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Abstract Acute kidney injury (AKI) is defined as an abrupt

decrease in kidney function, with the most severe form

requiring some method of renal replacement therapy

(RRT). The use of RRT is required in 5-10% of critically

ill patients who develop severe AKI. Renal replacement

therapy can be provided as either intermittent hemodialysis

or one of the various modes of continuous renal

replacement therapy (CRRT), with CRRT potentially

conferring an advantage with respect to renal recovery

and dialysis independence. There is no difference in

mortality when comparing low (\ 25 mL�kg-1�hr-1) vs

high ([ 40 mL�kg-1�hr-1) RRT dosing. Continuous renal

replacement therapy may be run in different modes of

increasing complexity depending on a given patient’s

clinical needs. Regional citrate anticoagulation is

recommended as the therapy of choice for the majority of

critically ill patients requiring CRRT.

Résumé L’insuffisance rénale aiguë (IRA) se définit par

une réduction subite de la fonction rénale, et sa forme la

plus grave nécessite un type de traitement substitutif. Le

recours à un traitement substitutif de l’insuffisance rénale

est nécessaire chez 5-10 % des patients critiques qui

souffrent d’une IRA grave. Le traitement substitutif de

l’insuffisance rénale peut prendre la forme d’une

hémodialyse intermittente ou de l’un des divers modes de

traitement substitutif de l’insuffisance rénale en continu, ce

second type de traitement conférant potentiellement un

avantage en matière de récupération de la fonction rénale

et d’indépendance de la dialyse. Aucune différence de

mortalité n’a été observée en comparant un traitement

substitutif de l’insuffisance rénale à faible dose

d’ultrafiltration (\ 25 mL�kg-1�h-1) vs à dose élevée ([
40 mL�kg-1�h-1). Le traitement substitutif de l’insuffisance

rénale en continu peut être réalisé selon différents modes

de complexité croissante en fonction des besoins cliniques

d’un patient donné. Une anticoagulation régionale au

citrate est recommandée comme traitement de choix pour

la majorité des patients critiques nécessitant un traitement

substitutif de l’insuffisance rénale en continu.

This narrative review is intended for physicians involved in

the care of critically ill patients who may require renal

replacement therapy (RRT). It is intended for the clinician

who may not have formal training in critical care or

nephrology, nor advanced knowledge of modes of dialysis.

Although the use of intermittent hemodialysis (IHD) is

important for scenarios such as severe hyperkalemia and

certain toxidromes (e.g., acetylsalicylic acid and lithium

overdose), this paper will limit its discussion to continuous

RRT (CRRT) modes. The main areas of focus will be: i) an

epidemiologic review of acute kidney injury (AKI), ii)

timing of RRT, iii) understanding the physical dialysis

circuit, iv) modes of dialysis, v) effluent dosing, and vi)

anticoagulation (and its complications).

Epidemiology

The treatment of critically ill patients is increasingly

complex, particularly as the population ages and age-

related co-morbidities become superimposed on critical

illness. Furthermore, technologic and other pharmacologic
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advances have allowed these complex patients to be

rescued. Indeed, advanced modes of life-support

technology have enabled critical care physicians to

manage diseases in ways unimaginable a generation

ago.1-3 One such mode, RRT, has gained wide

acceptance in supporting patients with isolated AKI, or

as part of multi-organ system failure. Importantly, AKI is

not a disease per se but rather a heterogeneous syndrome

with numerous, often overlapping etiologies. Depending on

the definition used, AKI affects up to 25% of intensive care

unit (ICU) patients and has an associated mortality ranging

between 15% and 60%.4-9

The International Acute Dialysis Quality Initiative

(ADQI) group10 defined AKI as an abrupt decrease in

kidney function, but is not limited to oliguria nor anuria.

