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Two subphenotypes of septic acute kidney
injury are associated with different 90-day
mortality and renal recovery
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Abstract

Background: The pathophysiology of septic acute kidney injury is inadequately understood. Recently,
subphenotypes for sepsis and AKI have been derived. The objective of this study was to assess whether a
combination of comorbidities, baseline clinical data, and biomarkers could classify meaningful subphenotypes in
septic AKI with different outcomes.

Methods: We performed a post hoc analysis of the prospective Finnish Acute Kidney Injury (FINNAKI) study cohort.
We included patients admitted with sepsis and acute kidney injury during the first 48 h from admission to intensive
care (according to Kidney Disease Improving Global Outcome criteria). Primary outcomes were 90-day mortality and
renal recovery on day 5. We performed latent class analysis using 30 variables obtained on admission to classify
subphenotypes. Second, we used logistic regression to assess the association of derived subphenotypes with 90-
day mortality and renal recovery on day 5.

Results: In total, 301 patients with septic acute kidney injury were included. Based on the latent class analysis, a
two-class model was chosen. Subphenotype 1 was assigned to 133 patients (44%) and subphenotype 2 to 168
patients (56%). Increased levels of inflammatory and endothelial injury markers characterized subphenotype 2. At
90 days, 29% of patients in subphenotype 1 and 41% of patients in subphenotype 2 had died. Subphenotype 2 was
associated with a lower probability of short-term renal recovery and increased 90-day mortality.

Conclusions: In this post hoc analysis, we identified two subphenotypes of septic acute kidney injury with different
clinical outcomes. Future studies are warranted to validate the suggested subphenotypes of septic acute kidney
injury.
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Background
Acute kidney injury (AKI) has been an important re-
search focus within intensive care medicine in recent
years [1]. Incidence, risk factors, and outcome of AKI
have been widely described [2–4]. The treatment options
for AKI are limited, and consequently, long-term mor-
bidity and mortality are substantial [5, 6]. The lack of ef-
fective treatment options is partly explained by AKI
being a complex and multifactorial syndrome [3] and,
additionally, currently inadequately understood under-
lying pathophysiological mechanisms [7–9].
Septic AKI accounts for approximately 50% of AKI

cases in critically ill patients [7]. Given the heterogeneity
of critically ill patients and their underlying illnesses, it
is plausible that several subphenotypes of AKI exist,
analogous to those in acute respiratory distress syn-
drome (ARDS) [10, 11] and in sepsis [12]. Recently,
Bhatraju et al. described two possible subphenotypes of
septic AKI in critically ill patients which had different
outcomes in terms of renal recovery and mortality [13].
Identification of diagnostic subphenotypes of septic AKI
may be crucial in order to improve prognostication and
to identify different patient groups responding differently
to treatment [14], as previously observed in AKI subphe-
notypes regarding vasopressin [13]. Schaub et al. sug-
gested to pursue this type of research and investigate
whether other markers that were not included by
Bhatraju et al. could also aid in identifying subpheno-
types of (septic) AKI [15].
Heterogeneity in the development, evolution, treat-

ment effects, and outcomes of septic AKI may be ex-
plained by genetic factors, different comorbidities,
other organ dysfunction, and expression of bio-
markers following underlying pathophysiological pro-
cesses [16]. These factors are not included in the
current AKI KDIGO classification, using only serum
creatinine and urinary output [17], which may be
seen as an important limitation [18].
Multiple variables, including comorbidities, baseline

clinical data, and biomarkers, are of potential use in
identifying subphenotypes. Multicentre studies have
aimed to identify biomarkers that could predict develop-
ment, evolution, and outcome of AKI with mostly disap-
pointing results [19–21]. We have previously evaluated
multiple possible biomarkers of AKI in the FINNAKI co-
hort [2, 22–30].
We hypothesized that a combination of comorbidities,

baseline clinical data, and multiple biomarkers could aid
in the identification of subphenotypes in septic AKI
upon ICU admission [28, 31]. Accordingly, we per-
formed a post hoc analysis in critically ill patients with
septic AKI using the prospectively collected FINNAKI
cohort data [2] aiming at identifying subphenotypes of
septic AKI.

