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HE acute respiratory distress syndrome is a
common, devastating clinical syndrome of
acute lung injury that affects both medical and

surgical patients. Since the last review of this syn-
drome appeared in the 

 

Journal,

 

1

 

 more uniform def-
initions have been devised and important advances
have occurred in the understanding of the epidemi-
ology, natural history, and pathogenesis of the dis-
ease, leading to the design and testing of new treat-
ment strategies. This article provides an overview of
the definitions, clinical features, and epidemiology of
the acute respiratory distress syndrome and discusses
advances in the areas of pathogenesis, resolution,
and treatment.

 

HISTORICAL PERSPECTIVE 

AND DEFINITIONS

 

The first description of acute respiratory distress
syndrome appeared in 1967, when Ashbaugh and
colleagues described 12 patients with acute respira-
tory distress, cyanosis refractory to oxygen therapy,
decreased lung compliance, and diffuse infiltrates ev-
ident on the chest radiograph.

 

2

 

 Initially called the
adult respiratory distress syndrome,

 

3

 

 this entity is now
termed the acute respiratory distress syndrome, since
it does occur in children. Because the initial defini-
tion lacks specific criteria that could be used to iden-
tify patients systematically, there was controversy over
the incidence and natural history of the syndrome
and the mortality associated with it. In 1988, an ex-
panded definition was proposed that quantified the
physiologic respiratory impairment through the use
of a four-point lung-injury scoring system that was

T

 

based on the level of positive end-expiratory pressure,
the ratio of the partial pressure of arterial oxygen to
the fraction of inspired oxygen, the static lung com-
pliance, and the degree of infiltration evident on
chest radiographs.

 

4

 

 Other factors included in the as-
sessment were the inciting clinical disorder and the
presence or absence of nonpulmonary organ dysfunc-
tion (Table 1). Although the lung-injury scoring sys-
tem has been widely used to quantify the severity of
lung injury in both clinical research and clinical tri-
als, it cannot be used to predict the outcome during
the first 24 to 72 hours after the onset of the acute
respiratory distress syndrome and thus has limited
clinical usefulness.

 

6,7

 

 When the scoring system is used
four to seven days after the onset of the syndrome,
scores of 2.5 or higher may be predictive of a com-
plicated course with the need for prolonged me-
chanical ventilation.

 

8

 

In 1994, a new definition was recommended by the
American–European Consensus Conference Com-
mittee (Table 1).

 

5

 

 The consensus definition has two
advantages. First, it recognizes that the severity of
clinical lung injury varies: patients with less severe
hypoxemia (as defined by a ratio of the partial pres-
sure of arterial oxygen to the fraction of inspired ox-
ygen of 300 or less) are considered to have acute lung
injury, and those with more severe hypoxemia (as
defined by a ratio of 200 or less) are considered to
have the acute respiratory distress syndrome. The rec-
ognition of patients with acute lung injury may fa-
cilitate earlier enrollment of affected patients in clin-
ical trials. Second, the definition is simple to apply
in the clinical setting. However, this simplicity is also
a disadvantage, since factors that influence the out-
come, such as the underlying cause and whether other
organ systems are affected, do not need to be as-
sessed.

 

6,7,9-11

 

 In addition, the criterion for the pres-
ence of bilateral infiltrates on chest radiography con-
sistent with the presence of pulmonary edema is not
sufficiently specific to be applied consistently by ex-
perienced clinicians.

 

12,13

 

 Nevertheless, the widespread
acceptance of both the 1994 consensus definition
and the 1988 lung-injury scoring system has improved
the standardization of clinical research and trials. We
recommend that clinicians routinely use the 1994
consensus definition to allow comparison of their
patients with patients enrolled in clinical trials.

 

CLINICAL, PATHOLOGICAL, 

AND RADIOGRAPHIC FEATURES

 

The definitions discussed above identify patients
early in the course of acute lung injury and the acute
respiratory distress syndrome. However, the syndrome
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is often progressive, characterized by distinct stages
with different clinical, histopathological, and radio-
graphic manifestations. The acute, or exudative, phase
is manifested by the rapid onset of respiratory failure
in a patient with a risk factor for the condition. Ar-
terial hypoxemia that is refractory to treatment with
supplemental oxygen is a characteristic feature. Ra-
diographically, the findings are indistinguishable from
those of cardiogenic pulmonary edema.

 

14

 

 Bilateral
infiltrates may be patchy or asymmetric and may in-
clude pleural effusions (Fig. 1).

 

15

 

 Computed tomo-
graphic scanning has demonstrated that alveolar fill-
ing, consolidation, and atelectasis occur predominantly
in dependent lung zones, whereas other areas may
be relatively spared (Fig. 1).

 

16,17

 

 However, broncho-
alveolar-lavage studies indicate that even radiograph-
ically spared, nondependent areas may have substan-
tial inflammation.

 

18

 

 Pathological findings include
diffuse alveolar damage, with neutrophils, macrophag-
es, erythrocytes, hyaline membranes, and protein-
rich edema fluid in the alveolar spaces,

 

19

 

 capillary
injury, and disruption of the alveolar epithelium
(Fig. 2).

 

20-22

 

Although acute lung injury and the acute respira-
tory distress syndrome may resolve completely in
some patients after the acute phase, in others it pro-
gresses to fibrosing alveolitis with persistent hypox-
emia, increased alveolar dead space, and a further
decrease in pulmonary compliance.

 

19,20

 

 Pulmonary hy-
pertension, owing to obliteration of the pulmonary-
capillary bed, may be severe and may lead to right
ventricular failure.

 

23

 

 Chest radiographs show linear

opacities, consistent with the presence of evolving fi-
brosis (Fig. 1). Pneumothorax may occur,

 

24

 

 but the
incidence is only 10 to 13 percent and is not clearly
related to airway pressures or the level of positive
end-expiratory pressure.

 

25

 

 Computed tomography of
the chest shows diffuse interstitial opacities and bullae
(Fig. 1).