The ADQI group emphasizes that AKI is best viewed as a

continuum of renal injury, the most severe of which

requires some form of RRT. Indeed, as a syndrome, it may

include patients with traditionally ‘‘normal’’ renal indices

but functional impairment relative to physiologic

demand.11 While there is broad consensus that more

sensitive and specific biomarkers to diagnose AKI are

needed, changes in serum creatinine and urine output still

form the basis of all diagnostic criteria for AKI.9,10,12,13

The ADQI consensus document on AKI has been

updated,14 and many large international series have

provided a consistent picture—i.e., AKI is associated

with decreased overall survival, and increasing severity

of AKI leads to increased chances of death.15-25 Even mild,

reversible AKI can increase mortality and the need for

long-term dialysis.18,21,23,26-28 Furthermore, AKI increases

the long-term risk of cardiovascular disease and chronic

kidney disease.29-34 Based on these facts, the interest in

identifying and preventing AKI is understandable.35-39

Sepsis-associated AKI deserves special mention since

sepsis is the most important risk factor in determining the

need for RRT.40 Bagshaw et al. reported an AKI incidence

of 42% in their Australian cohort of septic patients.41 A

ten-year retrospective study of AKI in septic patients found

that the use of RRT was steadily increasing in all cohorts,

but mortality was declining.42 Although outpatient dialysis

is traditionally intermittent, ICU studies show that

intermittent and continuous modes can be used

effectively in the ICU population.43,44 Nevertheless, in

North America, Europe, and Australia, continuous modes

predominate.45-47 Despite there being no proven survival

advantage when intermittent hemodialysis is compared

with CRRT in critically ill patients, CRRT appears to

confer an advantage with respect to hemodynamic stability

and better control of fluid balance, renal recovery, and

dialysis independence.43,44,48 A recent meta-analysis

showed that among 26 identified studies,49 CRRT was

associated with higher rates of renal recovery compared

with IHD. Disadvantages of CRRT are limited mobility,

the need for continuous anticoagulation, and significantly

higher costs relative to IHD.50

Timing of RRT

Although AKI is common in critically ill patients, only 5-

10% of patients go on to require some form of RRT.46,51

That said, the use of RRT is rapidly increasing,33,52,53

likely because of the aging population and growing

complexity of patients admitted to the ICU. Sparse

evidence exists to direct the clinician as to when to

initiate RRT.54 Two recent trials have specifically tried to

address the initiation time of RRT in critically ill patients:

the ELAIN (Effect of early vs delayed initiation of renal

replacement therapy) trial55 and the AKIKI (Initiation

strategies for renal replacement therapy in the intensive

care unit) trial.56 The ELAIN study was a single-centre

randomized trial of 231 predominately post-surgical

patients. Early RRT was defined as initialization within

eight hours of diagnosis of KIDGO (Kidney disease:

Improving Global Outcomes)9 stage 2; delayed RRT was

defined as initiation of RRT within 12 hr of stage 3 AKI;

the median difference in actual time was 21 hr. Early RRT

resulted in an impressive decrease in mortality compared

with delayed RRT (39.3% vs 53.6%, respectively; P =

0.03) and greater renal recovery (53.6% vs 38.7%,

respectively; P = 0.02).

The AKIKI study was a multicentre trial with 620 mixed

medical/surgical patients with a different definition of early

(less than six hours of KDIGO [Kidney Disease: Improving

Global Outcomes] stage 3) vs late AKI (traditional criteria

to worsening AKI or complications). The median

difference to RRT initiation was 57 hr. There was no

difference in 60-day mortality in the early compared with

late groups (48.5% vs 49.7%, respectively; P = 0.79).

Perhaps more interesting is the actual RRT utilization,

which was 98% for early RRT compared with 51% for

delayed RRT. In other words, the delayed arm avoided

unnecessary RRT. The resulting inference for a clinician is

intriguing but speculative—i.e., were there many patients

in the early cohort that could have also avoided RRT?

Some authors57,58 have cautioned readers on the

conclusions of these studies. Both studies had limitations

that reduced the confidence in their conclusions, including

implausible treatment effect (both trials were powered

assuming a[15% mortality reduction), low fragility index

(small number of patients required to convert a trial from

being statistically significant to not significant),59 and

ELAIN being a single-centre study. A recent study, with

none of these short-comings, showed no difference in
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mortality when comparing early initiation with delayed

initiation of RRT in septic patients.60

With these results, it is still difficult to provide a

recommendation on when to initiate RRT. Nevertheless,

the clinician can be reassured that starting RRT earlier does

not increase mortality, but at the cost of an increased

number of unnecessary treatments. The ongoing STAART-

AKI (ClinicalTrials.gov identifier: NCT02568722) trial

should help inform physicians when to initiate renal

replacement therapy

The physical aspects of RRT

Dedicated vascular access is needed for RRT and can be

obtained with a purpose-designed dual lumen catheter

placed in a central vein using the Seldinger technique. The

veins used in order of preference, as per KDIGO

guidelines, are the internal jugular, femoral, or

subclavian.9 The subclavian vein is the third choice due

to a higher risk of thrombosis and stenosis.61 A non-

tunneled catheter with its tip placed in the superior vena

cava is favoured for immediate, short-term use. Chronic

use favours tunneled catheters to decrease the risk of

infection; the distal tip is usually placed in the right atrium.

