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Diaphragmatic myotrauma: a mediator of prolonged 
ventilation and poor patient outcomes in acute respiratory 
failure
Ewan C Goligher, Laurent J Brochard, W Darlene Reid, Eddy Fan, Olli Saarela, Arthur S Slutsky, Brian P Kavanagh, Gordon D Rubenfeld, Niall D Ferguson

Several mechanisms of diaphragm muscle injury (myotrauma) can result in ventilator-induced diaphragm 
dysfunction, including ventilator over-assistance, under-assistance, eccentric contractions, and end-expiratory 
shortening. In this Personal View, we summarise the evidence for the clinical relevance of these mechanisms, and 
present new data based on mediation analysis supporting the hypothesis that myotrauma due to ventilator over-
assistance and under-assistance contribute, in part, to the effect of mechanical ventilation on clinical outcomes. The 
concept of diaphragmatic myotrauma has important implications for research and clinical practice.

Introduction
Critical care clinicians have long recognised that ventilator 
settings (mode, pressure, flow, frequency, inspiratory and 
expiratory cycling triggers) should be selected with care. 
Inappropriate ventilator settings can decrease efficiency of 
gas exchange, induce patient–ventilator dyssynchrony, 
and exacerbate rather than relieve dyspnoea. Importantly, 
excess volume or pressure applied by mechanical 
ventilation can injure the lung.1–5 This insight radically 
transformed the accepted approach to mechanical 
ventilation and contributed to substantial improvements 
in outcomes for mechanically ventilated patients over the 
past few decades.6–10 Several mechanisms of ventilator-
induced lung injury have been described and specific 
terms have been designated for each of these mechanisms, 
including barotrauma, volutrauma, and atelectrauma.11 
The multisystem injury mediated by systemic inflam
mation from ventilator-induced lung injury is termed 
biotrauma.12 Each of these terms helpfully conveys 
complex biological processes in a manner that facilitates 
communication between researchers and clinicians and 
supports clinical decision making at the bedside.

Ventilator-induced diaphragm dysfunction (VIDD) is 
another form of iatrogenic injury from mechanical 
ventilation.13,14 The diaphragm is the primary muscle 
of inspiration, with an essential function for the 
maintenance of adequate ventilation, especially when the 
respiratory load is elevated. In patients with compromised 
respiratory mechanics, diaphragm weakness predisposes 
to prolonged mechanical ventilation.15 Importantly, VIDD 
does not result from mechanical ventilation per se; rather, 
inappropriately applied ventilator support leads to 
diaphragm injury by a variety of mechanisms. Whereas 
disuse atrophy (due to ventilator over-assistance) has 
received a great deal of attention, VIDD can result from 
several other mechanisms including load-induced injury 
(due to ventilator under-assistance), eccentric contractile 
injury (due to dyssynchrony), and excessive shortening 
(due to high positive end-expiratory pressure [PEEP]). 
The development of VIDD often constitutes a vicious 
cycle in which mechanical ventilation leads to diaphragm 
weakness that, in turn, perpetuates dependence on 
mechanical ventilation, leading to further diaphragm 
weakness.

The epidemiology and risk factors for diaphragm 
weakness during critical illness have been reviewed 
elsewhere.16 In this Personal View, we summarise the 
evidence regarding potential mechanisms underlying 
diaphragmatic injury due to mechanical ventilation, 
referring to them as various forms of diaphragmatic 
myotrauma. The term myotrauma has been used to refer 
broadly to acute muscle injury,17,18 or specifically to 
ventilator-mediated diaphragm injury.19,20 We present new 
data supporting the hypothesis that diaphragmatic myo
trauma is an important mediator of the effect of 
mechanical ventilation on clinical outcomes, and we 
consider the implications of myotrauma for research and 
clinical practice.