 

17

 

 Histologically, there is fibrosis along with
acute and chronic inflammatory cells and partial res-
olution of the pulmonary edema (Fig. 2).

 

19,21

 

The recovery phase is characterized by the gradual
resolution of hypoxemia and improved lung compli-
ance. Typically, the radiographic abnormalities re-
solve completely. The degree of histologic resolution
of fibrosis has not been well characterized, although in
many patients pulmonary function returns to normal.

 

EPIDEMIOLOGY

 

Incidence

 

An accurate estimation of the incidence of acute
lung injury and the acute respiratory distress syn-
drome has been hindered by the lack of a uniform
definition and the heterogeneity of the causes and
clinical manifestations. An early estimate by the Na-
tional Institutes of Health (NIH) suggested that the
annual incidence in the United States was 75 per
100,000 population.

 

26

 

 More recent studies reported
lower incidences of 1.5 to 8.3 per 100,000.

 

27-29

 

 How-
ever, the first epidemiologic study to use the 1994
consensus definition reported considerably higher an-
nual incidences in Scandinavia: 17.9 per 100,000 for
acute lung injury and 13.5 per 100,000 for the acute

 

*PaO

 

2

 

 denotes partial pressure of arterial oxygen, and FiO

 

2

 

 fraction of inspired oxygen.
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Petty and 
Ashbaugh

 

3

 

1971 Severe dyspnea, tachypnea
Cyanosis refractory to oxygen therapy
Decreased pulmonary compliance
Diffuse alveolar infiltrates on chest radiography
Atelectasis, vascular congestion, hemorrhage, 

pulmonary edema, and hyaline membranes 
at autopsy

First description
Summarizes clinical features well

Lacks specific criteria to 
identify patients system-
atically

Murray et al.

 

4

 

1988 Preexisting direct or indirect lung injury
Mild-to-moderate or severe lung injury
Nonpulmonary organ dysfunction

Includes 4-point lung-injury scoring 
system

Specifies clinical cause of lung injury
Includes consideration of the pres-

ence or absence of systemic dis-
ease

Lung-injury score not pre-
dictive of outcome

Lacks specific criteria to 
exclude a diagnosis of 
cardiogenic pulmonary 
edema

Bernard et al.

 

5

 

1994 Acute onset
Bilateral infiltrates on chest radiography
Pulmonary-artery wedge pressure «18 

mm Hg or the absence of clinical evidence 
of left atrial hypertension

Acute lung injury considered to be present if 
PaO

 

2

 

:FiO

 

2

 

 is «300
Acute respiratory distress syndrome considered 

to be present if PaO

 

2

 

:FiO

 

2

 

 is «200

Simple, easy to use, especially in 
clinical trials

Recognizes the spectrum of the 
clinical disorder

Does not specify cause
Does not consider the pres-

ence or absence of multi-
organ dysfunction

Radiographic findings not 
specific
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respiratory distress syndrome.

 

30

 

 On the basis of the
results of screening of large numbers of patients by the
NIH Acute Respiratory Distress Syndrome Network
over the past three years, some investigators believe
that the original estimate of 75 per 100,000 per year
may be accurate. To settle this issue, a prospective
epidemiologic study that is using the 1994 consen-
sus definition is under way in Seattle.

 

Clinical Disorders and Risk Factors

 

The ability to identify patients at risk for acute lung
injury and the acute respiratory distress syndrome is
important if therapies are to be developed to prevent
the disorder. The commonly associated clinical dis-
orders can be divided into those associated with di-
rect injury to the lung and those that cause indirect
lung injury in the setting of a systemic process (Ta-

 

Figure 1.

 

 Radiographic and Computed Tomographic (CT) Findings in the Acute, or Exudative, Phase (Panels A and C) and the Fi-
brosing-Alveolitis Phase (Panels B and D) of Acute Lung Injury and the Acute Respiratory Distress Syndrome.
Panel A shows an anteroposterior chest radiograph from a 42-year-old man with the acute respiratory distress syndrome associated
with gram-negative sepsis who was receiving mechanical ventilation. The pulmonary-artery wedge pressure, measured with a pul-
monary-artery catheter, was 4 mm Hg. There are diffuse bilateral alveolar opacities consistent with the presence of pulmonary ede-
ma. Panel B shows an anteroposterior chest radiograph from a 60-year-old man with acute lung injury and the acute respiratory
distress syndrome who had been receiving mechanical ventilation for seven days. Reticular opacities are present throughout both
lung fields, a finding suggestive of the development of fibrosing alveolitis. Panel C shows a CT scan of the chest obtained during
the acute phase. The bilateral alveolar opacities are denser in the dependent, posterior lung zones, with sparing of the anterior lung
fields. The arrows indicate thickened interlobular septa, consistent with the presence of pulmonary edema. The bilateral pleural
effusions are a common finding.

 

14,15

 

 Panel D shows a CT scan of the chest obtained during the fibrosing-alveolitis phase. There are
reticular opacities and diffuse ground-glass opacities throughout both lung fields, and a large bulla is present in the left anterior
hemithorax. Panels C and D are reprinted from Goodman

 

16

 

 with the permission of the publisher.

A

C D

B
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Figure 2.

