Sepsis-induced acute kidney injury
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Purpose of review

Sepsis is a common and frequently fatal condition in which mortality has been consistently linked to
increasing organ dysfunction. For example, acute kidney injury (AKI) occurs in 40-50% of septic patients
and increases mortality six to eightfold. However, the mechanisms by which sepsis causes organ

dysfunction are not well understood and hence current therapy remains reactive and nonspecific.

Recent findings

Recent studies have challenged the previous notion that organ dysfunction is solely secondary to
hypoperfusion, by showing, for example, that AKl occurs in the setting of normal or increased renal blood
flow; and that it is characterized not by acute tubular necrosis or apoptosis, but rather by heterogeneous
areas of colocalized sluggish peritubular blood flow and tubular epithelial cell oxidative stress. Evidence
has also shown that microvascular dysfunction, inflammation, and the metabolic response to inflammatory
injury are fundamental pathophysiologic mechanisms that may explain the development of sepsis-induced

AKI.

Summary

The implications of these findings are significant because in the context of decades of negative clinical
trials in the field, the recognition that other mechanisms are at play opens the possibility to better
understand the processes of injury and repair, and provides an invaluable opportunity to design

mechanism-targeted therapeutic interventions.
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INTRODUCTION

Sepsis is the most common cause of acute kidney
injury (AKI) in critically ill patients [1™"], and sepsis
plays a role in 40-50% of cases [2]. Importantly,
the development of AKI in the setting of sepsis
increases the risk of in-hospital death six to
eight-fold [2,3], and among survivors, the risk of
progression to chronic kidney disease [4]. Despite
this, the mechanisms by which sepsis causes AKI
are incompletely understood, and hence current
therapy remains reactive and nonspecific. An
increasing body of evidence suggests that at least
in a proportion of patients, AKI can occur in the
absence of overt signs of hypoperfusion, thus
suggesting that other mechanisms may be at play.
Langenberg et al. [S] showed that AKI developed in
septic animals despite normal or increased renal
blood flow (RBF). Prowle et al. [6] demonstrated
that decreased RBF was not a universal finding even
in patients with well established sepsis-induced
AKI, and Murugan et al. [7] found that a quarter
of patients with nonsevere pneumonia, who were
never admitted to an ICU and never had hypoten-
sion, still developed AKI.
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Recent studies in septic animals and postmor-
tem observations in septic humans have demon-
strated that sepsis-induced AKI is characterized by a
strikingly bland histology with focal areas of tub-
ular injury, but minimal cell death [8,9], suggesting
that acute tubular necrosis (ATN) does not explain
this phenotype. A consistent observation regard-
less of species, disease stage, severity, or organ
examined, appears to be the presence of three
distinct alterations: diffuse microcirculatory flow
abnormalities [10], inflammation [11,12], and cel-
lular bioenergetic responses to injury [9,13]. The
study and understanding of these three domains
may provide a roadmap to unravel the mechanisms
by which sepsis causes AKI and perhaps organ
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KEY POINTS

e Sepsis is the most common cause of AKI, and
represents a major health burden because it increases
morbidity significantly, predisposes to chronic kidney
disease, and increases mortality six to eightfold.

e Sepsisinduced AKI cannot be fully explained by
hypoperfusion and it is not equivalent to ATN, and thus
generic treatment such as antibiotics and
macrohemodynamic resuscitation are only
partially effective.

e Microvascular dysfunction, inflammation, and the TEC
response to injury framed by metabolic reprograming
are important interacting mechanisms that help explain
the clinical phenotype of sepsis-induced AKI.

e The exploration of these mechanisms may yield vital
information to understand how sepsis induces organ
dysfunction, and thus, to design mechanism-targeted
therapeutic strategies.

injury in general and may facilitate the develop-
ment of more targeted therapies. This review aims
to provide the reader with a discussion of the
evidence behind these mechanisms, and a proposal
for the integration of such mechanisms in the
framework of the clinical phenotype of sepsis-
induced AKI.