Diaphragmatic myotrauma: mechanisms of 
diaphragm injury related to mechanical 
ventilation
Four forms of diaphragmatic myotrauma can be distin
guished (figure 1).
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Key messages

•	 Mechanical ventilation can cause diaphragm (muscle) 
injury and weakness by several mechanisms collectively 
referred to as myotrauma

•	 These mechanisms of myotrauma include over-assistance, 
under-assistance, eccentric contractions, and excessive  
end-expiratory shortening

•	 Myotrauma appears to mediate poor clinical outcomes 
from abnormally low or high inspiratory effort during 
mechanical ventilation (mediation analysis)

•	 Future trials in patients with respiratory failure should 
account for the possible influence of myotrauma on 
patient outcomes

•	 Ventilation strategies designed to optimise patient 
inspiratory effort might prevent myotrauma and accelerate 
liberation from the ventilator, resulting in improved 
long-term functional status in intensive care unit survivors 
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The first form is termed over-assistance myotrauma. 
Excessive ventilatory support by mechanical ventilation or 
extracorporeal lung support can suppress or reduce 
respiratory drive, leading to rapid disuse atrophy of the 
diaphragm. The existence and clinical relevance of this 
mechanism of injury is well established by experimental 
studies21–23 and a series of important clinical studies docu
menting histological, functional, and imaging evidence 
of disuse atrophy.19,24–30 Collectively, these observations 
showed that suppressing inspiratory effort to very low 
levels by excessive ventilatory support leads to rapid 
disuse atrophy and clinically significant diaphragmatic 
weakness. If over-assistance is avoided during mechanical 
ventilation, or the diaphragm is activated by phrenic 
nerve stimulation, disuse atrophy is mitigated.31–35 Import
antly, using a partial assist mode does not guarantee that 
atrophy will be prevented.19,36 This form of myotrauma is 
common and affects nearly 50% of patients that require 
mechanical ventilation.19

The second form is termed under-assistance myo
trauma. One of the important aims of providing 
ventilator support to patients is to reduce the work of 
breathing to provide sufficient ventilation, reduce oxygen 
consumption by the respiratory muscles, and avoid 

diaphragm fatigue. If ventilatory support is insufficient 
or unable to adequately unload the diaphragmatic work 
of breathing—eg, when respiratory drive is extremely 
high37—load-induced diaphragm injury could ensue. In 
the presence of elevated respiratory drive and lung injury, 
inspiratory effort can redistribute ventilation without 
increasing tidal volume, generating so-called pendelluft 
and regional hyperinflation with consequent regional 
lung injury.38 Under these conditions the diaphragm can 
also be injured by the development of excessively high 
mechanical forces within the muscle. Excessive 
inspiratory loading can cause acute diaphragm injury 
and contractile dysfunction, as shown in experimental 
models and clinical studies.1–5 Experimentally, acute dia
phragm injury is characterised by sarcolemmal rupture, 
sarcomeric disarray, and inflammatory infiltration,1,5,39 
features that are also reported in diaphragm biopsy 
samples from critically ill patients.25,40 Even moderate 
elevations in respiratory effort for prolonged periods 
(hours to days) can cause diaphragm injury and 
weakness,41 and the propensity for injury is increased in 
the setting of sepsis and systemic inflammation.42 
Mechanical ventilation mitigates experimental load-
induced diaphragm injury.4 In patients with an 

Figure 1: Diaphragmatic myotrauma mechanisms leading to ventilator-induced diaphragm dysfunction
Flow and volume waveforms from the mechanical ventilator (blue and green) are shown in combination with oesophageal pressure tracings (red). (A) When the 
diaphragm is not sufficiently loaded, because of excess ventilator support or sedation, or both, diaphragmatic atrophy rapidly ensues. The oesophageal pressure 
tracing shows slight positive deflections during each ventilator breath, reflecting respiratory muscle inactivity. (B) When the diaphragm is not sufficiently unloaded by 
respiratory support during acute respiratory mechanical loads, then load-induced injury might follow. The oesophageal pressure tracing shows marked negative 
deflections during each breath, reflecting vigorous inspiratory muscle effort. (C) When the diaphragm contracts eccentrically (while lengthening), muscle injury might 
follow. Some forms of patient–ventilator dyssynchrony, such as ineffective efforts or reverse triggering (shown by the oesophageal pressure tracing), could predispose 
patients to eccentric diaphragm contractions. (D) When the diaphragm is maintained at a shortened end-expiratory length for a prolonged period of time by the 
application of high positive end-expiratory pressure (PEEP), sarcomere dropout and longitudinal atrophy could occur (expiratory myotrauma). When PEEP is 
removed, the shortened diaphragm might attain a disadvantageous length–tension resulting in acute weakness. Vt=tidal volume. Poes=oesophageal pressure. Brown 
colouring represents  the diaphragm at a longer expiratory length; blue colouring represents the diaphragm at a shorter expiratory length.
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exacerbation of chronic obstructive pulmonary disease 
(an acute respiratory load), initiating ventilatory support 
rapidly decreases circulating inflammatory cytokines, 
suggesting that the elevated respiratory workload can 
contribute to a generalised systemic inflammatory 
response.43