 

 Findings on Light Microscopy and Electron Microscopy during the Acute Phase (Panels A and D) and the Fibrosing-Alve-
olitis Phase (Panels B, C, and E) of Acute Lung Injury and the Acute Respiratory Distress Syndrome.
Panel A shows a lung-biopsy specimen obtained from a patient two days after the onset of the syndrome as a result of the aspira-
tion of gastric contents. Characteristic hyaline membranes are evident (arrow), with associated intraalveolar red cells and neutro-
phils, findings that are consistent with the pathological diagnosis of diffuse alveolar damage (hematoxylin and eosin, ¬90). Panels
B and C show lung-biopsy specimens obtained 14 days after the onset of sepsis-associated acute lung injury and the acute respiratory
distress syndrome. Panel B shows granulation tissue in the distal air spaces with a chronic inflammatory-cell infiltrate (hematoxylin
and eosin, ¬60). Trichrome staining in Panel C reveals collagen deposition (dark blue areas) in the granulation tissue, a finding that
is consistent with the deposition of extracellular matrix in the alveolar compartment (¬60). Panel D shows a specimen of lung tissue
from a patient who died four days after the onset of acute lung injury and the acute respiratory distress syndrome; there is injury
to both the capillary endothelium and the alveolar epithelium. There is an intravascular neutrophil (LC) in the capillary (C). Vacuo-
lization and swelling of the endothelium (EN) are apparent. Loss of alveolar epithelial cells is also apparent, with the formation of
hyaline membranes on the epithelial side of the basement membrane (BM*). Panel E shows a specimen of lung tissue obtained
from a patient during the fibrosing-alveolitis phase in which there is evidence of reepithelialization of the epithelial barrier with
alveolar epithelial type II cells. The arrow indicates a typical type II cell with microvilli and lamellar bodies containing surfactant.
The epithelial cell immediately adjacent to this cell is in the process of changing to a type I cell, with flattening, loss of lamellar
bodies, and microvilli. The interstitium is thickened, with deposition of collagen (C). Panels A, B, and C were supplied by Dr. Martha
Warnock. Panel D was reprinted from Bachofen and Weibel

 

20

 

 with the permission of the publisher. Panel E was reprinted from
Anderson and Thielen

 

21

 

 with the permission of the publisher.
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ble 2).

 

6,9,31-33

 

 Overall, sepsis is associated with the
highest risk of progression to acute lung injury or
the acute respiratory distress syndrome, approximate-
ly 40 percent.

 

31,33

 

 The presence of multiple predis-
posing disorders substantially increases the risk,

 

31

 

 as
does the presence of secondary factors including
chronic alcohol abuse,

 

33,34

 

 chronic lung disease,

 

33

 

 and
a low serum pH.

 

33

 

Outcomes

 

Until recently, most studies of acute lung injury
and the acute respiratory distress syndrome have re-
ported a mortality rate of 40 to 60 percent.

 

6,7,9,32,35-38

 

The majority of deaths are attributable to sepsis or
multiorgan dysfunction rather than primary respira-
tory causes,

 

6,7,9,10,36

 

 although the recent therapeutic
success of ventilation with low tidal volumes indi-
cates that in some cases death is directly related to
lung injury. Two reports suggest that mortality from
this disease may be decreasing. The first, from a
large county hospital in Seattle, found that the mor-
tality rate was 36 percent in 1993 as compared with
rates of 53 to 68 percent in the period from 1983
to 1987.

 

38

 

 The second, from a hospital in the United
Kingdom, reported a decline in the mortality rate
from 66 percent to 34 percent between 1990 to
1993 and 1994 to 1997.

 

39

 

 Possible explanations for
the decrease include more effective treatments for sep-
sis, changes in the method of mechanical ventilation,
and improvement in the supportive care of critically
ill patients. The possibility that mortality is decreas-
ing emphasizes the importance of the use of random-
ized control subjects rather than historical controls
in clinical studies of the disorder.

Factors whose presence can be used to predict the
risk of death at the time of diagnosis of acute lung
injury and the acute respiratory distress syndrome in-
clude chronic liver disease, nonpulmonary organ dys-
function, sepsis, and advanced age.

 

6,7,10,30

 

 Surprisingly,
initial indexes of oxygenation and ventilation, in-
cluding the ratio of the partial pressure of arterial ox-
ygen to the fraction of inspired oxygen and the lung-
injury score, do not predict outcome. In three large
studies, the mortality rate among patients with an
initial ratio of partial pressure of arterial oxygen to
fraction of inspired oxygen of 300 or less was similar
to that among patients with a ratio of 200 or less.

 

6,7,30

 

However, the failure of pulmonary function to im-
prove during the first week of treatment is a negative
prognostic factor.

 

8

 

In most patients who survive, pulmonary function
returns nearly to normal within 6 to 12 months, de-
spite the severe injury to the lung.

 

40

 

 Residual impair-
ment of pulmonary mechanics may include mild re-
striction, obstruction, impairment of the diffusing
capacity for carbon monoxide, or gas-exchange abnor-
malities with exercise, but these abnormalities are usu-
ally asymptomatic.

 

41,42

 

 Severe disease and prolonged

mechanical ventilation identify patients at highest risk
for persistent abnormalities of pulmonary function.

 

40,43

 

Those who survive the illness have a reduced health-
related quality of life as well as pulmonary-disease–
specific health-related quality of life.

 

40,44-46

 

PATHOGENESIS

 

Endothelial and Epithelial Injury

 

Two separate barriers form the alveolar–capillary
barrier, the microvascular endothelium and the alve-
olar epithelium (Fig. 3). The acute phase of acute lung
injury and the acute respiratory distress syndrome is
characterized by the influx of protein-rich edema flu-
id into the air spaces as a consequence of increased
permeability of the alveolar–capillary barrier.

 

47

 

 The
importance of endothelial injury and increased vas-
cular permeability to the formation of pulmonary
edema in this disorder has been well established.

The critical importance of epithelial injury to both
the development of and recovery from the disorder
has become better recognized.

 

18,22,48

 

 The degree of
alveolar epithelial injury is an important predictor of
the outcome.

 

49,50

 

 The normal alveolar epithelium is
composed of two types of cells (Fig. 3). Flat type I
cells make up 90 percent of the alveolar surface area
and are easily injured. Cuboidal type II cells make up
the remaining 10 percent of the alveolar surface area
and are more resistant to injury; their functions in-
clude surfactant production, ion transport, and prolif-
eration and differentiation to type I cells after injury.

The loss of epithelial integrity in acute lung injury
and the acute respiratory distress syndrome has a num-
ber of consequences. First, under normal conditions,
the epithelial barrier is much less permeable than the
endothelial barrier.