Methods
Study population
Of the 2901 critically ill patients included in the FIN-
NAKI study [2], we included all patients with septic AKI
with biomarker data. The FINNAKI study was a pro-
spective, observational, multicentre study in which 17
Finnish ICUs participated between 1 September 2011
and 1 February 2012. For the present study, we excluded
617 of the 918 septic FINNAKI patients [32]: 160 pa-
tients who did not give consent for biomarker analysis,
404 patients without AKI during the first 48 h of admis-
sion, and 53 patients with more than 6 missing values
(50%) for the 12 biomarkers (E-Fig. 3).
The Ethics Committee of the Department of Surgery

in Helsinki University Central Hospital approved the
FINNAKI study protocol with written informed consent
from patients or their next of kin and the use of deferred
consent. This study was reported in adherence to
STROBE (Additional file 2).

Definitions
We defined AKI as any AKI of KDIGO stage one and
higher within the first 48 h of admission, using the
complete KDIGO criteria based on serum creatinine,
urinary output, the combination of creatinine and urin-
ary output, and use of renal replacement therapy (RRT)
[33]. Sepsis was defined according to the initial ACCP/
SCCM Consensus Conference Committee definition and
assessed prospectively by the researchers [34]. Modified
SOFA on ICU admission was calculated as the SOFA
score but leaving out the central nervous system (CNS)
component, and the renal component was determined
solely based on creatinine levels since urinary output
data were not available on admission. Average vasopres-
sor load (μg/kg/min) during the first 24 h was calculated
from norepinephrine equivalent vasopressors adminis-
tered: [norepinephrine equivalents (μg/kg/min)] = [nor-
epinephrine μg/kg/min)] + [dopamine (μg/kg/min)]/
2 + [epinephrine (μg/kg/min)].The primary outcome was
90-day mortality. The second outcome was renal recov-
ery on day 5, as renal recovery has been shown to be as-
sociated with improved outcomes after AKI and to allow
comparison with similar studies. Day 5 was the last day
of clinical data collection. Renal recovery on day 5 was
defined as survival to 5 days and no AKI, which was
based on the full KDIGO criteria using both serum cre-
atinine and urinary output on day 5.

Variables
We included previously analysed biomarkers, previously
chosen based on the literature due to their association
with the evolution or outcomes of AKI [35]. Clinical var-
iables for the latent class analysis (LCA) were selected by
clinical judgement and previous studies [36]. We
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restricted all class-defining variables to either permanent
patient characteristics or variables measured from 24 h
prior to admission to 2 h after admission. E-Table 3 lists
all chosen class-defining variables.

Statistical analysis
We present data as means (with standard deviations
(SD)) or medians (with interquartile ranges (IQR)) de-
pending on distributions. Student’s t test, Mann-
Whitney U test, and Pearson’s chi-squared test were
used as appropriate. Outcomes were calculated as odds
ratios (OR) with 95% confidence intervals (CI). A p value
of < 0.05 was considered statistically significant. p values
were not corrected for multiple comparisons in the ana-
lyses. Analyses were performed using Stata 15 and R
(version 3.6.0).
First, we performed LCA to identify subphenotypes in

septic AKI. Due to missing data, we performed a mul-
tiple imputation procedure on the data for LCA. Data
were multiply imputed 31 times, using data for 615 sep-
tic patients, of which 301 constitute the analysed popula-
tion of septic AKI patients. The 314 septic patients
without AKI in the first 48 h were only included in the
imputation model to improve the imputation procedure.
We performed the LCA model for the 301 septic AKI
patients on each imputed dataset separately, and the
final class assignment was determined by taking the ma-
jority votes of the 31 models for each patient (see Add-
itional file 1 for details). The optimal number of latent
classes was decided by considering the Bayesian infor-
mation criterion (BIC), the number of classes, class sizes,
and entropy (see Additional file 1 for details).
Second, we used logistic regression to assess whether

class membership was associated with different 90-day
mortality and renal recovery on day 5. We controlled for
age and sex and measures of disease severity: APACHE
II, admission modified SOFA score, KDIGO AKI stage,
and presence of chronic or acute liver failure.
Last, as a confirmatory analysis, we performed a sensi-

tivity analysis using data 24 h prior to and after ICU
admission.