The catheter lumens are labelled and colour coded as the

‘‘arterial’’ (red) blood in-flow line, which is the proximal/

intake port, and the ‘‘venous’’ (blue) blood out-flow line for

the distal/discharge port.62

Interdialytic lock solution is used to decrease the risk of

catheter thrombosis and the risk of infection. Heparin

(1,000 U�mL-1 to 10,000 U�mL-1), citrate (4-47%), and

tissue plasminogen activator have all been used. Heparin

and citrate are equivalent in maintaining patency.63 The

effectiveness of citrate and antimicrobial lock solutions in

decreasing the rate of catheter-related infections remains

unclear and is the subject of ongoing investigation.64 In

addition to the risk of bleeding from an inadvertent bolus of

the locking solution with catheter access, all catheters will

leak locking solution for the first 30 min with some

systemic effects occurring for up to four hours. Heparin

carries a further risk of heparin-induced thrombocytopenia,

and citrate risks a metallic taste and perioral and/or digital

paresthesia.65

Standard CRRT mechanical units have an

extracorporeal circuit with a warmer hemofilter and

dedicated pump for blood. They may also have additional

pumps that are used for other fluids that vary depending on

the therapy mode, such as pumps for replacement fluid and

dialysate. Incorporated scales are used for gravimetric fluid

balancing.66

Filters are composed of approximately 10,000 hollow

fibres with diameters of approximately 200 lm and a

membrane thickness of 20-50 lm.67 The membrane

material can be made from either cellulose-derived or

synthetic polymers. Optimal biocompatibility is important

so as to prevent damage to red blood cells and contact

activation of neutrophils and platelets, either directly or

through the activation of the coagulation cascade and the

complement system.68 For example, the AN-69 synthetic

polyacrolonitrile membrane can cause an anaphylactoid

reaction due to bradykinin accumulation in patients

receiving angiotensin converting enzyme inhibitors.69

Membranes vary by the number and size of pores, which

influences permeability and the movement of water for a

given transmembrane pressure, referred to as flux. They

also vary in the degree to which larger solutes, such as

inflammatory mediators, are adsorbed. Filters are available

with different surface areas and volumes. A filter with an

extracorporeal volume of[200 mL becomes important in

instances where the filter clots before the blood can be

returned to the patient.

Renal replacement modalities

Water and solutes pass from the blood through the

semipermeable membrane during dialysis mainly by

ultrafiltration, convection, and diffusion.

Ultrafiltration and convection involve movement of

water across the membrane due to a pressure gradient.

Ultrafiltration refers to the movement of plasma water

while convection is the movement of solutes within the

plasma water. Convection is sometimes called ‘‘solvent

drag’’ (Fig. 1). Diffusion is the movement of solute driven

by the concentration gradient across a semipermeable

membrane. In dialysis, it is the gradient between the

patient’s blood on one side of the filter and the dialysate on

the other.

Running the dialysate counter-current to the blood

increases the removal of small solutes such as urea and

creatinine.70

Continuous RRT may be run in different modes of

increasing complexity depending on a given patient’s

clinical needs.66 A schematic of the different modalities is

shown in Figs 2, 3, 4, 5 and Table 1. The modes differ in

whether the primary driver of solute removal is convection,

diffusion, or both.

Slow continuous ultrafiltration

Slow continuous ultrafiltration (SCUF) is used to remove

plasma water in patients without significant electrolyte or

other acid-base abnormalities. Blood is pumped through

the fibres of the dialysis filter at a pressure higher than that

surrounding the fibres. The hydrostatic pressure gradient
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between the blood compartment of the filter and the filtrate

compartment is the transmembrane pressure, which

determines the rate of fluid removal. Using higher flux

membranes allows for more fluid removal at the same

transmembrane pressure. While SCUF has the advantage of

decreased complexity and nursing workload compared with

other modes, it cannot correct electrolyte or acid-base

abnormalities. While the major effect of SCUF is fluid

removal, some solute clearance occurs because of

convection, but at a much lower efficiency than other

continuous modes described below.