 

48

 

 Thus, epithelial injury can con-
tribute to alveolar flooding. Second, the loss of ep-
ithelial integrity and injury to type II cells disrupt
normal epithelial fluid transport, impairing the re-
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Common causes Common causes

 

Pneumonia
Aspiration of gastric contents

 

Less common causes

 

Pulmonary contusion
Fat emboli
Near-drowning
Inhalational injury
Reperfusion pulmonary edema 

after lung transplantation or 
pulmonary embolectomy

Sepsis
Severe trauma with 

shock and multiple 
transfusions

 

Less common causes

 

Cardiopulmonary bypass
Drug overdose
Acute pancreatitis
Transfusions of blood 

products
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Figure 3.

 

 The Normal Alveolus (Left-Hand Side) and the Injured Alveolus in the Acute Phase of Acute Lung Injury and the Acute
Respiratory Distress Syndrome (Right-Hand Side).
In the acute phase of the syndrome (right-hand side), there is sloughing of both the bronchial and alveolar epithelial cells, with the
formation of protein-rich hyaline membranes on the denuded basement membrane. Neutrophils are shown adhering to the injured
capillary endothelium and marginating through the interstitium into the air space, which is filled with protein-rich edema fluid. In
the air space, an alveloar macrophage is secreting cytokines, interleukin-1, 6, 8, and 10, (IL-1, 6, 8, and 10) and tumor necrosis factor

 

a (TNF-a), which act locally to stimulate chemotaxis and activate neutrophils. Macrophages also secrete other cytokines, including
interleukin-1, 6, and 10. Interleukin-1 can also stimulate the production of extracellular matrix by fibroblasts. Neutrophils can release
oxidants, proteases, leukotrienes, and other proinflammatory molecules, such as platelet-activating factor (PAF). A number of anti-
inflammatory mediators are also present in the alveolar milieu, including interleukin-1–receptor antagonist, soluble tumor necrosis
factor receptor, autoantibodies against interleukin-8, and cytokines such as interleukin-10 and 11 (not shown). The influx of protein-
rich edema fluid into the alveolus has led to the inactivation of surfactant. MIF denotes macrophage inhibitory factor. 
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moval of edema fluid from the alveolar space.51,52

Third, injury to type II cells reduces the production
and turnover of surfactant,53 contributing to the char-
acteristic surfactant abnormalities.54,55 Fourth, loss of
the epithelial barrier can lead to septic shock in pa-
tients with bacterial pneumonia.56 Finally, if injury
to the alveolar epithelium is severe, disorganized or
insufficient epithelial repair may lead to fibrosis.57

Neutrophil-Dependent Lung Injury

Clinical and experimental studies have provided
circumstantial evidence of the occurrence of neutro-
phil-mediated injury in acute lung injury and the
acute respiratory distress syndrome. Histologic stud-
ies of lung specimens obtained early in the course of
the disorder show a marked accumulation of neutro-
phils.20,22 Neutrophils predominate in the pulmonary
edema fluid and bronchoalveolar-lavage fluid obtained
from affected patients,18 and many animal models of
acute lung injury are neutrophil-dependent.58,59 Some
of the mechanisms of the sequestration and activa-
tion of neutrophils and of neutrophil-mediated lung
injury are summarized in Figure 3.

New evidence raises the question of whether neu-
trophilic inflammation is the cause or the result of
lung injury. Acute lung injury and the acute respira-
tory distress syndrome may develop in patients with
profound neutropenia,60 and some animal models of
acute lung injury are neutrophil-independent. In clin-
ical trials in which patients with severe pneumonia
received granulocyte colony-stimulating factor in or-
der to increase the number of circulating neutrophils,
the incidence or severity of lung injury did not in-
crease.61 The neutrophil has a critical role in host de-
fense in this disorder, a factor that may explain, in
part, why antiinflammatory strategies have largely
been unsuccessful.

Other Proinflammatory Mechanisms

Cytokines

A complex network of cytokines and other proin-
flammatory compounds initiate and amplify the in-
flammatory response in acute lung injury and the
acute respiratory distress syndrome (Fig. 3). Proin-
flammatory cytokines may be produced locally in the
lung by inflammatory cells, lung epithelial cells, or
fibroblasts. The regulation of cytokine production
by extrapulmonary factors has also been described.
Macrophage inhibitory factor is a regulatory cyto-
kine produced by the anterior pituitary that is found
in high concentrations in the bronchoalveolar-lavage
fluid of patients with the syndrome.62 This cytokine
increases production of the proinflammatory cyto-
kines interleukin-8 and tumor necrosis factor a and
can override glucocorticoid-mediated inhibition of
cytokine secretion.

New evidence indicates that it is not only the pro-

duction of proinflammatory cytokines that is impor-
tant, but also the balance between proinflammatory
and antiinflammatory mediators. Several endogenous
inhibitors of proinflammatory cytokines have been
described, including interleukin-1–receptor antago-
nist, soluble tumor necrosis factor receptor, autoan-
tibodies against interleukin-8, and antiinflammatory
cytokines such as interleukin-10 and 11.18,59 Better
understanding of the role of cytokines in acute lung
injury and the acute respiratory distress syndrome
will be gained through studies of the biologic activ-
ity of specific cytokines,47,63 rather than by an assess-
ment of static levels by immunologic methods.