A large cohort study showed that diaphragm thickness 
increased abnormally rapidly during the early stages of 
ventilation in about 25% of patients when respiratory 
workload increased.44 This rapid increase in thickness, 
which was also associated with prolonged ventilator-
dependence, might signify load-induced injury with 
resulting inflammation and tissue oedema. This increase 
in diaphragm thickness might correspond to the acute 
increases in muscle thickness observed in other muscle 
groups that were caused by load-induced injury.45 

Although this hypothesis has not been confirmed 
histologically, under-assistance myotrauma represents 
an important and compelling hypothesis based on 
preliminary clinical observations. Future experimental 
and clinical studies are required to provide support for 
this theory.

The third form is referred to as eccentric myotrauma. 
Contractile loads applied while the muscle is lengthening 
(eccentric loading) are more injurious than those applied 
when the muscle is shortening (concentric loading).46 
Eccentric diaphragm contractions lead to immediate, 
marked diaphragm weakness.47 In mechanically ventilated 
patients, eccentric diaphragm contractions typically 
occur during the ventilator’s expiratory phase. First, 
the diaphragm exerts an expiratory braking effect,48,49 
particularly when lung consolidation or atelectasis are 
present.50 This action, which helps to preserve end-
expiratory lung volu  me, requires the diaphragm to 
generate tension even as it lengthens during expiration. 
Second, several forms of patient–ventilator dyssynchrony 
(eg, ineffective triggering, premature cycling, reverse 
triggering) can produce vigorous diaphragm contractions 
during expiration, and it is likely that the diaphragm 
contracts eccentrically during these events (figures 2, 3).51,52 
Myotrauma from such events might explain the report
ed link between patient–ventilator dyssynchrony and 
poor outcomes, especially ineffective efforts during 
expiration.53,54 Third, in the context of marked inspiratory 
loading, vigorous accessory muscle activity in the chest 
wall can pull (ie, lengthen) the diaphragm upward even as 
it attempts to generate inspiratory flow (ie, shorten), 
which visibly manifests as an abdominal paradox.55 
Although the pathophysiology underlying eccentric myo
trauma seems clear, its effect in patients with acute 
respiratory failure remains to be fully elucidated.

The fourth form is termed expiratory myotrauma. 
Experimental evidence published in 2018 suggests that 
reducing the end-expiratory length of the diaphragm by 
the application of excessive PEEP can cause sarcomere 
dropout (a decrease in the number of sarcomeres along 
the length of diaphragm muscle fibres) resulting in 
so-called longitudinal atrophy.56 This atrophy might 
impair the length–tension relationship of the diaphragm 
such that when PEEP is withdrawn, the diaphragm 
contracts from an excessive and disadvantageous initial 
length.57 The clinical relevance of this process remains 
uncertain.

Effect of diaphragmatic myotrauma on clinical 
outcomes in acute respiratory failure
There are two main findings that suggest that myotrauma 
might seriously impact both short-term and long-term 
clinical outcomes for patients with acute respiratory 
failure.

First, myotrauma is common in mechanically vent

ilated patients. A cohort study published in 2018 suggests 
that nearly two-thirds of mechanically ventilated patients 

Figure 2: Possible eccentric contractions of the diaphragm during ineffective triggering
Vigorous inspiratory efforts during expiratory flow because of failure to trigger mechanical breaths might result in 
activation of the diaphragm even while it is lengthening. Reproduced from Chao and colleagues,51 by permission of 
Elsevier. Poes=oesophageal pressure. Paw=airway pressure.

