Extravascular lung water and pulmonary permeability

Prof. Xavier MONNET Medical Intensive Care Unit Paris-Sud University Hospitals

xavier.monnet@aphp.fr

Link of interest

Member of the Medical Advisory Board

of Maquet

Extravascular lung water and pulmonary permeability

Prof. Xavier MONNET Medical Intensive Care Unit Paris-Sud University Hospitals

xavier.monnet@aphp.fr

FACULTÉ DE MÉDECINE What is lung water?

Hôpitaux universitaires Paris-Sud Antoine Béclère Bicêtre Paul Brousse

What is lung water ?

Important pathophysiological variable

How to measure lung water ?

How to measure lung water ? § gravimetry I

How to do at the bedside ?

Estimation of lung water with transpulmonary thermodilution

How does transpulmonary thermodilution work ?

Estimation of lung water with transpulmonary thermodilution

Is the estimation of lung water reliable ?

Is the estimation of lung water reliable ?

Extravascular Lung Water is an Independent Prognostic Factor in Patients with Acute Respiratory Distress Syndrome

Mathieu Jozwiak, MD; Serena Silva, MD; Romain Persichini, MD; Nadia Anguel, MD; David Os, Christian Richard, MD; Jean-Louis Teboul, MD, PhD; Xavier Monnet, MD, PhD Crit Care Med 20

Prognostic Value of Extravascular Lung Water in Critically III Patients*

Samir G. Sakka, MD; DEAA; Magdalena Klein; Konrad Reinhart, MD; and Andreas Meier-Hellmann, MD

Extravascular lung water in sepsis-associated acute respiratory distress syndrome: Indexing with predicted body weight improves correlation with severity of illness and survival*

Extravascular Lung Water is an Independent Prognostic Factor in Patients with Acute Respiratory Distress Syndrome

tt, MD; Stephen M. Smith, PhD, FJFICM

Crit Care Med 2008

Open Access

a SpringerOpen Journal

Independently

predicts

mortality

Mathieu Jozwiak, MD; Serena Silva, MD; Romain Persichini, MD; Nadia Angus Christian Richard, MD; Jean-Louis Teboul, MD, PhD; Xavier Monnet, MD, Ph

Comparison of thermodilution measured extravascular lung water with chest radiographic assessment of pulmonary oedema in patients with acute lung injury

Lisa M Brown^{1,2}, Carolyn S Calfee^{3,4}, James P Howard^{2,5}, Thelma R Craig^{6,7}, Michael A Matthay^{2,3,8*} od Daniel F McAuley^{6,7}

Validated in humans

Is the estimation of lung water reliable ?

Extravascular Lung Water is an Independent Prognostic Factor in Patients with Acute Respiratory Distress Syndrome

Mathieu Jozwiak, MD; Serena Silva, MD; Romain Persichini, MD; Nadia Anguel, MD; David Osman, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD; Xavier Monnet, MD, PhD *Crit Care Med* 2013/

200 pts w Independently EVLW me predicts PiCCO dev mortality

	Odds Ratio (CI 95%)	p value
EVLWI _{max} (1 unit = 1 mL/kg)	1.07 (1.02 - 1.12)	0.007
Maximum blood lactate (1 unit = 1 mmol/L)	1.29 (1.14 - 1.46)	0.0001
$Minimum PaO_2/FiO_2 (1 unit = 1 mmHg)$	0.98 (0.97 - 0.99)	0.006
Mean PEEP (1 unit = 1 cm H_2O)	0.78 (0.67 - 0.91)	0.002
SAPS II (1 unit = 1 point)	1.03 (1.01 - 1.05)	0.02
Mean cumulative fluid balance (1 unit = 1 mL)	1.0004 (1.0001 - 1.0008)	0.02

Estimation of lung water by transpulmonary thermodilution makes sense

Is the estimation of lung water reliable? Transpulmonary Thermodilution Enables to Detect Small Short-Term Changes in Extravascular Lung 28 BALs Water Induced by a Bronchoalveolar Lavage EVLW measured by Martin Dres, MD12; Jean-Louis Teboul, MD, PhD12; Laurent Guerin, MD12; Nadia Anguel, MD12; Virginie Amilien, MD^{1,2}; Marie-Philippine Clair, MD^{1,2}; Aurélie Grüner, MD^{1,2}; Christian Richard, MD^{1,2}; **PiCCO** device Xavier Monnet, MD, PhD12 (Crit Care Med 2014; 42:1869-1873 Validated in **EVLWi** (mL/kg)humans Independently + 130 [100-160] mL predicts 15 mortality ... Or **Detects small** short term changes 10 BAL

Before After 1h 2h 4h

6h

3

4

The <mark>only way</mark> to measure extravascular lung water at the bedside is transpulmonary thermodilution

Estimation of lung water by transpulmonary thermodilution is reliable and precise

?