NOVEL CONCEPTS IN THE
PATHOPHYSIOLOGY OF SEPSIS-INDUCED
ACUTE KIDNEY INJURY

Recent evidence suggests that the origin of most
cases of AKI is multifaceted and that several, con-
current mechanisms may be at play. These mech-
anisms include inflammation, profound,
heterogeneous distortion of peritubular and glo-
merular microvascular flow, and the tubular epi-
thelial cell (TEC) metabolic response to injury.
Given that cell death fails to fully explain the pro-
found functional alterations (because apoptosis or
necrosis occur in less than 5% of all TECs), early
sepsis-induced AKI may be the clinical and bio-
chemical manifestation of the survival response
strategy tubular cells trigger in this context. Evi-
dence from animal studies suggests that such
response may be adaptive, and that metabolic
reprogramming is crucial to engage the machinery
that will not only safeguard the cell from energy
imbalance by downregulating energy consumption
but also will determine the characteristics of the
response and the repair phenotype once inflam-
mation has abated.
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The renal microcirculation during sepsis-
induced acute kidney injury

Sepsis causes profound alterations in microvascular
blood flow [10,14] characterized by an increase in
the heterogeneity of regional blood flow distri-
bution and an increase in capillaries with deficient
blood flow (i.e., intermittent or stopped flow)
[10,15]. The renal microcirculation is disturbed in
a similar fashion during sepsis-induced AKI
[12,16,17], even with normal or increased global
organ RBF [18]. Multiple mechanisms seem to frame
this characteristic microcirculatory derangement,
including endothelial dysfunction, impaired red
blood cell deformability, damage and shedding of
the glycocalyx layer, increased leukocyte activation,
adhesion and recruitment, platelet adhesion, and
activation of the coagulation cascade with fibrin
deposition [15,19] (Fig. 1).

Importantly, these alterations in microcircula-
tory flow and endothelial function are thought to
contribute directly to the development of organ
dysfunction through multiple mechanisms. Retro-
grade endothelial communication, central to main-
tain coupling of microvascular flow to tissue
metabolic demand (i.e., autoregulation) and to
regulate vascular tone is lost during sepsis [20,21],
suggesting an increase in the risk of shunting and
development of areas of hypoperfusion [22,23].
Endothelial dysfunction is associated with altered
barrier function, with consequent increased vascu-
lar permeability and worsening interstitial edema
[24,25]. In this context, edema represents a risk for
local oxygen delivery because it may increase the
diffusion distance of oxygen from the capillary to
the corresponding target tissue [26], and because it
increases venous output pressures (this is especially
important in the kidney as it is an encapsulated
organ) [27-29].

Nitric oxide has also been shown to play an
important role in the pathophysiology of AKI, as
itsnonselective inhibition can restore microvascular
flow and preserve renal function [16]. As described
previously [30"], despite overall increased nitric
oxide production during sepsis [31], the heterogen-
eity of expression of inducible nitric oxide synthase
[31] results in the creation of areas devoid of nitric
oxide and vasodilatatory capacity, and thus at risk of
shunting and hypoxia [32]. Sepsis also results in an
inducible nitric oxide synthase-dependent decrease
in endothelial-derived nitric oxide synthase
activity, which also alters microvascular flow
homeostasis [33,34]. Along with inflammation
and oxidative stress, uncoupling of endothelial-
derived nitric oxide synthase [35] results in loss of
regulatory and defense mechanisms like direct

Volume 22 o Number 00 o Month 2016

Copyright © 2016 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.


iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight


Sepsis-induced acute kidney injury Gdmez and Kellum

e s

Selectins 7 DAMPS - cytokines
Integrins Leukocyte
' ICAM/VCAM-1 Activated leukocyte

Peritubular i ivati
il Endorg;;ﬁ:;iitgf“on/ Altered endothelial cell—
capillary cell communication
\ el e R —— O, X &S‘X/
do\“e\\a AR g ottnction L NO oNoOO- Tissue factor ‘a_PC "e‘

