Control of breathing and ventilation

(Notes from :

"The Control of Breathing During Mechanical Ventilation"

"The Injurious Effects of Elevated or Nonelevated Respiratory Rate during Mechanical Ventilation")

Normal control

Time constant - (best look at expiration - simpler)

T.C of emptying = $\mathbf{R} \times \mathbf{C}$ (if increased compliance, the lung volume at beginning of expiration is larger, therefore longer to empty)

Normal compliance - 0.1 L/cm H20 Normal resistance = 5 cm/H20/L/sec

Normal time constant = 0.5 sec (i.e., volume and flow will be 1.3rd of peak - I.e., 66% empty) (at 1 sec = 1/9th)

Therefore it will reach FRC during normal expiration time. If R increases, it will exceed time to reach FRC and will lead to PEEPi - assynchrony.

NB. Driving pressure is tidal volume scaled to compliance

Respiratory Rate (RR)

RR changes minimally in response to : assist level, pCO2

In conscious volunteers -> RR is an insensitive to assist nor pCO2.

RR -> response minimal to CO2 between (23-45). CO2 works mainly through inspiratory effort.

Sleep- removing wakefulness stimulus to breath -> RR depends on CO2. Normal or decreased CO2 by 3-4 mmHg from normal -> apnoea = Apnoeic Threshold (AT)

During sleep - as CO2 decreases RR stable until -> AT =0

Between normal CO2 -> AT - ventilatory control only by change in effort (RR insensitive to change in CO2).

Beyond a level of respiratory drive increase which is 3-4 X higher than resting -> RR increases substantially.

ARDSNet protocol allows RR during ventilation up to 35/min to keep pH >7.3 but a high RR can cause VILI

Higher centres

1) **Sleep** - control is mainly via chemoreceptors.

Increased pCO2 will increase respiratory drive not RR. At 3-4 X increase of drive above normal, then RR will increase.

Hypocapnia - RR does not decrease until **pCO2** slightly below normal (3-4 mmHg) = apneic threshold (AT) - therefore stops breathing.

Therefore over ventilation continues until CO2 decreases below AT - recurrent apneas.

2) Awake - higher centres work here

-Respiratory center does **NOT cease below AT** - causing severe drop in pCO2.

-Behavioral response - breathing events not perceived unless different from what is expected - highly unpredictable response.

Desired breathing patterns -

Breathing pattern determined by RR and ventilation needed to satisfy metabolic demands

Vt is a dependant variable - it is adjusted to provide ventilation at the prevailing RR.

A high RR does not necessarily denote distress or increased demand.

RR normally 5-25

To differentiate a "normal" increased RR from distressed RR, **in distress, the RR decreases if ventilator assist is increased**, if not - not distressed related.

Normally there are large fluctuations of Vt - put a normal volunteer on a ventilator, give a fixed Vt, which equals the average Vt for that person - it is very uncomfortable! Comfort returns if you increase the Vt well above the average, but this leads to hypocapnia.

Control of breathing with different ventilatory modes

PEEPi - alveolar pressure at end expiration is ABOVE external PEEP.
To trigger, you must be below external PEEP.
Sometimes by increasing external PEEP - reduces the difference and aids triggering.

1)Volume cycled

Vt and Ti are preset

2) Pressure cycled

Ti is preset Set pressure determines minute ventilation NB. Patient's RR does not decrease in response to hypocapnia.

These 2 modes tend to over ventilate. In alert patients, constant Vt is poorly tolerated unless ventilation is high - leading to hypocapnia. Therefore **tends to over assist leading to respiratory muscle dysfunction.**

Vt and Ti determine mean inspiratory flow

Peak flow - influence of respiratory drive and patient effort

If peak flow too low -> v. Uncomfortable (=air hunger)

If peak flow **too high** -> v. Short insufflation phase -> "double triggering" (neuro inspiratory time is longer than ventilators inspiratory time).

Ti -

Patient's Ti varies (0.4 - 2.0 seconds), therefore difficult to match. If Ti too short -> double trigger

Types of inappropriate triggering:

"Double triggering"

Neuro inspiratory time is longer than ventilators inspiratory time).

"Reverse trigger" -

A ventilator controlled triggered breath - due to increased lung volume (stretch receptors, etc) - can trigger a patient's inspiratory effort that would not have occurred otherwise.Cause eccentric diaphragmatic damage.

"reverse triggering" -> breath stacking -> increased Vt -> VILI

3) Pressure support ventilation

Set pressure determines minimum Vt

Unlike pressure control, **Ti is not fixed** and there is no backup rate. Therefore very different in control of breathing.

Inspiration ends when inspiratory <mark>flow</mark> - which peaks early - decreases to a preset level or a %

In **PSV**, minute **ventilation depends** on **assist** level, **mechanics** and **RR** - when ventilation -> a **drop** in CO2 below normal -> only inspiratory effort decreases - **RR** does not change.

Rate of volume increase and inspiratory flow decline are **determined by the time constant**.

Long TC (ex. COPD)

a long TC -> long inhalation - therefore **inspiratory efforts** may occur -> transient increase in flow above background flow decline.

For same reason, flow rate declines slowly during expiration -> expiratory ineffective efforts (IEs). Therefore there are several breath cycles during a single ventilator cycle.

Solution to Its is to reduce pressure support so that respiratory efforts are stronger and can overcome the PEEPi that results from a long TC.

Change in pattern from slow, deep -> rapid, shallow does not mean distress, but unmasks the patient's true RR (NB. Not distress unless increase use of accessory muscles and/ or tachycardia, etc).

Short TC (ex. Stiff lung)

Patient receives Vt very quickly -> exhalation is also so fast, that there is no PEEPi, nor IE but pCO2 declines quickly -> central apnea -> persists until pCO2 rises above AT -> cycle continues.

PSV - marked overventilation tends not to develop.

Clinical consequences of asynchrony

60% of patients show changes (increases or decreases) of diaphragmatic thickness on U/S.

Reverse trigger - double cycling -> high delivered ventilation. Diaphragmatic **contraction starts late** during insufflation -> **peak activity during exhalation** when **lung volume is decreasing and <u>muscle lengthens</u> = <u>eccentric contraction</u>**

Ineffective effort -> fail to trigger -> most common form of assynchrony.

The **patients RR is higher then the ventilator RR** -> therefore **most efforts during expiration** (harmful as inspiratory muscles activated while lung volume decreasing).

If PEEPi due to over assist -> ineffective efforts. Therefore decrease assistance -> increased RR - this is not due to distress but now each trigger is effective.

If **assistance** is **increased** -> decrease RR due to complex feedback reflexes. **Awake** - RR will not change if decrease in pCO2 but could decrease respiratory drive -> ineffective efforts -> weaning failure.

Insensitivity of RR to low CO2 resulting from a high assistance -> decrease effort -> increase Ventilator Induced Diaphragmatic Dysfunction (which is 2 X more common the CIPPM).