Results
Of 2901 FINNAKI study patients, 354 fulfilled inclusion
criteria of which 301 patients had adequate biomarker
data. Most of the characteristics of the included and ex-
cluded patients were similar (E-Table 4). Of the 301 pa-
tients, 166 patients (55%) had AKI either on admission
or within 24 h and 135 patients (45%) were diagnosed
with AKI between 24 and 48 h. Of all patients, 127 pa-
tients (42%) had AKI based on creatinine only, 51 on
urine output only (17%), and 123 patients (41%) on both
or the use of RRT. Two- and three-class models were
explored, and the two-class model for the LCA was

selected based on BIC, entropy, and class sizes (see Add-
itional file 1 for details including a comparison to the
three-class model). In total, 133 patients (43%) had
phenotype 1 and 168 patients (57%) had phenotype 2.
The mean probability of class membership in the model
was 0.960 for subphenotype 1 and 0.959 for subpheno-
type 2.
Baseline characteristics of all 301 patients are shown

in Table 1. Variable distribution differed across the sub-
phenotypes (Fig. 1). Compared to subphenotype 1, sub-
phenotype 2 was characterized by higher levels of
heparin-binding protein (HBP), neutrophil elastase 2
(Ela), proteinase 3 (PRTN3), olfactomedin-4 (OLFM4),
and matrix metalloproteinase 8 (MMP8). Figure 2 shows
the standardized class-defining variable values by class,
ranked by standardized mean difference (SMD). Of the
clinical variables, patients with subphenotype 2 had
lower BMI (27.3 vs 30.3 kg/m2, p < 0.001), were more
likely to receive vasopressors (64% vs 48%, p = 0.007),
and had a lower prevalence of chronic kidney disease
(4% vs 13%, p = 0.005). The timing of AKI diagnosis did
not differ (p = 0.94). The median vasopressor load was
higher in patients with subphenotype 2 (0.28 vs 0.18 μg/
kg/min, p = 0.009) as was the median fluid balance at 72
h (8286 vs 6738mL, p = 0.012) (Table 1). In the sensitiv-
ity analysis using 24-h data, 130 patients (43%) had sub-
phenotype 1 and 171 patients (57%) had subphenotype 2
(E-Table 5), and distinctive variables and outcomes were
the same as in the primary model (E-Fig. 4).

Outcomes
Renal recovery on day 5 occurred in 163 patients (54%).
At day 5, 42 patients (14%) and at 90 days, 107 patients
(36%) had died. Logistic regression showed that mem-
bership in subphenotype 2 was associated with both de-
creased short-term renal recovery and increased
mortality (Table 2).

Discussion
In this post hoc analysis of the multicentre prospective
FINNAKI study, we identified two distinct subpheno-
types of septic AKI, using variables on ICU admission in
a cohort of critically ill patients. These findings remained
unchanged in a model using variables obtained in the
first 24 h. Importantly, subphenotype 2 was associated
with decreased short-term renal recovery and increased
90-day mortality.
Of the 30 included variables used in the LCA, four

biomarkers showed the greatest difference between the
two subphenotypes: HBP, Ela, PRTN3, and MMP8. In-
creased understanding of the underlying pathophysio-
logic mechanisms behind the subphenotypes represented
by these biomarkers could aid in the design of future tri-
als and further help treat septic AKI. HBP is a
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neutrophil-derived mediator for inflammation and vas-
cular permeability and has been reported to improve the
prediction of a clinical risk model in septic patients [28].
HBP reflects vascular permeability and was higher in pa-
tients with subphenotype 2, who also received more
fluids. The three other biomarkers Ela, PRTN3, and
MMP8 are also neutrophil-derived proteases, which have
previously been shown to accurately estimate the risk of
AKI in septic children [37]. Notably, none of these four
biomarkers is measured in standard clinical practice.
The fact that these biomarkers appear higher in subphe-
notype 2 suggests that subphenotype 1 may represent a
less severe form of septic AKI. Supporting this hypoth-
esis, sCD73, a protective anti-inflammatory mediator,
was higher in patients with subphenotype 1 [27]. More-
over, despite comparable SOFA and APACHE II scores
on admission, this is reflected by higher vasopressor load
and higher fluid balance later during admission in pa-
tients with subphenotype 2. Clinically, patients with sub-
phenotype 1 had a higher BMI and less severe metabolic
acidosis. Although the number of patients with diag-
nosed chronic kidney disease was higher in subpheno-
type 1, the baseline serum creatinine was comparable.
All previous studies except one [36] have classified

AKI into different types of AKI based on renal outcome,
but these subphenotypes were determined using
outcome data retrospectively and not linked to

Table 1 Characteristics of study population per subphenotype

Subphenotype
1 (n = 133)