Ventilator-Induced Lung Injury

Older studies focused on the potential toxic ef-
fects of high fractions of inspired oxygen,19 but ex-
perimental evidence indicates that mechanical venti-
lation at high volumes and pressures can injure the
lung,64 causing increased permeability pulmonary ede-
ma in the uninjured lung65,66 and enhanced edema
in the injured lung.67 Initial theories formulated to
explain these deleterious effects focused on capillary
stress failure due to alveolar overdistention. More re-
cently, cyclic opening and closing of atelectatic alve-
oli during mechanical ventilation have been shown to
cause lung injury independently of alveolar overdis-
tention. Alveolar overdistention coupled with the re-
peated collapse and reopening of alveoli can initiate
a cascade of proinflammatory cytokines.68

In patients with acute lung injury and the acute
respiratory distress syndrome, ventilation at tradition-
al tidal volumes (10 to 15 ml per kilogram of pre-
dicted body weight) may overdistend uninjured alve-
oli, perhaps promoting further lung injury, inhibiting
resolution of the disorder, and contributing to mul-
tiorgan failure.68 The failure of traditional ventilatory
strategies to prevent end-expiratory closure of atelec-
tatic alveoli may also contribute to lung injury. These
issues have led to a number of clinical trials of pro-
tective ventilatory strategies to reduce alveolar over-
distention and increase the recruitment of atelectatic
alveoli. Interestingly, a recent study found that a strat-
egy of protective ventilation could reduce both the
pulmonary and the systemic cytokine response.69

Other Mechanisms of Injury

Like any form of inflammation, acute lung injury
and the acute respiratory distress syndrome repre-
sent a complex process in which multiple pathways
can propagate or inhibit lung injury.18,59 For exam-
ple, abnormalities of the coagulation system often
develop, leading to platelet–fibrin thrombi in small
vessels and impaired fibrinolysis within the distal air
spaces of the injured lung.18,70 Also, abnormalities in
the production, composition, and function of sur-
factant probably contribute to alveolar collapse and
gas-exchange abnormalities.54,55
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Fibrosing Alveolitis

After the acute phase of acute lung injury and the
acute respiratory distress syndrome, some patients
have an uncomplicated course and rapid resolution
of the disorder.49,50,71 Others have progression to fi-
brotic lung injury, and such injury can be observed
histologically as early as five to seven days after the
onset of the disorder.19,20,22 The alveolar space be-
comes filled with mesenchymal cells and their prod-
ucts, along with new blood vessels (Fig. 2).72 The
finding of fibrosing alveolitis on histologic analysis
correlates with an increased risk of death,73 and pa-
tients who die of the condition have a marked accu-
mulation of collagen and fibronectin in the lung at
autopsy.74

The process of fibrosing alveolitis apparently be-
gins early in the course of the disorder and may be
promoted by early proinflammatory mediators such
as interleukin-1.75,76 Levels of procollagen III peptide,
a precursor of collagen synthesis, are elevated in the
alveolar compartment very early in the course of the
illness, even at the time of intubation and the initia-
tion of mechanical ventilation.47,77,78 Furthermore, the
early appearance of procollagen III in the alveolar
space is associated with an increased risk of death.77,78

RESOLUTION

Strategies that hasten the resolution of the illness
may ultimately be as important as those that atten-
uate early inflammatory lung injury. Alveolar edema
is resolved by the active transport of sodium and per-
haps chloride from the distal air spaces into the lung
interstitium (Fig. 4).79-83 Water follows passively, prob-
ably through transcellular water channels, the aqua-
porins, located primarily on type I cells.82,84 In clinical
studies, clearance of alveolar fluid can occur surpris-
ingly early and is often apparent within the first few
hours after intubation and the initiation of mechan-
ical ventilation.49,50,71 Maintenance of the ability to
remove alveolar fluid is associated with improved oxy-
genation, a shorter duration of mechanical ventila-
tion, and an increased likelihood of survival.49,50

A considerable quantity of both soluble and insol-
uble protein must also be removed from the air spaces.
The removal of insoluble protein is particularly im-
portant, since hyaline membranes provide a frame-
work for the growth of fibrous tissue.57 Soluble pro-
tein appears to be removed primarily by diffusion
between alveolar epithelial cells. Insoluble protein
may be removed by endocytosis and transcytosis by
alveolar epithelial cells and by phagocytosis by mac-
rophages (Fig. 4).85

The alveolar epithelial type II cell is the progeni-
tor for reepithelialization of a denuded alveolar epi-
thelium. Type II cells proliferate to cover the denud-
ed basement membrane and then differentiate into
type I cells, restoring the normal alveolar architec-

ture and increasing the fluid-transport capacity of
the alveolar epithelium.86 This proliferation is con-
trolled by epithelial growth factors, including kerat-
inocyte and hepatocyte growth factors.

The mechanisms underlying the resolution of the
inflammatory-cell infiltrate and fibrosis are unclear.
Apoptosis (programmed cell death) is thought to be
a major mechanism for the clearance of neutrophils
from sites of inflammation and may be important in
the clearance of neutrophils from the injured lung.
However, in one study of bronchoalveolar-lavage fluid
from patients with acute lung injury and the acute
respiratory distress syndrome, the numbers of apop-
totic neutrophils were low, perhaps because of the
presence of antiapoptotic factors such as granulocyte
colony-stimulating factor and granulocyte–macro-
phage colony-stimulating factor.87 Nevertheless, high
concentrations of the markers of apoptosis are present
in the pulmonary edema fluid of patients,88 and ex-
posure in vitro to bronchoalveolar-lavage fluids from
these patients can promote epithelial-cell apopto-
sis.89,90 These are potentially important observations,
since the mechanisms that alter epithelial integrity
need to be identified. The role of proapoptotic and
antiapoptotic mechanisms in both the injury and re-
pair of the alveolar epithelium and the lung endo-
thelium is an important area for future research.