Continuous veno-venous hemofiltration

Continuous veno-venous hemofiltration (CVVH) uses

convection to remove solutes through large volume fluid

ultrafiltration. Convection sweeps solutes along with the

fluid independent of their concentration gradient. The

porosity of the membrane determines which solutes are

removed. Small solute molecules, such as urea, and

middle-sized molecules, such as inflammatory cytokines,

are cleared. With the large volume of fluid removed,

intravascular volume must be maintained using a

replacement fluid. The prescription is based on the

patient’s serum potassium and acid-base balance. For

example, bicarbonate containing fluids are used in the

setting of a metabolic acidosis or normal saline when

significant metabolic alkalosis develops. The replacement

fluid can be infused either before the hemofilter (pre-

dilution) or after the hemofilter (post-dilution). Post-

dilution results in more concentrated blood in the filter

and higher solute clearance. Nevertheless, more

concentrated blood can lead to a shorter filter lifespan.

While pre-dilution means lower solute concentrations and

clearance, this is offset by a higher ultrafiltration rate and

longer filter life. Pre-dilution does require a larger volume

of replacement fluid than post-dilution.

Hemofiltration allows for volume removal as well as

correction of electrolyte and acid-based abnormalities

based on the selection of replacement fluid.

Continuous veno-venous hemodialysis

Continuous veno-venous hemodialysis (CVVHD) uses

counter-current dialysate flow to remove small solutes by

diffusion according to their concentration gradients. Solute

clearance can be increased with higher dialysate or blood

flow rates.

Dialysates contain physiologic concentrations of

sodium, chloride, magnesium, and glucose. Serum

potassium can vary significantly in critical illness

depending on factors such as pH, insulin and

sympathomimetic drugs, gastrointestinal losses, residual

or recovering renal function, and high hemofiltration rates.

The potassium concentration of the dialysate is prescribed

separately usually ranging from 0 to 5 mmol�L-1. It is not

unusual for the potassium prescription to change

frequently. Dialysate is buffered with either bicarbonate

or a bicarbonate precursor such as lactate, citrate, or

acetate. The use of bicarbonate precursors requires the

patient to be able to metabolize them, which can be

impaired in liver failure or shock states. Importantly, in

CVVHD, there is minimal ultrafiltration and therefore no

significant fluid removal.

Continuous veno-venous hemodiafiltration

Continuous veno-venous hemodiafiltration combines

hemodialysis (diffusive dialysis) and hemofiltration

(convective dialysis). The ultrafiltrate can be replaced by

either replacement fluid as in hemofiltration and the

counter-current/co-current dialysate flow.

The choice of CRRT mode is determined by the

patient’s volume status, serum urea, and potassium, as

well as acid-base balance. Slow continuous ultrafiltration

could be considered in conditions with isolated volume

overload, such as heart or liver failure, malnutrition,

capillary leak syndromes, or in patients who have become

resistant to diuretics. Isolated electrolyte abnormalities can

be managed with hemodialysis (CVVHD). Nevertheless,

most critically ill patients receive large amounts of

intravenous fluids as part of their resuscitation and

ongoing prescriptions and nutrition. This means that

those with kidney injuries usually require ongoing

management with fluids and electrolytes. This can be

accomplished using either hemofiltration (CVVH) using

appropriate replacement fluid or with hemodiafiltration

(CVVHDF) depending on the medical centre’s preference.

Effluent dosing

Similar to any drug, a physician prescribes the RRT ‘‘dose’’

based on a wide variety of pharmacokinetic and

pharmacodynamic principles. Among many things, the

clinician must take into account factors such as age, body

weight, mode of elimination, and co-administered drugs.