Subphenotype
2 (n = 168)

p value

Age, years (SD) 64 (15) 65 (15) 0.58

Sex, male 88 (66%) 97 (58%) 0.14

BMI, kg/m2 (SD) 30.3 (8.5) 27.3 (5.1) < 0.001

Operative admission 28 (21.2%) 51 (30.4%) 0.074

Diabetes mellitus 44 (33.1%) 44 (26.2%) 0.19

Chronic liver failure 7 (5.3%) 3 (1.8%) 0.098

Chronic kidney disease 17 (13.1%) 7 (4.2%) 0.005

Baseline creatinine,
mmol/L (SD)*

91.1 (55.9) 86.7 (50.3) 0.55

Admission origin 0.49

Operation room/
recovery

28 (21.1%) 48 (28.6%)

Emergency room 55 (41.4%) 60 (35.7%)

Ward 39 (29.3%) 48 (28.6%)

Other ICU/high-
dependency unit/other

11 (8.3%) 12 (7.1%)

Timing of AKI 0.94

Within 24 h 73 (54.9%) 93 (55.4%)

Within 48 h 60 (45.1%) 75 (44.6%)

Clinical variables on admission

Urinary tract infection 12 (9.0%) 20 (11.9%) 0.42

Pneumonia 26 (19.5%) 25 (14.9%) 0.28

Mechanical ventilation 72 (54.1%) 78 (46.4%) 0.18

Vasopressors, any 64 (48.1%) 107 (63.7%) 0.007

KDIGO AKI stage 0.37

Stage 1 63 (47.4%) 67 (39.9%)

Stage 2 22 (16.5%) 26 (15.5%)

Stage 3 35 (26.3%) 60 (35.7%)

Modified SOFA on
admission (SD)

6.0 (2.6) 6.4 (2.5) 0.20

APACHE II score (SD) 27.3 (9.4) 27.8 (8.6) 0.66

Mean arterial pressure,
mmHg (SD)

75 (21) 74 (22) 0.58

Biochemical variables on admission

Leukocyte count,
× 109/L (SD)

12.1 (6.4) 14.3 (9.6) 0.027

Platelet count,
× 109/L (SD)

232 (125) 202 (143) 0.064

Haematocrit (SD) 0.35 (0.07) 0.35 (0.08) 0.90

CRP, nmol/L (SD) 124 (111) 234 (143) < 0.001

pH (SD) 7.3 (0.2) 7.3 (0.1) 0.78

Highest lactate,
mmol/L (SD)

4.1 (4.5) 4.5 (3.6) 0.47

Base excess, lowest (SD) − 6.2 (9.1) − 8.3 (6.7) 0.039

Creatinine, μmol/L (SD) 213 (230) 212 (181) 0.97

Table 1 Characteristics of study population per subphenotype
(Continued)

Subphenotype
1 (n = 133)

Subphenotype
2 (n = 168)

p value

Treatment

Fluid balance at 72 h,
mL (IQR)

6738 (1868–10,
169)

8286 (4202–13,
671)

0.012

Vasopressor load,
μg/kg/min (IQR)

0.18 (0.04–0.44) 0.28 (0.12–0.69) 0.009

Renal replacement
therapy

31 (23.3%) 66 (39.3%) 0.003

Outcomes

SOFA score on day 2
(SD)

6.3 (3.8) 8.3 (4.4) < 0.001

SOFA score on day 3
(SD)

6.1 (3.7) 7.3 (4.3) 0.025

Renal recovery on
day 5

85 (63.9%) 78 (46.4%) 0.003

In-hospital mortality 25 (18.8%) 60 (35.7%) 0.001

90-day mortality 39 (29.3%) 68 (40.5%) 0.045

Description: Data are presented as numbers (percentages) or mean (SD)/
median (IQR). Vasopressors included here are norepinephrine, dobutamine,
and epinephrine
BMI body mass index, KDIGO Kidney Disease Improving Global Outcome, AKI
acute kidney injury, SOFA Sequential Organ Failure Assessment, APACHE Acute
Physiology, Age, Chronic Health Evaluation, CRP C-reactive protein
*Baseline serum creatinine was available for 69% of patients and, if missing,
estimated using the MDRD formula
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distinguishable pathophysiological pathways [38, 39].
Other studies have focused on subphenotypes of AKI in
very specific contexts, such as kidney transplants [40] or
experimental models [41]. Recently, however, two major
studies using similar methods in critically ill patients

with sepsis have been published [36, 42]. Different sub-
phenotypes of sepsis have been identified in 16,552 crit-
ically ill patients. Although this study [42] did not focus
on AKI specifically, the methodology is comparable to
our study using a combination of baseline and clinical