TREATMENT

Approach to Treatment

Improvement in the supportive care of patients
with acute lung injury and the acute respiratory dis-
tress syndrome may have contributed to the recent
decline in the mortality rate.38,39 There should be a
careful search for the underlying cause, with particu-
lar attention paid to the possibility of treatable infec-
tions such as sepsis or pneumonia. Abdominal infec-
tions should be treated promptly with antimicrobial
agents or surgery. Prevention or early treatment of
nosocomial infections is critical, since patients fre-
quently die of uncontrolled infection.36,37 Adequate
nutrition through the use of enteral feeding is pre-
ferred to parenteral nutrition since this route does
not carry the serious risk of catheter-induced sepsis.91

Prevention of gastrointestinal bleeding and throm-
boembolism is also important.92

An improved understanding of the pathogenesis
of acute lung injury and the acute respiratory dis-
tress syndrome has led to the assessment of several
novel treatment strategies. Although many specific
therapies have not proved beneficial, it is encourag-
ing that the quality of clinical trials is improving. An
important advance has been the establishment of a
network supported by the NIH that includes 10 cen-
ters, 24 hospitals, and 75 intensive care units and that
provides the infrastructure for well-designed, multi-
center, randomized trials of potential new therapies.
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Mechanical Ventilation

The most appropriate method of mechanical ven-
tilation in the acute respiratory distress syndrome has
been controversial since the syndrome was first de-
scribed. Although the tidal volume in normal per-
sons at rest is 6 to 7 ml per kilogram, historically a

volume of 12 to 15 ml per kilogram was recommend-
ed in patients with acute lung injury and the acute
respiratory distress syndrome. This comparatively high
tidal volume may cause further lung injury. Interest-
ingly, the possibility of ventilator-associated lung in-
jury was first considered in the 1970s,64 leading to a

Figure 4. Mechanisms Important in the Resolution of Acute Lung Injury and the Acute Respiratory Distress Syndrome.
On the left side of the alveolus, the alveolar epithelium is being repopulated by the proliferation and differentiation of alveolar type
II cells. Resorption of alveolar edema fluid is shown at the base of the alveolus, with sodium and chloride being transported through
the apical membrane of type II cells. Sodium is taken up by the epithelial sodium channel (ENaC) and through the basolateral mem-
brane of type II cells by the sodium pump (Na+/K+–ATPase). The relevant pathways for chloride transport are unclear. Water is
shown moving through water channels, the aquaporins, located primarily on type I cells. Some water may also cross by a paracel-
lular route. Soluble protein is probably cleared primarily by paracellular diffusion and secondarily by endocytosis by alveolar epi-
thelial cells. Macrophages remove insoluble protein and apoptotic neutrophils by phagocytosis. On the right side of the alveolus,
the gradual remodeling and resolution of intraalveolar and interstitial granulation tissue and fibrosis are shown.
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study of extracorporeal membrane oxygenation in
which the tidal volume was reduced to 8 to 9 ml per
kilogram.93 However, this strategy, like extracorporeal
removal of carbon dioxide in a subsequent study,
failed to decrease mortality (Table 3).98

As described in this issue of the Journal, the NIH
Acute Respiratory Distress Syndrome Network com-
pared a traditional tidal volume (12 ml per kilogram
of predicted body weight) with a lower tidal volume
(6 ml per kilogram of predicted body weight) in 861
patients.106 In the group receiving lower tidal volumes,
plateau pressure (airway pressure measured after a 0.5-
second pause at the end of inspiration) could not ex-
ceed 30 cm of water and a detailed protocol was used
to adjust the fraction of inspired oxygen and positive
end-expiratory pressure. The in-hospital mortality rate
was 39.8 percent in the group treated with tradition-
al tidal volumes and 31.0 percent in the group treated
with lower tidal volumes (P=0.007). Thus, mortal-
ity was reduced by 22 percent in the group treated
with lower tidal volumes, a finding of major impor-
tance. This large multicenter trial provides convinc-
ing evidence that a specific therapy for the acute res-
piratory distress syndrome can reduce mortality. It
also provides evidence of the clinical significance of

ventilator-associated lung injury and provides a well-
defined protocol for ventilation against which future
strategies can be compared.

The positive results of this trial differed from those
of two previous studies of low tidal volumes, a Ca-
nadian study of 120 patients104 and a European study
of 116 patients.105 There are several possible explana-
tions for the discrepant results. First, the NIH study
had the lowest tidal volume when the tidal volumes
were compared with the use of the same calculation
of ideal body weight. Thus, the NIH study may have
been better able to show a difference between the
treatment groups. Second, the study treated respira-
tory acidosis associated with alveolar hypoventilation
and hypercapnia by allowing the respiratory rate to in-
crease to 35 breaths per minute and by the admin-
istration of sodium bicarbonate. Conceivably, respi-
ratory acidosis could have had deleterious effects in
the groups treated with low tidal volumes in the
other two studies. Finally, the other studies had many
fewer patients, thus reducing the statistical power to
find a treatment effect.

There has also been considerable interest in the
optimal level of positive end-expiratory pressure in
patients with acute lung injury and the acute respi-

TABLE 3. HISTORY OF ALTERNATIVE VENTILATORY STRATEGIES FOR ACUTE LUNG INJURY 
AND THE ACUTE RESPIRATORY DISTRESS SYNDROME.

VENTILATORY STRATEGY YEAR

TYPE OF

STUDY

NO. OF

PATIENTS FINDINGS STUDY

High levels of positive 
end-expiratory pressure

1975 Observational 28 High incidence of pneumothorax Kirby et al.94

Extracorporeal membrane 
oxygenation

1979 Phase 3 multi-
center trial

90 No benefit Zapol et al.93

High-frequency jet ventila-
tion

1983 Phase 3 single-
center trial

309 No benefit Carlon et al.95

Prophylactic positive end-
expiratory pressure 
(8 cm of water)

1984 Phase 3 single-
center trial

92 No benefit in patients at risk for 
the acute respiratory distress 
syndrome

Pepe et al.96

Pressure-controlled in-
verse-ratio ventilation

1994 Observational 9 Inconclusive, needs further study Lessard et al.97

Extracorporeal removal 
of carbon dioxide

1994 Phase 3 single-
center trial

40 No benefit Morris et al.98

Liquid ventilation 1996 Observational 10 Probably safe, needs further study Hirschl et al.99