How could it be useful in practice?

Sepsis in European intensive care units: Results of the SOAP study*

Jean-Louis Vincent, MD, PhD, FCCM; Yasser Sakr, MB, BCh, MSc; Charles L. Sprung, MD; V. Marco Ranieri, MD; Konrad Reinhart, MD, PhD; Herwig Gerlach, MD, PhD; Rui Moreno, MD, PhD; Jean Carlet, MD, PhD; Jean-Roger Le Gall, MD; Didier Payen, MD; on behalf of the Sepsis Occurrence in Acutely III Patients Investigators **Crit Care Med 2006** Cohort study

3,147 pts with sepsis

Table 7. Multivariate, forward stepwise logistic regression analysis in sepsis patients (n = 1177), with intensive care unit mortality as the dependent factor

	OR (95% CI)	p Value
SAPS II score ^a (per point increase) Cumulative fluid balance ^b (per liter increase) Age (per year increase) Initial SOFA score (per point increase) Blood stream infection Cirrhosis <i>Pseudomonas</i> infection Medical admission Female gender	$\begin{array}{c} 1.0 (1.0 - 1.1) \\ 1.1 (1.0 - 1.1) \\ 1.0 (1.0 - 1.0) \\ 1.1 (1.0 - 1.1) \\ 1.7 (1.2 - 2.4) \end{array}$	<.001 .001 .001 .002 .004
	Fluid overload increases mortality during sepsis	.008 .017 .049 .044

The risk of volume expansion

Extravascular Lung Water is an Independent Prognostic Factor in Patients with Acute Respiratory Distress Syndrome

Mathieu Jozwiak, MD; Serena Silva, MD; Romain Persichini, MD; Nadia Anguel, MD; David Osman, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD; Xavier Monnet, MD, PhD *Crit Care Med* 2013. 200 pts with ARDS

	Odds Ratio (CI 95%)	p value
EVLWI _{max} (1 unit = 1 mL/kg)	1.07 (1.02 - 1.12)	0.007
Maximum blood lactate (1 unit = 1 mmol/L)	1.29 (1.14 - 1.46)	0.0001
Minimum PaO ₂ /FiO ₂ (1 unit = 1 mmHg)	0.98 (0.97 - 0.99)	0.006
Mean PEEP (1 unit = 1 cmH ₂ O)	0.78 (0.67 - 0.91)	0.002
SAPS II (1 unit = 1 point)	1.03 (1.01 - 1.05)	0.02
Mean cumulative fluid balance (1 unit = 1 mL)	1.0004 (1.0001 - 1.0008)	0.02

Fluid overload increases mortality during ARDS

The risk of volume expansion

The only way to measure extravascular lung water at the bedside is transpulmonary thermodilution

2

Estimation of lung water by transpulmonary thermodilution is reliable and precise

3

Lung water may help to <mark>guide</mark> fluid management by <mark>indicating</mark> the <mark>severity of lung oedema</mark>

The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome

Shigeki Kushimoto^{1*}, Yasuhiko Taira², Yasuhide Kitazawa³, Kazuo Okuchi⁴, Teruo Sakamoto⁵, Hiroyasu Ishikura⁶, Tomoyuki Endo⁷, Satoshi Yamanouchi¹, Takashi Tagami^{8,9}, Junko Yamaguchi¹⁰, Kazuhide Yoshikawa¹¹, Manabu Sugita¹², Yoichi Kase¹³, Takashi Kanemura¹⁴, Hiroyuki Takahashi¹⁵, Yuichi Kuroki¹⁶, Hiroo Izumino¹⁷, Hiroshi Rinka¹⁸, Ryutarou Seo¹⁹, Makoto Takatori²⁰, Tadashi Kaneko²¹, Toshiaki Nakamura²², Takayuki Irahara²³, Nobuyuki Saito²⁴ and Akihiro Watanabe⁸, for The PiCCO Pulmonary Edema Study Group *Critical Care* 2012

266 patients with pulmonary edema inflammatory vs. hydrostatic discriminated by experts PVPI by the PiCCO device

How to use it in practice ?

Vasopressor ?

The only way to measure extravascular lung water at the bedside is transpulmonary thermodilution

2

Estimation of lung water by transpulmonary thermodilution is reliable and precise

3

Lung water may help to guide fluid management by indicating the severity of lung oedema

4

Lung permeability is a direct indicator of the risk of excessive fluid loading

Extravascular lung water and pulmonary permeability

Prof. Xavier MONNET Medical Intensive Care Unit Paris-Sud University Hospitals

xavier.monnet@aphp.fr

