-1(1.5)^{**}$ 62(20.4) [†] [†]	< 0.001
Gastric intramural pH change $> 7.3/or < 0.09$	R, N	Mohsenifar et al 44/1993	29	100¶ 100#	
FIO ₂ , %	R, N	Mohsenifar et al ⁴⁴ /1993	29	35 (8)† 40 (7)‡	0.10
SBP, mm Hg	R, N	Mohsenifar et al ⁴⁴ /1993	29	$128 (24)^{\dagger}$ $140 (22)^{\ddagger}$	0.21
Statistical prediction model	G, N	Ashutosh et al ⁴⁸ /1992	30	93 (79–107)¶ 93 (79–107)#	
Neural network analysis	G, N	Ashutosh et al ⁴⁸ /1992	30	100¶ 93 (79–107)#	
SAPS at hospital admission	G, T	Capdevila et al ⁴⁵ /1995	67	11.1 (4.3)† 13.3 (3.8)‡	0.11

Table 8—Continued

*See Tables 2 and 4 for abbreviations not used in the text.

†Mean (SD) of success.

‡Mean (SD) of failure.

 $\$ median (interquartile range) of success.

 $\|Median\ (interquartile\ range)\ of\ failure.$

 $\P Sensitivity \ (range).$

#Specificity (range).

**Mean (SE) of success. ††Mean (SE) of failure.

1.58 (95% CI, 1.30 to 1.90), indicating that it remains a very weak predictor. $P_{0.1}$ /PImax ratio yielded a much more clinically useful pooled LR of 16.3 (95% CI, 2.35 to 113).

Summary ROC curves deal with the problem of different thresholds among studies. We show the summary ROC curves for several predictors of successful extubation (Figs 1-3) and of successful trials of unassisted breathing and extubation (Figs 4-7). Testing for the presence of a threshold effect indicated that none of these variables were associated with an ideal cut point or threshold level for weaning. Moreover, judging by the modest areas under the curve for all variables, none of these variables demonstrate more than modest accuracy in predicting weaning outcome, and none appear to perform any better than the others.

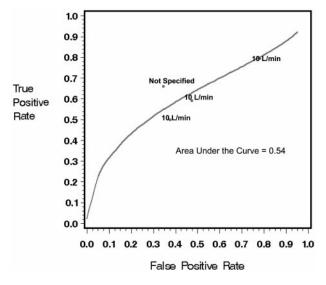
Weaning Predictors for Patients With COPD

Hilbert et al⁵³ evaluated a number of variables, including RR, RSBI, $P_{0.1}$, effective inspiratory impedance, and PaO_2 /fraction of inspired oxygen (FIO₂) ratio, for the ability to predict success on a trial of extubation in 40 patients with COPD but found none to be of any value (Table 10).

Two groups of investigators evaluated predictors of success in trials of unassisted breathing followed by extubation in two relatively small studies (N = 26 and N = 31) (Table 11).^{54,55} A gastric intramucosal pH > 7.3 and a gastric intramucosal Paco₂ < 60 mm Hg showed some promise as weaning predictors in a study of 26 patients.

Predictor	Study/Threshold	Study LR + (95% CI)	Summary LR +(95% CI)	Summary LR –(95% CI)	Summary Sensitivity (95% CI)	Summary Specificity (95% CI)
Ϋ́Е	Sahn and Lakshminarayan ^{49/10} L/min	1.82 (1.17-2.82)	1.36 (0.93–1.98)	0.45 (0.20-1.01)	0.79 (0.65–0.93)	0.44 (0.26-0.63)
Binary data	Yang and Tobin ⁵² /15 L/min	0.95 (0.74-1.22)				
	Gandia and Blanco ⁵¹ /12.5 L/min	2.37 (0.93-6.05)				
	Jacob et al ⁵⁰ /10 L/min	1.28 (0.85-1.94)				
Continuous data	Capdevila et al ⁴⁵ /12 L/min	0.95 (0.49-1.85)	0.87 (0.68-1.12)	1.33 (0.90-1.96)	0.61 (0.35-0.88)	0.30 (0.14-0.45)
	Vallverdu et al ⁴⁷ /12 L/min	0.72 (0.59-0.89)				
	Krieger et al ⁴³ /12 L/min	1.04 (0.90-1.20)				
	Ashutosh et al ⁴⁸ /12 L/min	0.79 (0.46-1.36)				
RR	Ashutosh et al ⁴⁸ /38 breaths/min	1.63 (1.08-2.47)	1.50 (1.23-1.83)	0.23 (0.12-0.44)	0.93 (0.87-0.99)	0.45 (0.25-0.65)
Binary data	Yang and Tobin ⁵² /38 breaths/min	1.42 (1.06-1.90)	· · · ·			· · · ·
	Mohsenifar et al ⁴⁴ /38 breaths/min	1.37 (0.95–1.99)				
	Gandia and Blanco ⁵¹ /35 breaths/min	3.01 (1.21-7.50)				
Continuous data	Capdevila et al ⁴⁵ /38 breaths/min		1.07 (1.00-1.15)	0.15 (0.05-0.50)	0.99 (0.98-1.00)	0.07 (0.02-0.13)
	Vallverdu et al ⁴⁷ /38 breaths/min	1.14 (1.05–1.24)	· · · ·			· · · ·
	Krieger et al ⁴³ /38 breaths/min	1.04 (0.96–1.13)				
VT	Ashutosh et al ⁴⁸ /325 mL		1.58 (1.20-2.08)	0.29 (0.14-0.63)	0.89 (0.80-0.98)	0.46 (0.29-0.63)
Binary data	Yang and Tobin ⁵² /325 mL	2.06 (1.39-3.06)			,	
	Mohsenifar et al ⁴⁴ /325 mL	1.23 (0.91–1.66)				
	Gandia and Blanco ⁵¹ /360 mL	1.75 (0.90-3.43)				
Continuous data	Capdevila et al ⁴⁵ /325 mL		1.16 (1.01-1.34)	0.74 (0.54-0.99)	0.76 (0.61-0.90)	0.35 (0.27-0.43)
	Vallverdu et al ⁴⁷ /325 mL	1.18 (0.99–1.41)	,	,	,	
	Krieger et al ⁴³ /325 mL	1.07 (0.77–1.47)				
VT standardized to weight	Farias et $al^{46}/4 \text{ mL/kg}$		1.58 (1.25-2.00)	0.17 (0.07-0.37)	0.93 (0.89-0.97)	0.42 (0.34-0.49)
(binary data)	Yang and Tobin ⁵² /4 mL/kg	1.55(1.14-2.10)				
RSBI (binary data)	Gandia and Blanco ⁵¹ /105 breaths/min/L		1.58 (1.30-1.90)	0.22 (0.13-0.37)	0.92 (0.87-0.97)	0.47 (0.33-0.60)
	Jacob et al ⁵⁰ /100 breaths/min/L	1.47 (1.03–2.10)				
	Vallverdu et al ⁴⁷ /100 breaths/min/L	1.41 (1.20–1.66)				
	Yang and Tobin ⁵² /105 breaths/min/L	2.65 (1.63-4.32)				
	Mohsenifar et al ⁴⁴ /105 breaths/min/L	1.37 (0.95–1.99)				
	Capdevila et al ⁴⁵ /60 breaths/min/L	2.69 (1.08-6.67)				
NIF (binary data)	Jacob et $al^{50}/20$ cm H_2O		1.32 (0.92-1.90)	0 14 (0 03-0 68)	0.97 (0.93-1.00)	0.46 (- 0.11-1.03
(online) data)	Ashutosh et al ⁴⁸ /25 cm H_2O	2.45 (1.21 - 4.99)	1.02 (0.02 1.00)	0.11 (0.00 0.00)	0.01 (0.00 1.00)	0.10 (0.111 1.00
	Sahn and Lakshminarayan ⁴⁹ /25 cm H_2O	35.8 (2.33–550)				
	Mohsenifar et al ⁴⁴ /20 cm H_2O	1.11(0.89-1.40)				
PImax	Gandia and $Blanco^{51}/23$ cm H_2O	3.01 (1.21–7.50)	1 38 (0 92-2 08)	0.34 (0.19–0.60)	0.87 (0.72-1.02)	0 42 (0 07-0 77)
Binary data	Yang and Tobin ⁵² /15 cm H_2O	1.12 (0.98–1.29)	1.00 (0.02 2.00)	0.01 (0.10 0.00)	0101 (0112 1102)	
Dinary data	Capdevila et al 45 /50 cm H ₂ O	1.38 (0.85 - 2.24)				
	Vallverdu et al $^{47}/20 \text{ cm H}_2\text{O}$		1.03 (0.95-1.11)	0.51 (0.25-1.06)	0.94 (0.86-1.02)	0.12 (- 0.05-0.29)
Continuous data	Krieger et $al^{43}/20$ cm H_2O	1.13 (0.94–1.37)				
P _{0.1} (binary data)	Gandia and Blanco ⁵¹ /3.4 cm H_2O		2.25 (1.18-4.32)	0.35 (0.18-0.67)	0.75 (0.64–0.87)	0.72 (0.49-0.95)
- 0.1 (Vallverdu et al $47/4.5$ cm H ₂ O	1.68(1.31-2.15)	(1110 1102)			
	Capdevila et al 45 /5.0 cm H ₂ O	7.51 (1.66 - 33.9)				
P _{0 1} /PImax	Gandia and $Blanco^{51}/0.09$	10.3 (0.66–162)	16.3 (2.35-113)	0.15 (0.01-3.08)	0.69 (0.12-1.25)	0.96 (0.93-1.00)
(binary data)	Capdevila et al ⁴⁵ /0.09	25.3 (1.67–383)	(=:::: (=::::::::::::::::::::::::::::::			