High-frequency oscillatory 
ventilation

1997 Observational 17 Probably safe, needs further study Fort et al.100

Prone positioning during 
ventilation

1997 Observational 13 Inconclusive, needs further study Mure et al.101 

Prone positioning during 
ventilation

2000 Observational 39 Inconclusive, needs further study Nakos et al.102

“Open-lung” approach 1998 Phase 3 single-
center trial

53 Decreased 28-day mortality but 
not in-hospital mortality (as 
compared with conventional 
ventilation)

Amato et al.103

Low tidal volumes 1998 Phase 3 120 No benefit in patients at risk for 
the acute respiratory distress 
syndrome

Stewart et al.104

Low tidal volumes 1998 Phase 3 116 No benefit Brochard et al.105

Low tidal volumes 2000 Phase 3 861 Decreased mortality by 22 per-
cent (as compared with tradi-
tional tidal volumes)

Acute Respiratory 
Distress Syndrome 
Network106
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ratory distress syndrome. It was noted early on that
the use of positive end-expiratory pressure could im-
prove oxygenation in these patients, allowing the frac-
tion of inspired oxygen to be reduced.3,107 The best-
documented effect of positive end-expiratory pressure
on lung function is an increase in functional residual
capacity,107 probably as a result of the recruitment of
collapsed alveoli.108 Although lung injury was pre-
vented in rats by the prophylactic use of positive end-
expiratory pressure,64 the prophylactic use of a positive
end-expiratory pressure of 8 cm of water in patients
at risk for the acute respiratory distress syndrome was
not successful.96

Recently, Amato et al. used an “open-lung” ap-
proach to mechanical ventilation in patients with acute
lung injury and the acute respiratory distress syn-
drome.103 In addition to a low tidal volume and pres-
sure-controlled inverse-ratio ventilation, the protocol
included raising the level of positive end-expiratory
pressure above the lower inflection point on a pres-
sure–volume curve for each patient in an attempt to
ensure adequate recruitment of atelectatic lung. With
this approach, mortality was reduced. However, the
adoption of this approach cannot yet be recommend-
ed for several reasons. First, this study was small, in-
volving only 53 patients and only a single center.
Second, mortality in the group treated with conven-
tional ventilation was unusually high (71 percent),
suggesting that the high tidal volume used may have
been especially injurious. Furthermore, the difference
in mortality between the two groups was only ap-
parent at 28 days; the rates of survival until hospital
discharge were not significantly different between the
two groups. Third, a reliable measurement of the low-
er inflection point of the pressure–volume curve is
technically difficult and usually requires sedation and
paralysis of the patient.

In spite of these issues, the study by Amato et al.
raises the possibility that improved alveolar recruit-
ment with the use of higher levels of positive end-
expiratory pressure than were used in the NIH
study106 might further reduce ventilator-associated
lung injury. This possibility is currently being tested
in a new NIH Acute Respiratory Distress Syndrome
Network ventilation trial. A number of alternative
approaches to conventional mechanical ventilation
have also been proposed, including prone position-
ing of the patient during ventilation,94,95,97,99-102 but
have not yet been proved to be beneficial (Table 3).

Fluid and Hemodynamic Management

The rationale for restricting fluids in patients with
acute lung injury and the acute respiratory distress
syndrome is to decrease pulmonary edema. Studies
in animals with acute lung injury indicated that the
degree of edema was reduced if left atrial pressure was
lowered.23,109 Some clinical studies have supported
this hypothesis.110-112 Soon, a randomized trial of flu-

id management designed to compare restricted with
liberal fluid management based on monitoring he-
modynamics with either a pulmonary-artery catheter
or a central venous catheter will be carried out by
the NIH Acute Respiratory Distress Syndrome Net-
work. While we await these results, a reasonable ob-
jective is to maintain the intravascular volume at the
lowest level that is consistent with adequate systemic
perfusion, as assessed by metabolic acid–base bal-
ance and renal function. If systemic perfusion can-
not be maintained after the restoration of intravas-
cular volume, as is the case in patients with septic
shock, treatment with vasopressors is indicated to
restore end-organ perfusion and normalize oxygen
delivery.23 However, on the basis of the negative re-
sults of clinical trials, the use of supranormal levels
of oxygen delivery cannot be recommended.113,114

Surfactant Therapy

Because of the success of surfactant-replacement
therapy in infants with the neonatal respiratory dis-
tress syndrome,115 surfactant replacement has been
proposed as a treatment for patients with acute lung
injury and the acute respiratory distress syndrome.
However, in one study, treatment with a synthetic sur-
factant had no effect on oxygenation, the duration of
mechanical ventilation, or survival.116 There are sev-
eral possible explanations for the negative results.
First, the surfactant was delivered as an aerosol, and
less than 5 percent may have reached the distal air
spaces.117 Also, the product used, a protein-free phos-
pholipid preparation, may not be the most effective
for patients with acute lung injury and the acute res-
piratory distress syndrome. Newer preparations of sur-
factant that contain recombinant surfactant proteins
and new approaches to their instillation, including
tracheal instillation and bronchoalveolar lavage, are
being evaluated in clinical trials.

Inhaled Nitric Oxide and Other Vasodilators

Nitric oxide is a potent vasodilator that can be de-
livered to the pulmonary vasculature by inhalation
without causing systemic vasodilation. Although ob-
servational studies suggested that inhaled nitric ox-
ide might be beneficial in patients with acute lung
injury and the acute respiratory distress syndrome,118

the results of randomized, double-blind studies have
been discouraging. In a phase 2 study, inhaled nitric
oxide did not reduce mortality or reduce the dura-
tion of mechanical ventilation.119 The improvements
in oxygenation with this treatment were small and
were not sustained, and pulmonary-artery pressure de-
creased very little, and only on the first day of treat-
ment. Also, a recent phase 3 study of inhaled nitric
oxide showed that it had no effect on either mortal-
ity or the duration of mechanical ventilation.120 Thus,
inhaled nitric oxide cannot be recommended for the
routine treatment of acute lung injury and the acute
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respiratory distress syndrome, but it may be useful
as a rescue therapy in patients with refractory hypox-
emia. Treatment with several less selective vasodila-
tors, including sodium nitroprusside,121 hydralazine,122

alprostadil (prostaglandin E1),
123,124 and epoprostenol

(prostacyclin),125 has also not been shown to be ben-
eficial.