(2 Y\ | %4 - v : _ S A
. \ . Oxidative stress \4 \/ NS
DAMPS - cytokines - Coagulation cascade //\\5‘-‘

. Adhesion activation '
© o ollng T T lNO g Ry Platelets/ \tered
s ) ~ N 1 4 H,O Al scular flow
3 s ~y Transmigration : 2 microva
59 o JeNOos A
= B )
> S - =

Endothelial leak
Endothelial activation/ and edema

dysfunction

FIGURE 1. The figure summarizes the mechanisms that are thought to participate in the development of microvascular
dysfunction. Damage-associated molecular patterns and pathogen-associated molecular patterns resulting from invading
pathogens and the subsequent immune response activate leukocytes and endothelial cells. Activation of, and injury to
endothelial cells directly or through oxidative stress, induces alterations in protective mechanisms (see text). In addition,
damaged or activated endothelial cells undergo shedding of their glycocalyx which exposes adhesion molecules fo circulating
leukocytes and platelets, promoting adhesion of both, and rolling and transmigration of leukocytes; alters the barrier function
of the capillary, resulting in capillary leak and formation of edema; alters sensing of shear stress forces which are necessary to
regulate tone and couple blood flow to changing circumstances; and causes profound alterations in blood flow distribution.
DAMPs, damage-associated molecular patterns; eNOS, endothelial-derived nitric oxide synthase; iNOS, inducible nitric oxide
synthase; NO, nitric oxide. Adapted with permission from [19].

vasodilatation, inhibition of platelet, and leukocyte
aggregation and preservation of the glycocalyx. The
glycocalyx is a layer of organized glycosaminogly-
can branches that protrudes from the surface of the
endothelial cell membrane into the capillary lumen,
which fulfills important biomechanical functions
[36]. Damage and loss of the glycocalyx layer is
thought to result in altered red blood cell flow,
capillary leak, and exposure of endothelial adhesion
molecules, which leads to increased adhesion of
platelets and leukocytes.

Sluggish peritubular flow may also result in
amplification of the inflammatory signal because
prolonged transit of activated leukocytes may trans-
late into a greater time of exposure of neighboring
endothelial and epithelial cells to damage and
pathogen-associated molecular patterns [37] (Fig. 2).

As part of the specialized renal microcirculatory
network, glomerular dynamics are also altered
during sepsis, resulting in the characteristic decline
in glomerular filtration rate (GFR) in the setting of
sustained RBF. It is important to preface the discus-
sion on intraglomerular alterations that will follow,
by noting the effects of blood flow distribution in
the setting of microvascular dysfunction during
sepsis. Increased heterogeneity of blood flow results
in heterogeneous distribution with some nephrons
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receiving low flow, whereas other nephrons receive
hyperemic flow, while recruitment of alternative
pathways (i.e., like Ludwig’s artery from efferent
to afferent arterioles) [39,40] can bypass (shunt)
the glomerulus altogether. This explains at least in
part how GER can drop (as a result of the effect of the
sum of nephrons with low flow and shunted blood
through alternative pathways) while global RBE into
the kidney is maintained. The decline in GFR is
further explained by the intraglomerular alterations
characteristic of sepsis. Because GFR depends on the
generation of sufficient net filtration pressure
within the glomerular capillary, and net filtration
pressure depends on the balance of forces favoring
(glomerular capillary hydrostatic pressure — Pc, and
glomerular capillary oncotic pressure — wc) and
opposing (hydrostatic pressure in Bowman's space
— Pg,) the exit of fluid into Bowman'’s capsule, the
drop in GFR during sepsis can only be explained by
three possible events: a decline in mean arterial
pressure (which drives glomerular capillary hydro-
static pressure), vasoconstriction of the afferent arte-
riole, and predominant vasodilatation of the
efferent arteriole [40]. Vasodilatation of the efferent
arteriole has been shown to occur during sepsis, and
has been postulated to be potentially protective
because a decline in GFR will result in less exposure
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FIGURE 2. The figure represents a potential model to explain how the interactions between sepsisiinduced microvascular
dysfunction, inflammation and the metabolic response from TECs interact. It is still unknown if these are the only interactions, if
the directions of the interactions are correct, and what is the sequence of events that spins this injury-response cycle info
reverberation. Here, the response of the TEC to injury is governed by metabolic reprogramming. Through this, the TEC is able
to optimize energy production and prioritize energy expenditure, while supporting the necessary supply of carbon, nitrogen
and other components for the synthesis of proteins and structural components necessary to mount an innate immune response.
This may be achieved early on by activating a series of master regulators of cellular metabolism that ultimately are capable of
switching between aerobic glycolysis and OXPHOS, and engaging other processes necessary for the survival of the cell such
as autophagy (mitophagy) and biogenesis. In addition, cell cycle arrest may be a complementary important protective strategy
to avoid the overtaxing energy expenditure and the risk of replicating damaged DNA during mitosis, particularly in the
context of scarce energy resources. AKl, acute kidney injury; DAMPs, damage-associated molecular patterns; OXPHOS,
oxidative phosphorylation; TEC, tubular epithelial cell. Bottom panel is adapted with permission from [37], and cell cycle