Table 9-Pooled Results for Predictors of Trials of Unassisted Breathing Followed by Extubation*


*See Tables 2 and 3 for abbreviations not used in the text.

Finally, Table 12^{56–58} summarizes studies evaluating the prediction of successful extubation at 4 months in patients with COPD. Menzies et al⁵⁶ examined the predictive power of a number of variables that were recorded in COPD patients in the first 3 days after their admission to an ICU. The investigators recorded variables immediately before a trial of unassisted breathing through a ventilator circuit. Nava et al⁵⁷ enrolled only COPD patients who resided in a rehabilitation unit and who had received mechanical ventilation for at least 21 days. They examined the predictive power of variables recorded between 5 and 10 days after hospital admission during a

period of clinical stability. The investigators almost invariably presented their results as differences in means and SDs between groups that did or did not wean from mechanical ventilation, a format that is not easily applied to patient-care decisions.

Weaning Predictors in the CVICU

Two groups of investigators^{59,60} have studied predictors for trials of unassisted breathing in the CVICU (Table 13). Neither report included threshold values that could be applied in the clinical arena, rather, all results were

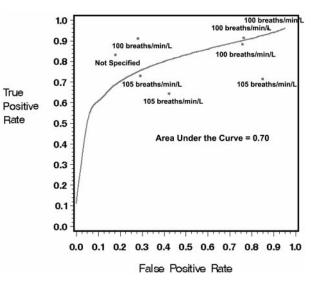


FIGURE 1. Summary ROC curve for minute ventilation predicting successful extubation.

presented as means and SDs among patients who passed and failed trials of unassisted breathing. The investigators found a large number of predictor variables that were associated with successful trials.

Table 14^{61,62} presents predictors of successful extubation, which also have been studied by two separate groups of investigators. Once again, there appears to be a large number of variables that are associated with successful extubation, although the investigators do not provide any threshold values.

In a single study of 23 CVICU patients, Saito et al⁶³ evaluated $P_{0,1} < 4.0 \text{ cm H}_2\text{O}$ as a predictor of success on a trial of unassisted breathing followed by successful

FIGURE 3. Summary ROC curve for RSBI predicting successful extubation.

extubation. Their measure had a sensitivity of 100% and a specificity of 56% (LR for a positive result, 2.3; and LR for a negative result, 0).

Another single study⁶⁴ of 230 patients evaluated predictors for successful extubation within 24 h of the patient undergoing cardiovascular surgery. The authors presented their results as differences in means and SDs in those patients who successfully underwent extubation by 24 h after surgery and those who did not. Successfully extubated patients had a statistically significant larger vital capacity, a shorter operating room time, and a higher $PaCO_2$ level, but the differences between groups were small. Patients who were successfully extubated had a mean American Society of Anesthesia

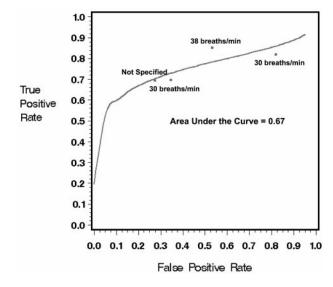


FIGURE 2. Summary ROC curve for RR predicting successful extubation.

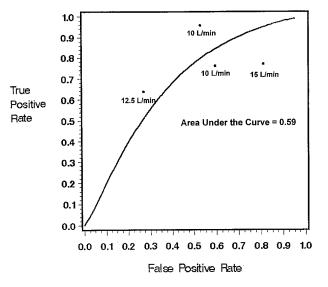


FIGURE 4. Summary ROC curve for minute ventilation predicting successful trials of unassisted breathing.

CHEST / 120 / 6 / DECEMBER, 2001 SUPPLEMENT 415S

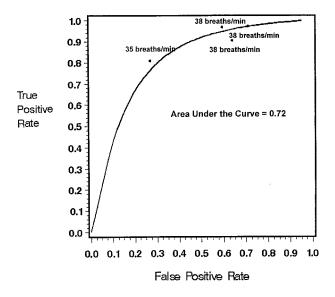


FIGURE 5. Summary ROC curve for RR predicting successful trials of unassisted breathing and extubation.

surgical risk score of 1.5, while those patients who were not extubated successfully by 24 h after surgery had a surgical risk score of 3.3.