Dosing of RRT is traditionally defined as the effluent flow

in mL�kg-1�hr-1. In particular, the dose intensity has been

of great interest and studies have compared low (\ 25

mL�kg-1�hr-1) vs high ([ 40 mL�kg-1�hr-1)71,72 effluent

rates. The RENAL (Intensity of continuous renal

replacement therapy in critically ill patients) study

provided the best evidence that there are no differences

in patients treated with these two strategies.73 In that study,

at 90 days after randomization, death occurred in 44.7% of
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patients for both higher and lower intensity groups (odds

ratio, 1.00; 95% confidence interval, 0.81 to 1.23; P =

0.99). Furthermore, there were no significant differences

between the groups in any of the secondary or tertiary

outcomes. Fig. 1 outlines the expert consensus opinion to

guide the clinician for best practice when dosing RRT.74

To ensure outcomes similar to those seen in the ATN and

RENAL trials, this figure shows the recommendation that

the clinician provide an average daily effluent dosing

between 20 and 25 mL�kg-1�hr-1. No evidence to date

suggests incremental benefit to higher effluent dosing.

A common problem in dosing studies is that the actual

intended delivery dose often falls short of the prescribed

dose.73,75 Claure-Del Granado et al. addressed this problem

Fig. 1 A) Convection; B) Diffusion. Reproduced with permission from: Tolwani A. Continuous renal replacement therapy for acute kidney

injury. N Engl J Med 2012; 367: 2505-14

Fig. 2 Slow continuous

ultrafiltration
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by physically measuring the urea clearance adjusting for

machine down-time and pre-dilution.76 As mentioned

earlier, pre-dilution is when the replacement fluid is

mixed with the blood (thus lowering hematocrit) prior to

the blood entering the filter. Although this increases filter

life, less efficient clearance occurs vs post-filter

replacement. These authors observed that the actual dose

significantly underestimated the prescribed dose by nearly

25%. Interestingly, the authors observed that the major

factors affecting the treatment time had little to do with

Fig. 5 Continuous veno-

venous hemodiafiltration

Fig. 3 Continuous veno-

venous hemofiltration

Fig. 4 Continuous veno-

venous hemodialysis
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filter clotting, as one might predict with an extracorporeal

circuit that requires anticoagulation. Common interruptions

to delivering RRT were surgical procedures, the decision

when to transition to IHD, and line or machine

malfunction. The authors concluded that to achieve a

prescribed dialysis dose, effluent based dosing should be

increased by 20-25% to account for decreases in treatment

time and reduced filter efficacy during CRRT. The KDIGO

guidelines endorse the recommendation to increase effluent

dosing by 25% to achieve best practice as shown in Fig. 6.9

Anticoagulation

Extracorporeal membrane clotting is a major concern

during RRT. Clot-related membrane dysfunction is

associated with decreased solute clearance, particularly

for middle molecular weight molecules (500 D to 60 kD)

such as B2-microglobulin and light chain proteins.69,75,77,78

Therefore, effective anticoagulation is paramount to

prevent clotting of the circuit and to optimize filter

efficiency. There are two major anticoagulation

strategies: systemic and regional (Table 2).