Pr
es

su
re

 (c
m

 H
2O

) a
nd

 fl
ow

 (L
/m

in
) 80

40

–20

60

20

–40

0

5 25201510 30
Time (s)

Poes

Paw

Flow

Figure 3: Possible eccentric contractions of the diaphragm during reverse triggering
Inspiratory efforts during expiratory flow can result in diaphragm activation while it is lengthening. Dotted lines 
show the beginning of neural inspiratory efforts. In the Paw trace, the patient’s inspiratory efforts did not trigger the 
ventilator but managed to insert flow into the lungs (arrows). Reproduced from Akoumianaki and colleagues,52 
by permission of Elsevier. Paw=airway pressure. Poes=oesophageal pressure.
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developed rapid early changes in diaphragm thickness 
(either increases or decreases in thickness).44 Studies of 
diaphragm biopsy samples obtained in mechanically 
ventilated patients and brain-dead organ donors showed 
consistent structural and functional abnormalities.25,40,58 
Approximately 60% of patients had severe diaphragm 
weakness at the time of their first spontaneous breathing 
trial.59 Although several factors contribute to diaphragm 
weakness in critically ill patients,16 we believe that the 
majority of mechanically ventilated patients will sustain 
some form of myotrauma during the early stage of 
respiratory failure.

Second, diaphragm weakness is an important de
terminant of clinical outcomes. Diaphragm function 
determines the patient’s capacity for unassisted breath
ing60 and diaphragm weakness delays liberation from 
mechanical ventilation.59,61 Prolonged mechanical vent
ilation, in turn, portends a poor long-term prognosis, both 
in terms of risk of death and in functional recovery.62 
Prolonged intensive care unit (ICU) admission is a key 
risk factor for poor long-term functional outcomes.63,64 
Diaphragm weakness at time of ICU discharge is 
associated with an elevated risk of readmission to the 
ICU65 and mortality at 1 year after discharge.66 Therefore, 
by prolonging mechanical ventilation and ICU stay, and 
predisposing to deleterious nosocomial complications, 
diaphragm weakness is likely to be causally responsible 
(in part) for poor long-term functional outcomes and 
death. Therefore, it is highly plausible that diaphragmatic 
myotrauma could seriously impact both short-term and 
long-term outcomes. Indeed, changes in diaphragm 
thickness specifically related to mechanical ventilation 
were shown to predict prolonged ventilation, prolonged 
ICU admission, and an increased risk of complications of 
respiratory failure including reintubation, tracheostomy, 
and prolonged ventilation.44 The foregoing data can be 
summarised as a putative causal chain of events linking 
mechanical ventilation to clinical outcomes through 
diaphragm injury (figure 4).

Myotrauma as a mediator of the clinical 
outcome of mechanical ventilation
To further evaluate the clinical importance of over-
assistance and under-assistance myotrauma, we evaluated 
whether diaphragm injury mediates the relationship 
between insufficient or excessive inspiratory effort and 
clinical outcomes (figure 4).

Mediation analysis quantitatively evaluates the extent to 
which the relationship between two variables (exposure 
and outcome) can be explained by a third variable (the 
hypothesised mediator).67 The technique was originally 
developed for use in the social sciences in which theories 
about causal mechanisms are not always appropriate for 
testing in experimental designs; mediation analysis 
allows investigators to explore potential causal mech
anisms.68,69 Importantly, mediation analysis cannot prove 
causality; rather, it assumes causality (statisticians refer to 

this as the assumption of sequential ignorability—in 
other words, the analysis presumes that the possibility of 
causal effects in the reverse sequence may be ignored or 
disregarded).69 By definition, a putative mediator is a 
variable that is causally responsible for the true association 
of exposure and outcome—as opposed to a confounder, 
which gives rise to a false association between exposure 
and outcome. Mathematically, mediators and confounders 
are indistinguishable;70 rather, they are distinguished on a 
priori grounds on the basis of previous experimental and 
clinical evidence as evaluated by the research community. 
Consequently, the fallacy of inferring causality from 
mediation should be studiously avoided, and putative 
mediators should be carefully selected on the basis of 
previous evidence for causality.

If mediation analysis cannot show causality, what is its 
value? Quantitatively evaluating the potential importance 
of specific explanatory mechanisms in clinical outcomes 
can focus the development of new or improved inter
ventions based on putative causal pathways.71 Although 
the analysis cannot prove causality, it can strengthen the 
case for a causal relationship between exposure and 
outcome.71 By showing that the relationship between 
exposure and outcome is partly or fully explained by a 
variable that is strongly believed on a priori grounds 
to act as a causal mediator, the probability that the 
association between exposure and outcome is entirely 
attributable to confounding is reduced, and the plaus
ibility of a causal association is enhanced.