A separate group of 10 studies (Table 15)^{65–74} evaluated the ability of variables to predict the duration of mechanical ventilation following cardiac surgery. The predictor variables considered included those related to preoperative morbidity (eg, prior myocardial infarction), pre-ICU respiratory mechanics (eg, FEV₁ percent predicted), surgical issues (eg, second cardiac surgery procedures), and postoperative events (eg, new Q waves on ECG). In general, this table provides information about which variables might be the most important to consider, although the relative importance of each variable, and the threshold

FIGURE 6. Summary ROC curve for tidal volume predicting successful trials of unassisted breathing and extubation.

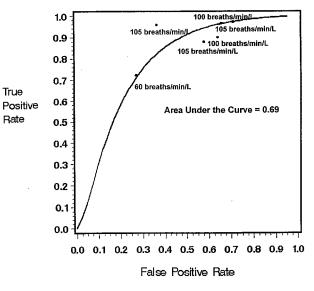


FIGURE 7. Summary ROC curve for RSBI predicting successful trials of unassisted breathing and extubation.

values of importance for each variable, were not available. The variables with the greatest potential include just one preoperative variable (preoperative length of stay), one intraoperative variable (fentanyl dose), and a number of postoperative variables (duration of mechanical ventilation prior to weaning, maximum expiratory pressure, presence of new Q waves, degree of bleeding and RBC transfusion, and decreased cardiac output). The only variable that was examined in more than one study was whether patients had undergone coronary artery bypass surgery. The results suggest only a small decrease in the probability of successful extubation (LR, 0.42; 95% CI, 0.24 to 0.75) for patients who had undergone a procedure other than coronary artery bypass grafting (CABG).

CONCLUSION

Studies have evaluated an extraordinarily diverse collection of variables for their ability to predict successful weaning and/or duration of mechanical ventilation. Many of these physiologic predictors already have provided great insights into the mechanisms of the failure of liberation. However, from a clinical point of view, the results are disappointing. First, a large number of predictors were found to be of no use in predicting the results of weaning. We found few predictors (1) that had been studied in > 50 patients and (2) for which investigators presented data that allowed estimates of the predictive power, and (3) had, at least in some studies, appreciable predictive powerful, and their results are not consistent across studies.

Only twice, after pooling, did we observe an LR of > 10 or < 0.1. The P_{0.1}/PImax ratio was highly predictive of trials of unassisted breathing and extubation in two studies, with a pooled LR of 16.3 (95% CI, 2.35 to 113). Most

Table 10-Predictors of Successful Extubation in Patients With COPD

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
RR, breaths/min	General COPD	Hilbert et al ⁵³ /1998	40	$24 \pm 5^{*}$	0.56
				25 ± 5	
RSBI, breaths/min/L	General COPD	Hilbert et al ⁵³ /1998	40	$60 \pm 2^{*}$	0.27
				$66 \pm 28^{\dagger}$	
P _{0.1} , cm H ₂ O	General COPD	Hilbert et al ⁵³ /1998	40	$2.4 \pm 0.9^{*}$	0.09
				2.9 ± 0.7 †	
Effective inspiratory impedance	General COPD	Hilbert et al ⁵³ /1998	40	$5.2 \pm 1.2^{*}$	0.04
				$6.1 \pm 1.3^{\dagger}$	
PaO ₂ /FiO ₂	General COPD	Hilbert et al ⁵³ /1998	40	$248 \pm 62^{*}$	0.73
				$241 \pm 56^{\dagger}$	

*Mean \pm SD of success.

 † Mean \pm SD of failure.

of the remaining tests did not bear results that are very helpful in increasing or decreasing the probability of success. We did not observe any pooled LRs between 5 and 10, although we did observe five variables with LRs < 0.2, indicating that a negative test result is associated with a moderate reduction in the probability of weaning. These variables for the combined end point of a successful trial of unassisted breathing followed by successful extubation included the following: an RSBI < 100 breaths/min/L for trials of unassisted breathing; the compliance/

Predictor	Domulation	Stude / -	Patients, No.	Predictive Power	Reported
rredictor	Population	Study/yr	INO.	Fredictive Fower	p Value
Duration of mechanical ventilation prior to weaning, h	Infectious COPD exacerbation	Bouachour et al ⁵⁴ /1996	26	$8 \pm 4^{\dagger}$ 11 ± 7‡	0.19
0	General COPD	Jubran and Tobin ⁵⁵ /1997	31	10.79 ± 3.26 25.12 ± 9.49	0.20
RR, breaths/min	General COPD	Jubran and Tobin ⁵⁵ /1997	31	22.7 ± 1.6 34.5 ± 2.6	< 0.001
RSBI, breaths/min/L	General COPD	Jubran and Tobin ⁵⁵ /1997	31	75 ± 11 § 158 ± 20	0.001
Intrinsic PEEP, cm $\rm H_2O$	General COPD	Jubran and Tobin ⁵⁵ /1997	31	0.7 ± 0.1 2.0 ± 0.5	0.03
Gastric intramucosal pH > 7.3	Infectious COPD exacerbation	Bouachour et al ⁵⁴ /1996	26	100¶ 100#	
Gastric intramucosal $\mathrm{PCO}_2 < 60~\mathrm{mm}$ Hg	Infectious COPD exacerbation	Bouachour et al ⁵⁴ /1996	26	95 (85–105)¶ 100#	
Heart rate, beats/min	Infectious COPD exacerbation	Bouachour et al ⁵⁴ /1996	26	$85 \pm 13^{\dagger}$ $103 \pm 22^{\ddagger}$	0.02
SBP, mm Hg	Infectious COPD exacerbation	Bouachour et al ⁵⁴ /1996	26	$134 \pm 15^{\dagger}$ $115 \pm 17^{\ddagger}$	0.01
Pressure time product, cm $\rm H_2O/s/min$	General COPD	Jubran and Tobin ⁵⁵ /1997	31	158 ± 23 255 ± 59	0.17
Inspiratory resistance, cm $\rm H_2O/L/s$	General COPD	Jubran and Tobin ⁵⁵ /1997	31	5.3 ± 1.1 9.0 ± 1.7	0.11
Inspiratory time, s	General COPD	Jubran and Tobin ⁵⁵ /1997	31	1.16 ± 0.09 0.71 ± 0.04	< 0.001
Dynamic elastance, cm $\rm H_2O/L$	General COPD	Jubran and Tobin ⁵⁵ /1997	31	9.9 ± 1.7 § 21.2 ± 3.4	< 0.01
SaO ₂ , %	Infectious COPD exacerbation	Bouachour et al ⁵⁴ /1996	26	$96 \pm 2^{\dagger}$ $97 \pm 1^{\ddagger}$	0.25

*Sao₂ = pulse oximetry arterial oxygen saturation. See Tables 2 and 4 for abbreviations not used in the text.

 † Mean \pm SD of success.

 $[\]pm$ Mean \pm SD of failure.

 $Mean \pm SE$ of success.

 $^{\|}Mean \pm SE \text{ of failure.}\|$

[¶]Sensitivity (range).

[#]Specificity.