panel is adapted with permission from [38%].

to filtered damage and pathogen-associated molecu-
lar patterns and in decreased energy utilization
because less ion reabsorption is needed with less
tubular flow. Indeed, sepsis-induced tubular injury
has been associated with a decrease in tubular reab-
sorption of sodium [41]. Furthermore, increased
delivery of NaCl to the macula densa triggers the
vasoconstriction of the afferent arteriole by a mech-

anism known as tubuloglomerular feedback [42],
thus decreasing GER further.

The (adaptive) responses of tubular epithelial
cells to inflammation

Despite multiple triggers for apoptosis occurring

during sepsis, significant necrosis and apoptosis
do not occur in the kidney during sepsis [8,9,43].
This finding suggests that during the acute phase,
regardless of the consequences at the organ level,
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the cellular response is successful at preventing
death. This denotes a likely underlying adaptive

mechanism [9,37,44]. In addition, the recognition
that TECs are actually equipped with machinery to
recognize the inflammatory signal, including Toll-
like receptors (TLRs; i.e., TLR2 and 4), supports the
hypothesis that their response may be part of a well

coordinated effort to maintain cellular integrity

even at the risk of short-term organ dysfunction
[37]. Accordingly, it is reasonable to think that

the TEC response to injury may be characterized
at least in part by processes that limit pro-apoptotic
triggers, by reprogramming metabolism to optimize
and prioritize energy consumption, and maintain
energy homeostasis; maintaining of cellular organ-
elle function through quality control processes (gen-
eral autophagy and mitophagy); and limiting cell
cycling and DNA replication (high-energy requiring
processes).
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Metabolic reprogramming and
reprioritization of energy consumption

Analogous to the evolutionarily conserved defense
response to hypoxia, where nonvital functions are
limited to avoid overtaxing energy expenditure [45],
administration of lipopolysaccharide (LPS) has been
shown to downregulate renal TECs ion transporters
[46], which account for more than 70% of ATP
consumption [47]. Good et al. [48] have shown in
an LPS-induced rodent sepsis model that LPS inhib-
its NHE1 (Na*/H" exchanger 1), and Hsiao et al. [41]
have shown that sodium transport (tubular sodium
reabsorption) is decreased as early as 9 h after induc-
tion of sepsis by cecal ligation and puncture (CLP).
These data suggest that inflammation is associated
with downregulation of ion transport although the
mechanisms leading to this are still incompletely
understood.