We used mediation analysis to evaluate whether the 
association between inspiratory effort and clinical 
outcome in data from a cohort study44 published in 2018, 
was mediated by over-assistance and under-assistance 
myotrauma (figure 4). First, we examined whether 
variation in inspiratory effort (quantified by the diaphragm 

Figure 4: The putative myotrauma causal pathway leading from mechanical ventilation injury  to adverse 
clinical outcomes
The mode of mechanical ventilation and the level of assist from the ventilator (step 1) modify the patient’s 
respiratory effort (step 2) and the rate of change in diaphragm thickness (step 3). In turn, the deleterious changes 
in the diaphragm resulting from insufficient effort or excessive loading (myotrauma) lead to substantially impaired 
muscle contractile performance (ventilator-induced diaphragm dysfunction; step 4). Finally, both the structural 
diaphragm changes (seen on ultrasound) and the resulting diaphragm weakness are associated with prolonged 
mechanical ventilation, prolonged intensive care unit (ICU) stay, and a high risk of complications of acute 
respiratory failure (a composite of reintubation, tracheostomy, prolonged ventilation for more than 14 days, and 
death; step 5). These poor ICU outcomes, in turn, predispose to long-term morbidity and mortality (step 6). 
The black and blue arrows represent links between factors based on evidence from the cohort study.44  The red 
arrows represent mediations inferred from the analysis done in this Personal View.
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thickening fraction measured on ultrasound) accounts for 
the effect of mode of ventilation on the change in 
diaphragm thickness. Second, we examined whether 
changes in diaphragm thickness account for the 
relationship between inspiratory effort and clinical 
outcomes. At each step, the intermediate mediator variable 
(thickening fraction, changes in diaphragm thickness, 
respectively) was used on the basis of a priori evidence 
(summarised above) that these factors play a causal 
role (see statistical appendix for detailed description of 
mediation analyses).

Abnormal inspiratory effort was defined as a mean 
diaphragm thickening fraction value of less than 15% or 
greater than 30% during the first 3 days of mechanical 
ventilation, on the basis of thresholds observed in our 
previous study.44 Diaphragm injury was quantified as the 
absolute change in diaphragm thickness from baseline 
(increases and decreases in thickness were combined, as 
both of these changes were regarded as forms of injury on 
the basis of our previous studies); decreases or increases 
in thickness were analysed separately in sensitivity 
analyses.19,44 To assess consistency of mediation across 
clinical outcomes, we did independent mediation analyses 
on three separate clinical endpoints—the duration of 
mechanical ventilation in ICU survivors, the duration of 
ICU admission in ICU survivors, and the risk of 
complications of acute respiratory failure (a composite 
of reintubation, tracheostomy, prolonged ventilation 
>14 days, or death in hospital). These analyses used 
either the structural equation approach (for mediated 
moderation with respect to diaphragm thickness)72 or the 

counterfactual framework implemented in the mediation 
package in R (for mediation of clinical outcomes)69 based 
on a prespecified analysis plan developed in January, 2016 
(before analysis of any study data). All mediation analyses 
for clinical outcomes were adjusted for potential 
confounders including age, comorbidities, severity of 
illness (Simplified Acute Physiology Score II), organ 
dysfunction (Sequential Organ Failure Assessment score), 
presence of SEPSIS III criteria, hypoxaemia (ratio of the 
partial pressure of arterial oxygen to the fraction of 
inspired oxygen), baseline diaphragm thickness, sedation 
level (Riker Sedation-Agitation Scale), and exposure to 
neuromuscular blockade.