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
RR, breaths/min	General COPD	Menzies et al ⁵⁶ /1989	95	26.0*	0.01
				30.7†	
	Tracheostomy; difficult to wean	Nava et al ⁵⁷ /1994	42	$23.5 \pm 5.9 \ddagger$	0.07
				26.4 ± 3.8	
RSBI, breaths/min/L	Tracheostomy; difficult to wean	Nava et al ⁵⁷ /1994	42	$55.2 \pm 16.6 \ddagger$	0.01
				69.9 ± 20.8	
NIF, cm H_2O	Tracheostomy; difficult to wean	Nava et al ⁵⁷ /1994	42	$44.0 \pm 16.4 \ddagger$	0.003
				31.3 ± 6.1 §	
P _{0.1} , cm H ₂ O	Tracheostomy; difficult to wean	Nava et al ⁵⁷ /1994	42	$3.5 \pm 1.3 \ddagger$	< 0.001
				5.2 ± 0.5	
FEV ₁ /FVC, %	Tracheostomy; difficult to wean	Nava et al ⁵⁷ /1994	42	45 ± 12 ‡	0.14
				40 ± 9 §	
FEV ₁ , % predicted	General COPD	Menzies et al ⁵⁶ /1989	95	7.73	
	Tracheostomy; difficult to wean	Nava et al ⁵⁷ /1994	42	$25 \pm 14 \ddagger$	0.27
				21 ± 7 §	
Dyspnea	Long-term respiratory-care center	Moody et al ⁵⁸ /1997	27	$35.00 \pm 16.52 \ddagger$	0.05
				49.23 ± 20.19 §	
PaO_2/FIO_2	Tracheostomy; difficult to wean	Nava et al ⁵⁷ /1994	42	$231.1 \pm 53.3 \ddagger$	0.08
				201.8 ± 52.5 §	
Discriminant function model	Tracheostomy; difficult to wean	Nava et al ⁵⁷ /1994	42	84 (69–99)¶	
				82 (63–101)#	

Table 12-Predictors of Extubation Within 4 Months for Patients With COPD

*Mean of success.

†Mean of failure.

 \pm Mean \pm SD of success.

 $Mean \pm SD$ of failure.

 $\|\beta\text{-coefficient}.$

¶Sensitivity (range).

#Specificity (range).

rate/oxygenation/pressure (CROP) index for trials of extubation and an RR of > 38 breaths/min; tidal volume standardized to body weight; and NIF of < 20 to 25 cm $\rm H_2O$. Therefore, on balance, the best results achieved with any of these tests were moderate reductions in the probability of successful weaning in association with a negative test result.

The virtual absence of any tests with high LRs (thereby markedly increasing the probability of successful weaning) and the less infrequent occurrence of tests with LRs substantially < 1 (thereby appreciably decreasing the likelihood of successful weaning) corresponds to tests with high sensitivity (ie, > 90%) but unimpressive specificity. Again, this corresponds to positive test results that do not increase the likelihood of success substantially and to negative test results that sometimes decrease the probability of success appreciably. For example, assuming a pretest probability of success of 50%, a high RR (ie, > 38 breaths/min; LR, 0.32) will decrease the probability of success in reducing mechanical ventilation support from 50% to approximately 25%, the probability of success in a trial of unassisted breathing (LR, approximately 0.2) to approximately 20%, and the probability of success in a trial of extubation (LR, approximately 0.55) to approximately 33%.

The most frequently studied test, and one of the most

powerful, is the RSBI. Pooled results for this test consistently show that a positive result (*ie*, a breathing patternthat is neither rapid nor shallow) is minimally helpful in increasing the probability of successful weaning. LRs from individual studies are usually < 2, meaning that the pretest probability of 50% will rise no higher than 66%. Considering the pooled data, the LR for the RSBI at predicting successful trials of unassisted breathing was 1.7, the LR for predicting successful extubation was between 1.3 and 1.8 (the latter value occurs when the variable is indexed to body weight), and the LR for predicting successful trials of unassisted breathing and extubation was as high as 2.8.

LRs associated with a negative result (*ie*, breathing that tends to be rapid and shallow) were 0.11 for predicting unassisted breathing, 0.39 for successful extubation, and 0.22 for the combined end point of unassisted breathing and extubation. These LRs correspond to decreases in the probability of success from 50% to 10%, 28%, and 18%, respectively.

Another observation about these studies is that measurement techniques often have differed across studies; large coefficients of variations have been demonstrated when different investigators make these measurements.⁷⁷ An additional challenge is the absence of

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Duration of mechanical ventilation prior to weaning, h	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	$\begin{array}{c} 13.4\ (11.5)\dagger\\ 23.7\ (26.9)\ddagger\end{array}$	0.004
Gross alveolar ventilation, mL	Pediatric and adult CVS	Delooz ⁶⁰ /1976	41	229.0~(61.1)†	< 0.001
				160.8 (42.7)‡	
VT, mL	Pediatric and adult CVS	Delooz ⁶⁰ /1976	41	$469~(151)^{\dagger}$	0.03
				371 (111)‡	
VC L	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	1.30 (0.63)†	< 0.001
L	Mixed CV5	Timberman et al 71070	124	0.79(0.30)	< 0.001
mL/kg	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	18.3 (7.2)†	< 0.001
ind kg	Milded CVD	Tinbolinan ot al 71010	121	11.9 (4.0)‡	0.001
% predicted preoperatively	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	90.7 (13.7)†	< 0.001
. Freedow Freebounded				71.3 (21.9)‡	
NIF, cm H ₂ O	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	30.7 (8.8)†	0.001
, 1				24.3 (9.4)‡	
Inspiratory resistance, cm $H_2O/L/s$	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	7.2 (2.7)†	0.001
* · · _				9.1 (2.6)‡	
Compliance, L/cm H ₂ O	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	$0.05~(0.01)^{\dagger}$	< 0.001
				0.04 (0.02)‡	
DLCO, % predicted	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	$98.9\;(1.7)^{\dagger}$	0.01
				104.6 (21.3)‡	
pH	Pediatric and adult CVS	Delooz ⁶⁰ /1976	41	7.41~(0.04)†	0.04
				$7.38\ (0.05)$ ‡	
	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	7.47~(0.06)†	0.46
				$7.46\ (0.07)$ ‡	
Paco ₂ , mm Hg	Pediatric and adult CVS	Delooz ⁶⁰ /1976	41	38.0 (3.4)†	0.03
				41.7~(6.9)‡	
	Mixed CVS	Hilberman et al ⁵⁹ /1976	124	35.2 (4.9)†	0.25
				36.6 (7.6)‡	
Pulmonary arterial pressure, mm Hg	Pediatric and adult CVS	Delooz ⁶⁰ /1976	41	24.0 (11.6)†	0.08
				31.1 (13.8)‡	
Pulmonary vascular resistance	Pediatric and adult CVS	Delooz ⁶⁰ /1976	41	507 (287)†	0.05
index, dynes•s•cm ⁻⁵				810 (648)‡	

Table 13—Predictors of Successful Trials of Unassisted Breathing in the CVICU*

*DLCO = diffusing capacity of the lung for carbon monoxide. See Table 2 for abbreviations not used in the text.