Fig. 1 Combined graphs of variable distribution in different sub-phenotypes. Description: variables names with an asterisk were plotted as either
natural log or square root transformed. BMI, body mass index; MAP, mean arterial pressure; WBC, white blood cell count; CRP, C-reactive protein;
Ela, neutrophil elastase 2; MMP8, matrix metalloproteinase 8; FGF13, fibroblast growth factor 13; OLFM4, olfactomedin 4; PRTN3, proteinase 3; sTM,
soluble thrombomodulin; SDC1, syndecan-1; VAP1, vascular adhesion protein 1; Ang2, angiotensin 2; IL-6, interleukin-6; HBP,
heparin-binding protein
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Fig. 2 Comparison of class-defining variables by class. Description: variables names with an asterisk were plotted as either natural log or square
root transformed. Every variable was standardized to a mean of 0 and SD of 1. Group means of standardized values are shown by class. The
distance between the lines corresponds to the standardized mean difference between groups. BMI, body mass index; MAP, mean arterial
pressure; WBC, white blood cell count; CRP, C-reactive protein; Ela, neutrophil elastase 2; MMP8, matrix metalloproteinase 8; FGF13, fibroblast
growth factor 13; OLFM4, olfactomedin 4; PRTN3, proteinase 3; sTM, soluble thrombomodulin; SDC1, syndecan-1; VAP1, vascular adhesion protein
1; Ang2, angiotensin 2; IL-6, interleukin-6; HBP, heparin-binding protein

Table 2 Logistic regression, associations between subphenotype 2 membership and outcomes

Unadjusted OR (95% CI) p value Adjusted* OR (95% CI) p value

Renal recovery on day 5 0.49 (0.31–0.78) 0.003 0.47 (0.27–0.79) 0.005

90-day mortality 1.64 (1.01–2.67) 0.045 1.83 (1.05–3.24) 0.035

Description: ORs are for subphenotype 2 vs. subphenotype 1
*Adjusted for age, sex, liver failure, modified SOFA score, APACHE II, and KDIGO AKI stage
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data to identify subphenotypes of a heterogeneous clin-
ical syndrome [42].
More recently, Bhatraju et al. showed that two subphe-

notypes of AKI could be identified based on 29 variables
using comparable methods [36]. The authors con-
structed a simplified three-variable model based on the
ratio between plasma angiopoietin 2 (Ang-2) and angio-
poietin 1 (Ang-1) and s TNF receptor 1, which was able
to distinguish between the subphenotypes. The model
performed well. We analysed similar outcomes, primarily
90-day mortality and short-term renal recovery, although
the latter is inevitably subject to competing risk of death.
However, some major methodological differences exist.
First, we focused on patients with septic AKI only
whereas in the cohorts of Bhatraju et al., sepsis
incidences range from 46% to 84% throughout the sub-
phenotypes across the cohorts. Second, despite a large
cohort of concomitant ICU patients, we were able to in-
clude only 301 patients with septic AKI in this study. Al-
though we had to exclude 53 patients due to inadequate
biomarker data, we consider the included patients to
represent the cohort since their baseline characteristics
were comparable to those excluded. Third, the model by
Bhatraju et al. was investigated in a development cohort
and thereafter validated in separate cohorts, which adds
validity to their model. Fourth, however, instead of pre-
empt restricted time points for biomarkers, Bhatraju
et al. included biomarkers collected at various points
within 24 h of AKI diagnosis, which may vary, and some
were measured at study enrolment (which was, for ex-
ample, 12 h after meeting criteria for inclusion in the
VASST trial [43]). Of note, in our primary model, we
only included data available on ICU admission, as this
approach is most clinically relevant for future imple-
mentation and potential guide for treatment. Finally,
we included 12 markers that reflect either endothelial
dysfunction or inflammation, where a panel of inflam-
matory markers was most prominent, compared to
Bhatraju et al. who included eight biomarkers reflect-
ing similar underlying pathophysiology [36]. In com-
parison, we included 18 of those 29 variables in the
Bhatraju model. Among these were two biomarkers,
namely Ang-2 and interleukin-6, and both showed
comparable associations with the more severe subphe-
notype of septic AKI, although Ang-2 was less dis-
tinctive in our results.