The findings of the mediation analysis are summarised 
in the table. The effect of the ventilator mode on the 
change in diaphragm thickness was mediated by dia
phragm thickening fraction. Incorporation of diaphragm 
thickening fraction as a mediator rendered the effect 
of ventilator mode non-significant. In turn, changes 
in diaphragm thickness significantly mediated the 
relationship between diaphragm thickening fraction and 
several different related clinical outcomes (p<0·05 for 
mediation). The proportion of the effect of inspiratory 
effort on outcome mediated by changes in diaphragm 
thickness ranged between 22% and 28%. The magnitude 
of mediation effect was similar in sensitivity analyses  
excluding patients with mean diaphragm thickening 
fraction of greater than 30% (proportion mediated 28%, 
p=0·04, n=134), or excluding patients with mean dia
phragm thickening fraction of less than 15% (proportion 
mediated 33%, p=0·33, n=52), or excluding patients with 

See Online for appendix

Outcome Mediator Number 
available for 
analysis

p values Proportion of 
exposure–outcome 
association mediated 
(%, 95% CI; p value for 
mediation)

Association before mediation analysis Mediation analysis

Exposure–outcome Exposure–mediator Mediator–outcome Average direct 
exposure–outcome 
effect

Average causal 
mediator 
effect

Exposure: mode of ventilation (controlled vs partially assisted)

Diaphragm thickness Diaphragm thickening 
fraction

940 
patient-days

0·04 <0·0001 <0·0001 0·31 <0·0001 Not computed*

Exposure: diaphragm thickening fraction (15–30% vs >30% or <15%)†

Duration of ventilation 
in ICU survivors

Changes in diaphragm 
thickness from baseline

145 0·03 0·01 0·001 0·10 0·02 27% (4–100); p=0·04

Risk of complications 
of ARF

Changes in diaphragm 
thickness from baseline

185 0·04 0·01 0·002 0·15 0·01 28% (0–100); p=0·04

Length of ICU stay in 
ICU survivors

Changes in diaphragm 
thickness from baseline

143 0·01 0·01 0·002 0·06 0·008 22% (3–95); p=0·02

Cohort data are from a study by our research group.44 ARF=acute renal failure. ICU=intensive care unit. *The effects of mode (exposure) and diaphragm thickening fraction (mediator) on diaphragm thickness 
were quantified by their interactions with time (ie, to quantify how they modify the rate of change in diaphragm thickness). The mediating role of diaphragm thickening fraction in the relationship between 
mode and thickness (mediated moderation) was evaluated by structural equation analysis,72 which does not permit direct quantification of the proportion of exposure–outcome relation. †Analyses involving 
clinical outcomes were adjusted for age, number of comorbidities, Simplified Acute Physiology Score II , Sequential Organ Failure Assessment score, presence of SEPSIS III criteria, hypoxaemia (ratio of the partial 
pressure of arterial oxygen to the fraction of inspired oxygen), baseline diaphragm thickness, Riker Sedation-Agitation Scale, and exposure to neuromuscular blockade.

Table: Mediation analyses
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both thickening fraction of greater than 30% and greater 
than 10% increases in diaphragm thickness (proportion 
mediated 36%, p=0·11, n=103). The mediation effect was 
smaller and not significant in a sensitivity analysis 
excluding patients with both thickening fraction of less 
than 15% and greater than 10% decreases in thickness, 
although the analysis was limited by an extremely low 
sample size (proportion mediated 5%, p=0·5, n=36).

These findings suggest that the relationship between 
insufficient or excessive respiratory effort and clinical 
outcomes is (at least in part) mediated by changes in the 
diaphragm. Given the pre-existing experimental and 
clinical evidence that abnormal inspiratory effort causes 
diaphragm injury leading to weaning failure, the sub
stantial and consistent mediation signal strengthens 
(but does not confirm) the hypothesis that patient 
inspiratory effort during mechanical ventilation has a 
causal effect on outcome. Furthermore, the mediating 
role of inspiratory effort in the relationship between 
ventilator settings and changes in the diaphragm 
suggests that maintaining a safe level of inspiratory 
effort could be a promising therapeutic strategy to 
protect the diaphragm from myotrauma.