[†]Mean (SD) of success.

‡Mean (SD) of failure.

objective criteria to determine the tolerance for a trial of discontinuation or extubation, and the variation across studies.

Why do most of these tests perform so poorly, and why do so few provide helpful information? The likely explanation is that clinicians already have considered the results when they choose patients for trials of weaning. For instance, clinicians may seldom test patients who have very high RRs, who are capable of generating only very low pressures, or patients whose tidal volumes are very low for their ability to wean. Similarly, clinicians may not wait until the RR, tidal volume, or pressure generation is normal before they undertake weaning, for this would lead to excessive time spent receiving mechanical ventilation. Thus, the range of results is relatively narrow. The more narrow the range of results, the less likely that a test can discriminate between patients destined to fail a weaning trial and those destined to succeed.

Furthermore, when results of a single test are more extreme, it is likely that physicians are attempting to wean the patient only because other observations suggest the limited impact of an isolated aberrant finding. For instance, adequate tidal volume and pressure generation may indicate to a clinician that an elevated RR is due largely to patient anxiety and does not indicate that the patient will be unable to be weaned from mechanical ventilation.

In essence, this means that the predictive power of the tests is "used up" by the time that investigators formally test their properties in patients that clinicians already have decided are candidates for weaning. Thus, it is unrealistic

Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Duration of mechanical ventilation prior to weaning, h	Mixed CVS	Engoren et al $^{61}/1999$	82	6.0 (4.7–12.7)† 15.5 (8.2–19.5)‡	< 0.05
VE, mL/min/kg	Mixed CVS	Engoren et al ⁶¹ /1999	82	105 ± 28 91 ± 27	0.003
VT, mL	Mixed CVS	Engoren et al ⁶¹ /1999	82	533 ± 173 457 ± 131	0.03
VC					
L	Mixed CVS	Engoren et $al^{61}/1999$	82	0.12¶	0.01
mL/kg	Mixed CVS	Engoren et al ⁶¹ /1999	82	15.6 ± 6.2 11.5 ± 3.9	< 0.001
NIF, cm H_2O	Mixed CVS	Engoren et al $^{61}/1999$	82	42 ± 8 38 ± 10	0.05
FIO_2	Mixed CVS	Engoren et al $^{61}/1999$	82	0.53 ± 0.08 0.61 ± 0.19	0.02
Total operating room time, h	Mixed CVS	Engoren et al ⁶¹ /1999	82	6.79¶	0.02
	Mixed CVS	Rady and Ryan ⁶² /1999	11,330	5.2 ± 1.5 6.5 ± 3.1	< 0.001
Total bypass time, min	Mixed CVS	Rady and Ryan ⁶² /1999	11,330	108 ± 46 136 ± 75	< 0.001
Arterial grafts	Mixed CVS	Engoren et al $^{61}/1999$	82	$3 (2-4)^{\dagger}$ $3 (2-4)^{\ddagger}$	1.00
CABG	Mixed CVS	Rady and Ryan ⁶² /1999	11,330	42 (41–42)# 41 (37–44)**	

Table 14—Predictors of Successful Extubation in the CVICU*

*See Table 2 for abbreviations not used in the text.

[†]Median (interquartile range) of success.

 $\ensuremath{\ddagger}\xspace{Median}$ (interquartile range) of failure.

 $Mean \pm SD$ of success.

 $\|$ Mean \pm SD of failure.

¶Multivariate OR.

#Sensitivity (range).

**Specificity (range).

to expect physiologic tests to be highly predictive in patients in whom clinicians judge to have an intermediate probability of weaning success.

Future Research

LRs provide the best format for presenting the results of weaning predictors, and future research should consider this presentation metric. Sensitivity and specificity provide common, but less easily applied, measures of predictive power. Reporting only means and measures of variance for groups that have undergone successful and unsuccessful weaning, or reporting regression coefficients and p values, is far less useful in terms of clinical application.

The results of these studies would be more helpful to clinicians if data were reported related to multiple cut points for a given variable, rather than a single cut point. For instance, rather than reporting success rates in patients with RRs of > 36 breaths/min and < 36 breaths/ min, investigators should report success rates in patients with RRs of < 20, 21 to 28, 29 to 36, 36 to 44, and > 44

breaths/min. These cut points are obviously somewhat arbitrary. The point is that since extreme results may be highly predictive, intermediate results may be somewhat predictive, and results at the margin may not be predictive at all. The use of a single cut point or threshold obscures this important information.

Having said this, investigators and clinicians should not expect any test to be particularly powerful. The findings to date validate the clinical intuition. Once clinicians have decided that a patient is likely but not certain to be weaned from mechanical ventilation, a formal examination of physiologic tests that the clinician has in some way considered in making the decision about pretest probability is unlikely to be very helpful.

As we point out elsewhere in this supplement, formal weaning protocols may perform better than usual clinical care. When the predictors of weaning are incorporated in such protocols, they retain their full predictive power, because clinicians have not already used them to select a subgroup of patients whom they are considering for weaning. We believe that, at least in clinical research, further testing of formal weaning protocols represents the

Table 15—Predictors of Duration of Mechanical Ventilation Following Cardiac Surger	y *
--	------------