Implications and generalizability
We were able to identify two subphenotypes of septic
AKI that have different clinical outcomes. As our model
is based on variables available on ICU admission only,
we consider our observations important for potential im-
plementation in selecting patients for trials and poten-
tially for future therapeutic options. Our findings need

further external validation in other cohorts but encour-
age for future (prospective) research to combine clinical
and biomarker data in search for ways to decrease het-
erogeneity and aim for precision care [44]. If confirmed,
our findings regarding additional discriminative value
support the use of a biomarker panel including HBP and
neutrophil-derived proteases in critically ill patients with
septic AKI. Notably, the classification of the two distinct
subphenotypes remained stable using 24-h clinical data
increasing its clinical potential on ICU admission. More-
over, future studies could perform similar analyses in
septic patients in general to assess whether a combin-
ation of biomarkers could aid in identifying patients at
increased risk of adverse outcomes.

Limitations
There are some important limitations to consider. First,
there are multiple potential ways of classifying patients
through unsupervised learning [45]. Even in the context
of LCA, classification is dependent on the choice of
class-defining variables, number of classes, and model
parameters. Although we selected variables based on
current literature and clinical expertise, classifying pa-
tients using some other combination of clinical data,
biomarkers, and other types of data could lead to a dif-
ferent classification. Also, our sample size was somewhat
limited for unsupervised learning. However, we miti-
gated this problem by first defining the final LCA model
without examining the outcomes and examined associa-
tions between class membership and outcomes only
after the final model was specified, thus avoiding overfit-
ting our classification to the outcomes. Due to sample
size limitations, we did not attempt to internally validate
the results on a held-out dataset. Moreover, similar ana-
lyses on larger samples might end up at more than two
distinct classes. Nonetheless, the lack of validation is an
important limitation to our study. Second, we defined
our population of patients with AKI by selecting those
that had AKI within the first 48 h of admission. Al-
though more than half had AKI during the first day, the
definition of AKI still has a delay as opposed to the ac-
tual renal injury and we, therefore, consider that it did
not influence our result as confirmed by the 24-h model.
Moreover, we have previously shown that the majority
of patients develop AKI within the first 2 days. We sus-
pect that biomarkers measured on ICU admission would
not be associated with AKI occurring later. Thus, we be-
lieve that the results are representative. Additionally, the
outcome renal recovery was determined on day 5, while
7 days would be the optimal follow-up period. However,
day 5 was the last observation day within this study.
Third, this was a post hoc analysis of prospectively gath-
ered clinical and laboratory data—all laboratory mea-
surements were not available for all patients but were
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multiply imputed. Thus, to assess the usefulness of the
subphenotypes, they would ultimately have to be vali-
dated in a prospective setting. Moreover, our sample size
limited the number of classes that can be reliably stud-
ied. In a larger sample, it could be possible to determine
more than two classes and assess their association with
the outcomes. Yet, a previous study using a similar
methodology with a larger sample size ended up with
two classes as well [36]. However, we focused on septic
AKI due to possible different pathophysiological mecha-
nisms underlying different types of AKI. Fourth, sepsis
was defined according to the definition by the American
College of Chest Physicians/Society of Critical Care
Medicine (ACCP/SCCM) [34]. This was, at the time of
patient inclusion for the FINNAKI study, the used defin-
ition. Using the sepsis-3 definition was not possible
given the data. Similarly, at the time, colloids were still
regularly administered. It is important to note that
prominent changes in process of care or definitions of
disease over time may impact the clinical outcomes of
sub-phenotypes. Finally, as this was an observational
study with usual care, causal inferences regarding any
suggested treatments cannot be drawn. Ultimately the
goal will be to prospectively evaluate how different phe-
notypes respond to different types of treatment in ran-
domized clinical trials stratified according to these or
other detected subphenotypes of AKI.

Conclusions
In this post hoc analysis using data from a prospective
observational study, we were able to identify two sub-
phenotypes of septic AKI with statistically significantly
different 90-day mortality and rate of short-term renal
recovery. The subphenotypes were primarily classified
using variables on admission only but were robust to a
sensitivity analysis using clinical variables of the first 24
h. These detected subphenotypes warrant prospective
external validation.
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