Prioritization of energy expenditure during sep-
sis seems to be part of a more complex cellular
metabolic reprogramming strategy, which is key
to the survival of the cell in the acute phases of
the septic syndrome, and may determine the repair
phenotype during the convalescent phase. A phasic
switch between glycolysis and oxidative phos-
phorylation (OXPHOS), similar to that seen in can-
cer cells (i.e., Warburg effect) [49] has been shown to
frame the biochemical phenotype of this metabolic
reprogramming in immune cells during early sepsis.
Yang et al. [50] demonstrated that knockdown or
inhibition of pyruvate kinase isoenzyme 2, an
enzyme required for the Warburg effect to occur
in monocytes during inflammation, improved the
survival of septic rodents. Although the evidence is
significantly less robust in TEC, Waltz et al. [51]
using metabolomics analysis have shown data sup-
porting a potential shift from OXPHOS to aerobic
glycolysis in renal tissue during the acute phases of
murine CLP-induced sepsis. Furthermore, the acti-
vation of master regulators of energy balance that
promote OXPHOS over glycolysis before or after the
induction of sepsis by CLP, protects from AKI in
rodent models [52%,53"] suggesting that metabolic
reprogramming may also be important in the
response of the TECs.

Early and phasic metabolic reprogramming has
also been shown to be a determinant of the repair
phenotype during convalescent phases in surviving
animals, and potentially humans. Han et al. [547]
have demonstrated that restoring deficient fatty
acid oxidation (FAO) in animals lacking the liver
kinase B1, an upstream FAO and AMPK regulator
using fenofibrate [a peroxisome proliferator-acti-
vated receptor (PPAR) a and the PPAR-y coactiva-
tor-la agonist, which is a key promoter of FAO],
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rescued animals from renal tissue fibrosis. In agree-
ment with these findings, Kang et al. [55™] have
shown a decreased tissue expression of FAO pro-
moters and enzymes in animals and humans
undergoing renal fibrosis, and have recapitulated
this phenotype by deliberately inhibiting FAO
metabolism.

Taken together this evidence suggests that
during sepsis, the response of the TEC may be
characterized by an organized reprogramming of
metabolism, that promotes hierarchical down-regu-
lation of major energy sinks like ion transport,
whereas only fueling processes necessary to cell
survival (i.e., maintenance of membrane potential)
[56], and that adjusts energy and substrate acqui-
sition between glycolysis and OXPHOS to adapt to
changing environmental conditions (Fig. 2). This
evidence also suggests that reprogramming of
metabolism as a defense strategy goes beyond the
acute phases of the septic syndrome, defining the
repair phenotype, and thus influencing the risk of
progression to chronic organ dysfunction.

Mitochondrial quality control processes:
mitophagy and biogenesis

Mitochondria are common targets of inflammatory
injury, which leads to dysfunction, increased pro-

duction of reactive oxygen species (ROS) and thus
harm to the host cell. However, the cell can defend
from injured mitochondria by triggering quality
control processes that attempt to repair dysfunc-
tional mitochondria (fusion and fission), digest
and eliminate those beyond the possibility of repair
(a specialized form of autophagy called mitophagy)
[57,58], and reconstitute the pool of healthy mito-
chondria (biogenesis). Importantly, mitochondrial
function and quality control processes are inti-
mately linked to the metabolic changes triggered
by inflammation during sepsis because OXPHOS
occurs within mitochondria and depends on a func-
tional mitochondrial pool, and also because many
of the upstream regulators of metabolism directly
control mitochondrial dynamics.