	5 5		8	8 9	
Predictor	Population	Study/yr	Patients, No.	Predictive Power	Reported p Value
Duration of mechanical ventilation prior to weaning, h	Mixed CVS	Hanneman ⁶⁵ /1994	162	$\begin{array}{c} 11\pm5\dagger\\ 88\pm9\ddagger \end{array}$	< 0.001
Failed extubation VC	Pediatric CVS	Kanter et al $^{66}/1986$	140	§ 00 = 0+	< 0.005
L	Elective CVS	Peters et $al^{67}/1979$	49	$3.2 \pm 1.1^{\dagger}$ $2.4 \pm 0.9^{\ddagger}$	0.02
	Mixed CVS	Bando et $al^{68}/1997$	586		0.36
ml/kg	Mixed CVS	Hanneman ⁶⁵ /1994	162	$14.2 \pm 5^{\dagger}$ $11 \pm 4^{\ddagger}$	0.001
% predicted preoperatively	Elective CVS	Ingersoll and Grippi ^{69/1991}	47	$59.6 \pm 15.3^{\dagger}$ $71.9 \pm 13.9^{\ddagger}$	0.02
	Mixed CVS	Bando et al ⁶⁸ /1997	586		0.41
Maximum expiratory pressure, cm $\mathrm{H_2O}$	Elective CVS	Peters et $al^{67}/1979$	49	$68 \pm 24^{\dagger}$ $47 \pm 26^{\ddagger}$	0.01
FIO ₂	Mixed CVS	Hanneman ⁶⁵ /1994	162	$0.61 \pm 0.09^{\dagger}$ $0.72 \pm 0.17^{\ddagger}$	< 0.001
MMEF ₅₀₋₇₅ , L/min	Elective CVS	Peters et $al^{67}/1979$	49	$1.8 \pm 1.0^{\dagger}$ $1.1 \pm 0.6^{\ddagger}$	0.02
MMEF ₇₅₋₈₅ , L/min	Elective CVS	Peters et $al^{67}/1979$	49	$0.9 \pm 0.5^{\dagger}$ $0.5 \pm 0.2^{\ddagger}$	0.006
Preoperative length of hospital stay, d	Elective CVS	Ingersoll and Grippi ^{69/1991}	47	$6.3 \pm 6.7 \dagger$ $12.2 \pm 10.8 \ddagger$	0.03
Preoperative mechanical ventilation	Pediatric CVS	Kanter et al ⁶⁶ /1986	140	ş	< 0.05
Preoperative diuretics	CABG	Arom et al ⁷⁰ /1995	645	0.68¶	0.001
Perioperative intra-aortic balloon pump	CABG	Habib et $al^{71}/1996$	507	2.55 (1.10-5.92)#	0.03
Total operating room time, h	Elective, fast-track CVS	London et al ⁷² /1998	299	$4.9 \pm 1.0^{\dagger}$ $5.4 \pm 1.3^{\ddagger}$	0.001
Total bypass time, min	CABG	Doering et al ⁷³ /1998	116	0.01**	
	Elective, fast-track CVS	London et $a^{72}/1998$	299	$115 \pm 28^{\dagger}$ $134 \pm 39^{\ddagger}$	0.001
Arterial grafts	Elective, fast-track CVS	London et al ⁷² /1998	299	0.32 (0.14-0.72)#	0.006
Second surgical procedure	Pediatric CVS	Kanter et al ⁶⁶ /1986	140	0.005††	0.005
Priority operation	Mixed CVS	Bando et $al^{68}/1997$	586	0.005††	0.005
CABG	Elective CVS	Peters et $al^{67}/1979$	49	$71~(56-87)\ddagger \ddagger \\71~(45-97) \S \S$	
	CABG	Doering ⁷⁴ /1997	62	91 (72–110)‡‡ 26 (13–38)§§	
	Elective, fast-track CVS	London et al ⁷² /1998	299	0.5(0.24 - 1.06)#	0.07
Core intraoperative temperature, $^{\circ}\mathrm{C}$	CABG	Arom et al ⁷⁰ /1995	645	32.7 ± 1.7 † 30.6 ± 2.8 ‡	< 0.001
	CABG	Habib et al ⁷¹ /1996	507	$35.3 \pm 2.8 \dagger$ $34.8 \pm 2.2 \ddagger$	0.03
DLCO, % predicted	Mixed CVS	Bando et al $^{68}/1997$	586	0.68††	0.68
New Q waves	Mixed CVS	Bando et al 68/1997	586	$27 \pm 38^{\dagger}$ $75 \pm 150^{\ddagger}$	< 0.001
Bleeding	Mixed CVS	Bando et al ⁶⁸ /1997	586	$28 \pm 44^{\dagger}$ $86 \pm 171^{\ddagger}$	< 0.001
Homologous RBCs administered	CABG	Habib et al ⁷¹ /1996	507	2.41 (1.48-3.94)#	< 0.001
U U	Elective, fast-track CVS	London et $al^{72}/1998$	299	16.4 45.5¶¶	< 0.001
Platelets administered	Elective, fast-track CVS	London et $al^{72}/1998$	299	10.03 (2.01-50.20)#	0.005
Decreased cardiac output	Mixed CVS	Bando et al ⁶⁸ /1997	586	$26 \pm 30^{\dagger}$ $81 \pm 151^{\ddagger}$	< 0.001
Unstable angina	CABG	Arom et al ⁷⁰ /1995	645	0.43##	0.03
Fentanyl use	Elective, fast-track CVS	London et al ⁷² /1998	299	3.41 (0.69–16.88)#	0.13
Fentanyl dose, $\mu g/kg$	Elective, fast-track CVS	London et $al^{72}/1998$	299	35.6 ± 12.4 [†] 45.5 ± 22 [‡]	0.002
				(Table	continues)

Table 15—Continued

Predictor	Population	Study/Year	Patients, No.	Predictive Power	Reported p Value
Inotropes	Elective, fast-track CVS	London et al ⁷² /1998	299	5.73 (1.76–18.66)#	0.004
рН	Mixed CVS	Hanneman ⁶⁵ /1994	162	$7.41 \pm 0.06^{\dagger}$ $7.35 \pm 0.08^{\ddagger}$	< 0.001
Study-derived predictive index	Pediatric CVS	Kanter et al $^{66}/1986$	140	57 (48–66)‡‡ 95 (84–105)§§	
CHF/pulmonary edema	Mixed CVS	Bando et al ⁶⁸ /1997	586	0.105##	0.01
Coma	Mixed CVS	Bando et al ⁶⁸ /1997	586	0.296##	< 0.001

*MMEF₅₀₋₇₅ = maximal midexpiratory flow measured between 50% and 75% of expired volume; MMEF₇₅₋₈₅ = maximal midexpiratory flow between 75% and 85% of expired volume; CHF = congestive heart failure. See Tables 2 and 13 for abbreviations not used in the text. † Mean \pm SD of success.

 \ddagger Mean \pm SD of failure. $Multivariate \beta$ -p value. $\|$ Univariate β -p value.

¶β-value.

#Multivariate OR (95% CI).

**Univariate β-coefficient.

 \dagger †β-p value.

‡‡Sensitivity (range).

§§Specificity (range).

Mean of success.

¶¶Mean of failure.

##Multivariate β -coefficient.

best step forward, rather than focusing exclusively on testing physiologically predictive information to optimize the weaning process.

The data included in this systematic review and a more comprehensive discussion of the original articles are included in an Evidence Report of the Agency for Healthcare Research and Quality.78

References

- 1 Laghi F, D'Alfonso N, Tobin MJ. Pattern of recovery from diaphragmatic fatigue over 24 hours. J Appl Physiol 1995; 79:539-546
- 2 Reid WD, Huang J, Bryson S, et al. Diaphragm injury and myofibrillar structure inducted by resistive loading. J Appl Physiol 1994; 76:176-184
- 3 Capdevila X, Perrigault PF, Ramonatxo M, et al. Changes in breathing pattern and respiratory muscle performance parameters during difficult weaning. Crit Care Med 1998; 26:79 - 87
- 4 Cohen CA, Zagelbau D, Gross D, et al. Clinical manifestations of inspiratory muscle fatigue. Am J Med 1982; 73:308-316
- 5 Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 1997; 155:906-915
- 6 Vassilakopoulos T, Zakynthinos S, Roussos C. The tensiontime index and the frequency/tidal volume ratio are the major pathophysiologic determinants of weaning failure and success. Am J Respir Crit Care Med 1998; 158:378-385
- 7 Epstein SK, Ciubotaru RL, Wong JB. Effect of failed extubation on the outcome of mechanical ventilation. Chest 1997; 112:186-192
- 8 Esteban A, Alia I, Gordo F, et al. Extubation outcome after spontaneous breathing trials with t-tube or pressure support