Implications of diaphragmatic myotrauma for 
research and clinical practice
The concept of myotrauma has several implications for 
research and practice (panel). First, future observational 
studies and clinical trials regarding acute respiratory 
failure should consider investigating myotrauma as an 
explanatory mechanism underlying treatment effects. 
Interventions that might effect patient inspiratory effort or 
patient–ventilator synchrony—ie, invasive or non-invasive 
ventilation strategies, sedation strategies, high-flow nasal 
cannula, and extracorporeal life support techniques—
should account for the possibility of myotrauma as a 
mechanism of benefit or harm in the design, conduct, and 
analysis. For example, interventions such as high-flow 
nasal cannula or helmet non-invasive ventilation might 
benefit patients by ameliorating under-assistance myo
trauma or avoiding the risk of over-assistance myotrauma 
(by preventing intubation). The benefits of early 
mobilisation and sedation-avoidance strategies might, in 
part, result from improved recruitment of respiratory 
muscle effort and avoidance of over-assistance myotrauma. 
Ultrasound is a powerful tool used to diagnose myotrauma 
in the clinical setting—it enables assessment of both 
respiratory effort and detection of structural changes in 
the muscle, in addition to the development of muscle 
weakness. Future studies should consider incorporating 
simple diaphragm ultrasound measurements to explore 
the role of the various forms of myotrauma and diaphragm 
weakness in the determination of outcomes.

Concerns about myotrauma are further increased by 
the possibility that it might contribute to long-term 
functional disability in ICU survivors. Indeed, the 
observation that helmet non-invasive ventilation affects 

long-term functional outcomes supports the hypothesis 
that intervention in mechanisms of injury in the early 
course of respiratory failure can have important 
downstream effects on long-term functional recovery.73 
Further research is required to confirm these links and to 
determine whether preventing myotrauma leads to 
improved long-term outcomes for patients.

Further mechanistic research is required to substantiate 
the importance of under-assistance, eccentric, and expir
atory forms of myotrauma. The hypothesis that the 
diaphragm is susceptible to load-induced injury needs to 
be tested in clinically relevant experimental models of 
spontaneous breathing during lung injury, sepsis, and 
shock states. The importance of eccentric contractile 
activity in diaphragm injury, and the role of expiratory 
resistance and end-expiratory pressure in preventing this 
injury, require careful investigation.

The major implication of the myotrauma paradigm 
might be to provide a conceptual framework for how to 
titrate ventilator support to prevent diaphragm injury. 
Evidence suggests that the optimal level of respiratory 
muscle effort might be that of healthy individuals 
breathing at rest, equivalent to a respiratory muscle 
pressure swing of 5–8 cm H2O.44,74 The aforementioned 
mediation analyses provide further support for a potential 
causal relationship between optimal effort and clinical 
outcome. However, causation can only be shown in the 
context of a randomised trial—such a trial could examine 
whether any observed benefit of a diaphragm-protective 
ventilation strategy is mediated by avoiding changes in 
diaphragm structure and function. Importantly, the 
potential magnitude of benefit of modulating inspiratory 
effort on major outcomes remains uncertain because 
the confidence intervals for the data regarding effect 
mediation by diaphragm injury were wide.

Monitoring of respiratory effort should become a 
routine part of clinical practice in the ICU. Several 

Panel: Research questions for future research related to 
myotrauma

•	 Do different forms of myotrauma account in part for the 
effects of various ventilation strategies, sedation strategies, 
or neuromuscular blockade on clinical outcomes?

•	 What level of inspiratory effort is required to cause 
under-assistance myotrauma? Does delayed intubation 
cause under-assistance myotrauma?

•	 Does patient–ventilator dyssynchrony cause myotrauma?
•	 How common and how injurious are eccentric and 

expiratory forms of myotrauma in a clinical setting?
•	 Can myotrauma be prevented by optimising inspiratory 

effort and synchrony during mechanical ventilation?
•	 Do extracorporeal life-support techniques mitigate the 

risk of myotrauma?
•	 Does preventing myotrauma improve long-term functional 

outcomes and quality of life in intensive care unit survivors?

John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




96	 www.thelancet.com/respiratory   Vol 7   January 2019

Personal View

tools for respiratory muscle monitoring are available 
to clinicians and researchers, including oesophageal 
manometry, diaphragm electrical activity recordings, 
ultrasound, or measurement of airway occlusion 
pressure.37,75–77 In view of the current evidence, clinicians 
should attend to patient inspiratory effort and minimise 
the duration of diaphragm inactivity during mechanical 
ventilation. If there is no firm clinical indication for 
neuromuscular blockade, clinicians should generally aim 
to maintain a normal level of spontaneous inspiratory 
effort while concomitantly aiming to minimise the volume 
and (transpulmonary) pressure applied to the lung.
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