During sepsis, TLR-mediated inflammation [59],
oxidative stress [60,61], and alterations in the elec-
tron transport chain that uncouple respiration are
potent triggers of mitophagy and biogenesis [58]. In
the kidney, mitophagy is activated in the kidney as
early as 3h after CLP-induced sepsis [41]. Impor-
tantly, insufficient activation of mitophagy has
been associated with worse outcome in critically
ill patients, and it has been postulated to contribute
to cell and organ dysfunction [62]. Stimulation of
mitophagy has been shown to be effective at pro-
tecting cells [41] and organ function [62] in the
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setting of sepsis [63], whereas decreased autophagy
has been associated with increased markers of AKI
[41]. In addition to common triggers, recent evi-
dence has suggested that mitophagy and biogenesis
are coupled through several mechanisms, including
redox pathways and TLR9-dependent mechanisms
[64], and that biogenesis also fulfills a role in the
defense of the TEC to inflammation. Tran et al. [65]
demonstrated that animals lacking peroxisome pro-
liferator-activated receptor gamma coactivator 1-
alpha, which regulates the activation of biogenesis,
were more susceptible to developing AKI after
exposure to endotoxin than wild type animals. Acti-
vation of mitochondrial biogenesis is a natural
response of TECs during sepsis, as demonstrated
by Bartz et al. [66"] in a murine model of Staph-
ylococcus aureus-infected peritoneal clot. MacGarvey
et al. [67] further demonstrated that exogenous
activation of mitochondrial biogenesis using
inhaled carbon monoxide at 250 ppm significantly
increased survival, suggesting biogenesis as a poten-
tial therapeutic target. As a protective response,
mitophagy and biogenesis offer several advantages,
namely, removal of dysfunctional mitochondria
and thus decreased ROS/reactive nitrogen species
production, maintenance, and renewal of the mito-
chondrial pool with energy conservation, limiting
oxidative stress damage, and importantly, intercept-
ing proapoptotic signals at the mitochondrial level
impeding triggering of apoptosis [58,68-71].

Cell cycle arrest

There is a growing body of evidence indicating that
mitochondria are intimately involved in the regula-
tion of the cell cycle [58], and that cell cycle arrest
may be an important cellular defense strategy in the
context of sepsis [37]. Yang et al. [72] showed in a
rodent model of CLP-induced sepsis that G1-S cell
cycle arrest was associated with kidney injury and
that recovery of renal function paralleled cell cycle
progression 48 h after CLP. Although in the context
of metabolic downregulation cell cycle arrest may
provide protection in the early stages by limiting the
cost of replication and the consequences of duplicat-
ing damaged DNA, cell cycle progression and cell
replication may be required for adequate repair at
later stages and thus, persistence in arrest may prove
deleterious. For this reason, clarifying the impact of
timing of cell cycle arrest or progression on cell injury
and repair is crucial to understand a key mechanism
of cell protection, and fundamental to translate this
mechanism into targeted therapeutic interventions.
Importantly, this mechanism may have direct
clinical relevance because recently, the tissue inhibi-

tor of metalloproteinases 2 and insulin-like growth

6 WWWw.co-criticalcare.com

factor-binding protein 7, two markers involved in
G1-S cycle arrest, have been identified as the most

sensitive and specific markers to predict risk of devel-
opment of AKI in critically ill patients [73%,74,75].

CONCLUSION

The recognition that in the case of the kidney,
sepsis-induced AKI cannot be entirely explained
by the traditional concept of ATN, and that sepsis
does not cause overt apoptosis and necrosis in fail-
ing organs, has challenged the notion that ischemia
is the only mechanism explaining organ dysfunc-
tion. Importantly, it has also prompted many to
suggest that the response to the septic environment
may, early on, be adaptive in nature. In this review,
we have focused on three fundamental mechanisms
that may interact in a harm-response cycle (Fig. 2) to
explain the pathophysiology of sepsis-induced AKI:
microvascular dysfunction, inflammation, and the
cellular response to the inflammatory insult. We
have described evidence that demonstrates the fun-
damental role metabolic reprogramming has as a
driver of the adaptive response and as a protective
mechanism that not only limits cell injury in the
acute phase but also that transcends to convales-
cence by defining the repair phenotype. Further
work is warranted to better understand the role,
timing and reach of these multiple mechanisms
and the relationships between them (i.e., what
comes first?) in the pathogenesis of sepsis-induced
AKI, and if this can be translated into novel diag-
nostic and therapeutic interventions to improve
outcome in this patient population.
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