ventilation. Am J Respir Crit Care Med 1997; 156:459-465

- 9 Irwig L, Tosteson A, Gatsonis C, et al. Guidelines for meta-analyses evaluating diagnostic tests. Ann Intern Med 1994; 120:667-676
- 10 Simel D, Samsa G, Matchar D. Likelihood ratios with confidence: sample size estimation for diagnostic test studies. I Clin Epidemiol 1991; 44:763-770
- 11 Littenberg B, Moses L. Estimating diagnostic accuracy from multiple conflicting reports: a new meta-analytic method. Med Decis Making 1993; 13:313-321
- 12 Linton DM, Potgieter PD, Davis S, et al. Automatic weaning from mechanical ventilation using an adaptive lung ventilation controller. Chest 1994; 106:1843-1850
- 13 Rivera L, Weissman C. Dynamic ventilatory characteristics during weaning in postoperative critically ill patients. Anesth Analg 1997; 84:1250-1255
- 14 Stroetz RW, Hubmayr RD. Tidal volume maintenance during weaning with pressure support. Am J Respir Crit Care Med 1995; 152:1034-1040
- 15 Oh TE, Bhatt S, Lin ES, et al. Plasma catecholamines and oxygen consumption during weaning from mechanical ventilation. Intensive Care Med 1991; 17:199-203
- 16 Frutos F, Alia I, Esteban A, et al. Clinical changes during a T-tube weaning trial. Med Intensiva 1995; 19:343-348
- 17 Del Rosario N, Sassoon CS, Chetty KG, et al. Breathing pattern during acute respiratory failure and recovery. Eur Respir I 1997; 10:2560-2565
- 18 Dojat M, Harf A, Touchard D, et al. Evaluation of a knowledge-based system providing ventilatory management and decision for extubation. Am J Respir Crit Care Med 1996; 153:997-1004
- 19 Chatila W, Jacob B, Guaglionone D, et al. The unassisted respiratory rate-tidal volume ratio accurately predicts weaning outcome. Am J Med 1996; 101:61-67
- Sassoon CS, Mahutte CK. Airway occlusion pressure and 20 breathing pattern as predictors of weaning outcome. Am Rev Respir Dis 1993; 148:860-866

- 21 Jabour ER, Rabil DM, Truwit JD, et al. Evaluation of a new weaning index based on ventilatory endurance and the efficiency of gas exchange. Am Rev Respir Dis 1991; 144:531– 537
- 22 Saura P, Blanch L, Mestre J, et al. Clinical consequences of the implementation of a weaning protocol. Intensive Care Med 1996; 22:1052–1056
- 23 Kennedy SK, Weintraub RM, Skillman JJ. Cardiorespiratory and sympathoadrenal responses during weaning from controlled ventilation. Surgery 1977; 82:233–240
- 24 Tahvanainen J, Salmenpera M, Nikki P. Extubation criteria after weaning from intermittent mandatory ventilation and continuous positive airway pressure. Crit Care Med 1983; 11:702–707
- 25 Lee KH, Hui KP, Chan TB, et al. Rapid shallow breathing (frequency-tidal volume ratio) did not predict extubation outcome. Chest 1994; 105:540–543
- 26 Khan N, Brown A, Venkataraman ST. Predictors of extubation success and failure in mechanically ventilated infants and children. Crit Care Med 1996; 24:1568–1579
- 27 Krieger BP, Isber J, Breitenbucher A, et al. Serial measurements of the rapid-shallow-breathing index as a predictor of weaning outcome in elderly medical patients. Chest 1997; 112:1029–1034
- 28 Afessa B, Hogans L, Murphy R. Predicting 3-day and 7-day outcomes of weaning from mechanical ventilation. Chest 1999; 116:456-461
- 29 Leitch EA, Moran JL, Grealy B. Weaning and extubation in the intensive care unit: clinical or index-driven approach? Intensive Care Med 1996; 22:752–759
- 30 Mergoni M, Costa A, Primavera S, et al. Assessment of various new predictive parameters of the outcome of mechanical ventilation weaning. Minerva Anestesiol 1996; 62:153– 164
- 31 Yang KL. Inspiratory pressure/maximal inspiratory pressure ratio: a predictive index of weaning outcome. Intensive Care Med 1993; 19:204–208
- 32 Gologorskii VA, Gelfand BR, Stamov VI, et al. Cessation of prolonged artificial ventilation of the lungs and transition to spontaneous respiration of surgical patients. Anesteziol Reanimatol 1997; 4–10
- 33 Kline JL, Zimnicki GL, Antonenko DR, et al. The use of calculated relative inspiratory effort as a predictor of outcome in mechanical ventilation weaning trials. Respir Care 1987; 32:870–876
- 34 Ochiai R, Shimada M, Takeda J, et al. Contribution of rib cage and abdominal movement to ventilation for successful weaning from mechanical ventilation. Acta Anaesthesiol Scand 1993; 37:131–136
- 35 DeHaven CB, Kirton OC, Morgan JP, et al. Breathing measurement reduces false-negative classification of tachypneic preextubation trial failures. Crit Care Med 1996; 24:976–980
- 36 Epstein SK. Etiology of extubation failure and the predictive value of the rapid shallow breathing index. Am J Respir Crit Care Med 1995; 152:545–549
- 37 Epstein SK, Ciubotaru RL. Influence of gender and endotracheal tube size on preextubation breathing pattern [published erratum appears in Am J Respir Crit Care Med 1996; 155:2115] Am J Respir Crit Care Med 1996; 154:1647–1652
- 38 Baumeister BL, el-Khatib M, Smith PG, et al. Evaluation of predictors of weaning from mechanical ventilation in pediatric patients. Pediatr Pulmonol 1997; 24:344–352
- 39 el-Khatib MF, Baumeister B, Smith PG, et al. Inspiratory pressure/maximal inspiratory pressure: does it predict successful extubation in critically ill infants and children? Intensive Care Med 1996; 22:264–268