Glucocorticoids and Other Antiinflammatory Agents

Recognition of the inflammatory nature of the
lung injury in acute lung injury and the acute respi-
ratory distress syndrome prompted interest in anti-
inflammatory treatments, particularly glucocorticoids.
However, glucocorticoids had no benefit when they
were given before the onset of the disease or early
in its course.126-128 More recently, glucocorticoids
have been used to treat the later, fibrosing-alveolitis
phase of the disease. Encouraging results were report-
ed in preliminary studies129,130 and in a small ran-
domized trial of 24 patients.131 A larger randomized,
multicenter U.S. trial of treatment with high-dose
methylprednisolone for at least seven days is under
way. Because treatment with high-dose methylpred-
nisolone may increase the incidence of infection, the
routine use of this drug in patients with established
acute lung injury and the acute respiratory distress
syndrome cannot be recommended until results of a
large multicenter trial become available.

A short course of high-dose glucocorticoids could
be considered as rescue therapy in patients with se-

vere disease that is not resolving. In addition to glu-
cocorticoids, other antiinflammatory agents designed
to interrupt the process of acute lung injury have been
investigated but have proved unsuccessful (Table 4).
The failure may reflect the complexity and redun-
dancy of the inflammation in acute lung injury11,18,59

or the inability to deliver these agents early enough
in the course of the illness.

Acceleration of Resolution

Recognition of the importance of the resolution
phase of acute lung injury and the acute respiratory
distress syndrome has stimulated interest in strate-
gies to hasten patients’ recovery from lung injury. Ex-
perimentally, removal of pulmonary edema fluid from
the alveolar space can be enhanced by both cate-
cholamine-dependent and catecholamine-independ-
ent mechanisms, including those increased by inhaled
and systemic beta-agonists.79-83,133-135 Beta-agonists are
appealing candidates because they are already in wide
clinical use and have no serious side effects, even in
critically ill patients.136 Treatment with beta-agonists
may also increase the secretion of surfactant and per-
haps exert an antiinflammatory effect, thus helping
to restore vascular permeability of the lung.137,138

Since acute injury to epithelial type I cells causes
denudation of the alveolar epithelium,22,139 an addi-
tional approach to hastening the resolution of acute
lung injury and the acute respiratory distress syn-
drome is to accelerate reepithelialization of the alve-

*NIH denotes National Institutes of Health.

TABLE 4. RESULTS OF CLINICAL TRIALS OF PHARMACOLOGIC TREATMENT FOR ACUTE LUNG INJURY 
AND THE ACUTE RESPIRATORY DISTRESS SYNDROME.

TREATMENT YEAR

TYPE OF

STUDY

NO. OF

PATIENTS FINDINGS STUDY

Glucocorticoids (during
the acute phase)

1987 Phase 3 87 No benefit Bernard et al.126

Glucocorticoids (during
the acute phase)

1988 Phase 3 59 No benefit Luce et al.127

Alprostadil
Intravenous
Liposomal

1989
1999

Phase 3
Phase 3

100
350

No benefit
Stopped for lack of efficacy

Bone et al.124

Abraham et al.123

Surfactant 1996 Phase 3 725 No benefit; new prepara-
tions and methods of de-
livery now being studied

Anzueto et al.116

Glucocorticoids during the
fibrosing-alveolitis phase

1998 Phase 3 24 Decreased mortality, but 
study was small

Meduri et al.131

Inhaled nitric oxide 1998 Phase 2 177 No benefit Dellinger et al.119

Inhaled nitric oxide 1999 Phase 3 203 No benefit Payen et al.120

Ketoconazole 2000 Phase 2 234 No benefit NIH Acute Respiratory 
Distress Syndrome 
Network132*

Procysteine 1998 Phase 3 214 Stopped for lack of efficacy Bernard G: unpublished 
data

Lisofylline 1999 Phase 2–3 235 Stopped for lack of efficacy Unpublished data
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olar barrier (Fig. 4). The proliferation of alveolar ep-
ithelial type II cells is controlled by a number of
epithelial growth factors, including keratinocyte
growth factor. Experimentally, administration of ke-
ratinocyte growth factor protects against lung inju-
ry,140,141 probably in part by increasing the prolifera-
tion of alveolar type II cells and the clearance rate
of alveolar fluid142 and by inducing antioxidant ef-
fects,143 and perhaps by reducing lung endothelial
injury.144,145 These findings raise the possibility that
an epithelium-specific growth factor could be used
to accelerate the resolution of the syndrome. Over-
all, strategies directed at restoring the function of al-
veolar epithelium deserve careful evaluation.146

CONCLUSIONS

In conclusion, substantial progress has been made
in the understanding of acute lung injury and the
acute respiratory distress syndrome. More information
regarding epidemiology and pathogenesis has become
available, and the importance of the resolution phase
of the illness has been recognized, opening up new
avenues for therapeutic intervention. Although prog-
ress in specific treatments has lagged behind basic re-
search, the formation of the NIH Acute Respiratory
Distress Syndrome Network led to a clinical trial of
a ventilation strategy involving low tidal volumes,
which reduced mortality by 22 percent.106 Large, pro-
spective, randomized trials of new ventilatory and
pharmacologic strategies may further reduce mortal-
ity from this common clinical syndrome.
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CORRECTION

The Acute Respiratory Distress Syndrome

The Acute Respiratory Distress Syndrome . On page 1336, in the leg-

end to Figure 1, the next-to-last sentence should have read, `̀ There

are reticular opacities and diffuse ground-glass opacities throughout

both lung fields, and a large bulla is present in the right anterior

hemithorax,´́ not `̀ the left anterior hemithorax,´́ as printed.

N Engl J Med 2000;343:520
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