- 40 Fisher MM, Raper RF. The "cuff-leak" test for extubation. Anaesthesia 1992; 47:10–12
- 41 Adderley RJ, Mullins GC. When to extubate the croup patient: the "leak" test. Can J Anaesth 1987; 34:304–306
- 42 Ely EW, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 1996; 335:1864–1869
- 43 Krieger BP, Ershowsky PF, Becker DA, et al. Evaluation of conventional criteria for predicting successful weaning from mechanical ventilatory support in elderly patients. Crit Care Med 1989; 17:858–861
- 44 Mohsenifar Z, Hay A, Hay J, et al. Gastric intramural pH as a predictor of success or failure in weaning patients from mechanical ventilation. Ann Intern Med 1993; 119:794–798
- 45 Capdevila XJ, Perrigault PF, Perey PJ, et al. Occlusion pressure and its ratio to maximum inspiratory pressure are useful predictors for successful extubation following T-piece weaning trial. Chest 1995; 108:482–489
- 46 Farias JA, Alia I, Esteban A, et al. Weaning from mechanical ventilation in pediatric intensive care patients. Intensive Care Med 1998; 24:1070–1075
- 47 Vallverdu I, Calaf N, Subirana M, et al. Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. Am J Respir Crit Care Med 1998; 158:1855–1862
- 48 Ashutosh K, Lee H, Mohan CK, et al. Prediction criteria for successful weaning from respiratory support: statistical and connectionist analyses [published erratum appears in Crit Care Med 1994; 22:183]. Crit Care Med 1992; 20:1295–1301
- 49 Sahn SA, Lakshminarayan S. Bedside criteria for discontinuation of mechanical ventilation. Chest 1973; 63:1002–1005
- 50 Jacob B, Chatila W, Manthous CA. The unassisted respiratory rate/tidal volume ratio accurately predicts weaning outcome in postoperative patients. Crit Care Med 1997; 25:253–257
- 51 Gandia F, Blanco J. Evaluation of indexes predicting the outcome of ventilator weaning and value of adding supplemental inspiratory load. Intensive Care Med 1992; 18:327– 333
- 52 Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 1991; 324:1445–1450
- 53 Hilbert G, Gruson D, Portel L, et al. Airway occlusion pressure at 0.1 s (P0.1) after extubation: an early indicator of postextubation hypercapnic respiratory insufficiency. Intensive Care Med 1998; 24:1277–1282
- 54 Bouachour G, Guiraud MP, Gouello JP, et al. Gastric intramucosal pH: an indicator of weaning outcome from mechanical ventilation in COPD patients. Eur Respir J 1996; 9:1868–1873
- 55 Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 1997; 155:906–915
- 56 Menzies R, Gibbons W, Goldberg P. Determinants of weaning and survival among patients with COPD who require mechanical ventilation for acute respiratory failure. Chest 1989; 95:398–405
- 57 Nava S, Rubini F, Zanotti E, et al. Survival and prediction of successful ventilator weaning in COPD patients requiring mechanical ventilation for more than 21 days. Eur Respir J 1994; 7:1645–1652
- 58 Moody LE, Lowry L, Yarandi H, et al. Psychophysiologic predictors of weaning from mechanical ventilation in chronic bronchitis and emphysema. Clin Nurs Res 1997; 6:311–330
- 59 Hilberman M, Kamm B, Lamy M, et al. An analysis of potential physiological predictors of respiratory adequacy

CHEST / 120 / 6 / DECEMBER, 2001 SUPPLEMENT 423S

following cardiac surgery. Thorac Cardiovasc Surg 1976; 71:711–720

- 60 Delooz HH. Factors influencing successful discontinuance of mechanical ventilation after open heart surgery: a clinical study of 41 patients. Crit Care Med 1976; 4:265–270
- 61 Engoren M, Buderer NF, Zacharias A, et al. Variables predicting reintubation after cardiac surgical procedures. Ann Thorac Surg 1999; 67:661–665
- 62 Rady MY, Ryan T. Perioperative predictors of extubation failure and the effect on clinical outcome after cardiac surgery. Crit Care Med 1999; 27:340–347
- 63 Saito S, Tokioka H, Saeki S, et al. Is airway occlusion pressure useful to predict successful weaning from mechanical ventilation in patients with acute respiratory failure? Kokyu To Junkan 1991; 39:143–145
- 64 Saldias F, Castellon JM, Garayar B, et al. Predictor indices of early extubation in mechanical ventilation in patients treated with heart surgery. Rev Med Chil 1996; 124:959–966
- 65 Hanneman SK. Multidimensional predictors of success or failure with early weaning from mechanical ventilation after cardiac surgery. Nurs Res 1994; 43:4–10
- 66 Kanter RK, Bove EL, Tobin JR, et al. Prolonged mechanical ventilation of infants after open heart surgery. Crit Care Med 1986; 14:211–214
- 67 Peters RM, Brimm JE, Utley JR. Predicting the need for prolonged ventilatory support in adult cardiac patients. Thorac Cardiovasc Surg 1979; 77:175–182
- 68 Bando K, Sun K, Binford RS, et al. Determinants of longer duration of endotracheal intubation after adult cardiac operations. Ann Thorac Surg 1997; 63:1026–1033
- 69 Ingersoll GL, Grippi MA. Preoperative pulmonary status and postoperative extubation outcome of patients undergoing

elective cardiac surgery. Heart Lung 1991; 20:137-143

- 70 Arom KV, Emery RW, Petersen RJ, et al. Cost-effectiveness and predictors of early extubation. Ann Thorac Surg 1995; 60:127–132
- 71 Habib RH, Zacharias A, Engoren M. Determinants of prolonged mechanical ventilation after coronary artery bypass grafting. Ann Thorac Surg 1996; 62:1164–1171
- 72 London MJ, Shroyer AL, Coll JR, et al. Early extubation following cardiac surgery in a veterans population. Anesthesiology 1998; 88:1447–1458
- 73 Doering LV, Imperial-Perez F, Monsein S, et al. Preoperative and postoperative predictors of early and delayed extubation after coronary artery bypass surgery. Am J Crit Care 1998; 7:37–44
- 74 Doering LV. Relationship of age, sex, and procedure type to extubation outcome after heart surgery. Heart Lung 1997; 26:439–447
- 75 Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patientventilator trigger asynchrony in prolonged mechanical ventilation. Chest 1997; 112:1592–1599
- 76 Thorens JB, Kaelin RM, Jolliet P, et al. Influence of the quality of nursing on the duration of weaning from mechanical ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med 1995; 23:1807–1815
- 77 Multz AS, Aldrich TK, Prezant J, et al. Maximal inspiratory pressure is not a reliable test of inspiratory muscle strength in mechanically ventilated patients. Am Rev Respir Dis 1990; 142:529–532
- 78 Criteria for weaning from mechanical ventilation. Evidence Report/Technology Assessment No. 23 from the Agency for Healthcare Research and Quality: AHRQ Publication No. 01-E010

Predicting Success in Weaning From Mechanical Ventilation^{*} Maureen Meade, Gordon Guyatt, Deborah Cook, Lauren Griffith, Tasnim Sinuff, Carmen Kergl, Jordi Mancebo, Andres Esteban and Scott Epstein *Chest* 2001;120; 400S-424S DOI 10.1378/chest.120.6_suppl.400S

Updated Information & Services	Updated Information and services, including high-resolution figures, can be found at: http://chestjournal.chestpubs.org/content/120/6_suppl/4 00S.full.html
References	This article cites 73 articles, 32 of which can be accessed free at: http://chestjournal.chestpubs.org/content/120/6_sup pl/400S.full.html#ref-list-1
Citations	This article has been cited by 5 HighWire-hosted articles: http://chestjournal.chestpubs.org/content/120/6_sup pl/400S.full.html#related-urls
Open Access	Freely available online through CHEST open access option
Permissions & Licensing	Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.chestjournal.org/site/misc/reprints.xhtml
Reprints	Information about ordering reprints can be found online: http://www.chestjournal.org/site/misc/reprints.xhtml
Email alerting service	Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.
Images in PowerPoint format	Figures that appear in CHEST articles can be downloaded for teaching purposes in PowerPoint slide format. See any online article figure for directions

This information is current as of October 4, 2009