Systemic anticoagulation

Systemic anticoagulation with unfractionated heparin

(UFH) is low cost, the activated partial thromboplastin

time is easy to monitor, and uses protamine as a reversal

agent; therefore, it is the most widely method used

worldwide.78

The UFH is usually delivered to the patient by a separate

intravenous line. Nevertheless, UFH use is associated with

increased risk of bleeding (particularly in critically ill

patients),79 heparin-induced thrombocytopenia (HIT),80

and potentially deleterious pro-inflammatory effects

because it binds to the lysyl-residue of antithrombin and

accelerates the interaction between thrombin and

antithrombin, thereby inhibiting the anti-inflammatory

action of antithrombin,81 and triggering the release of

inflammatory mediators from endothelial cells.82

Direct thrombin inhibitors such as argatroban are

commonly used as alternative anticoagulants for patients

with HIT. Its use is associated with shorter filter patency

time but fewer bleeding complications.83 Of note, regional

RRT anticoagulation does not provide sufficient

anticoagulation in the presence of HIT, and a

combination of regional and systemic anticoagulation

with a direct thrombin inhibitor is recommended.14

Finally, low molecular weight heparins act by binding

predominantly to factor Xa; this effect is associated with

fewer adverse events than UFH.84 Low molecular weight

heparins are eliminated through the kidneys, which limits

their use in patients requiring RRT. Furthermore,

monitoring the anticoagulant effect requires a close range

of anti-Xa activity. This is an expensive test that is not

widely available and may take up to 24 hr to give results,

which negatively impacts therapeutic decision making.85

There is insufficient evidence to support the use of low

molecular weight heparins during CRRT and as such, it is

not a recommended anticoagulation strategy.9

Fig. 6 Possible relationship between delivered dose of continuous

renal replacement therapy and survival, with results from the ATN

and RENAL trials illustrated

Table 1 Summary comparison of modalities

SCUF CVVH CVVHD CVVHDF

Primary mechanism Ultrafiltration Convection Diffusion Diffusion and convection

Treatment time Continuous Continuous Continuous Continuous

Blood flow rate 100 mL�min-2 50-300 mL�min-1 50-300 mL�min-1 50-300 mL�min-1

Dialysate No No 500-4000 mL�hr-1 500-4000 mL�hr-1

Replacement fluid No 500-4000 mL�hr-1 No 500-4000 mL�hr-1

Anticoagulation Heparin, citrate, none Heparin, citrate, none Heparin, citrate, none Heparin, citrate, none

CVVH = continuous veno-venous hemofiltration; CVVHD = continuous veno-venous hemodialysis; CVVHDF = continuous veno-venous

hemodiafiltration; SCUF = slow continuous ultrafiltration
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Regional anticoagulation

A practical alternative to systemic anticoagulation is

regional extracorporeal citrate anticoagulation (RCA).

Sodium citrate is infused into the proximal limb of the

CRRT circuit where it chelates ionized calcium. The

resulting complex is partially filtered across the CRRT

membrane, which prevents clotting in the CRRT circuit.

Hypocalcemia is prevented through an infusion of calcium

with the blood returning to the patient.86

Demonstrable advantages of RCA include citrate’s short

half-life, longer CRRT filter life spans, and a reduced

occurrence of bleeding.80,87-89 Disadvantages of RCA are

the patient’s inability to metabolize citrate (e.g., liver

failure) within the systemic circulation, the complexity of

citrate protocols, and citrate toxicity.9,90 Relative

contraindications include patients with acute liver

dysfunction or severe cirrhosis.90,91 When administered

through the pre-filter line, citrate chelates calcium ions

producing a soluble complex that is unavailable for

calcium-dependent reactions in the intrinsic and extrinsic

coagulation pathways.92 The target post-filter ionized

calcium (iCa2?) concentration is between 0.26 and 0.35

mmol�L-1.93 It is preferable to use calcium-free dialysate

or replacement fluids to minimize citrate requirements.94

The citrate infusion rate required depends on the

concentration of the citrate solution and the blood flow in

the circuit. Citrate that is not removed by the CRRT circuit

enters the patient’s circulation and is normally metabolized

in the liver, kidney, or skeletal muscle with no

anticoagulant effect on the patient.

Several studies have reported the safety and efficacy of

RCA compared with systemic anticoagulation during the

different modalities of RRT.80,95-97 It is clear that RCA is

associated with longer circuit survival time and reduced

risk of bleeding.98,99 RCA can be recommended as the

therapy of choice for the majority of critically ill patients

requiring CRRT.9

Given that citrate is predominantly metabolized by the

liver, there is a reduced mitochondrial citrate metabolism

in patients with liver failure that results in citrate

accumulation and consequently, secondary hypocalcemia

and metabolic alkalosis.

Measurement of blood or plasma citrate is not readily

available or timely.97,100,101 Thus, the total to ionized

calcium ratio is a practical and specific marker of citrate

accumulation (goal ratio\2.3) and should be calculated at

least every 12 hr.102,103 Clinical signs of citrate toxicity

relative to ionized hypocalcemia include coagulopathy and

cardiac toxicity such as prolonged QTc interval, decreased

contractility, hypotension and cardiac arrest.100

Additionally, secondary to its nature as an ion and acting

as a weak acid in solutions, citrate accumulation may

produce a degree of anion gap metabolic acidosis;

nevertheless, after citrate is metabolized by the liver, an

excess of cations ensues and the result is metabolic

alkalosis. Citrate anticoagulation has metabolic

abnormalities unrelated to its impaired

metabolism.87,91,100 The citrate chelates magnesium and

crosses the CRRT filter, leading to hypomagnesemia. Tri-

sodium citrate solutions are hypertonic due to their high

sodium content. Low sodium replacement and dialysate

solutions are used to prevent a patient developing

hypernatremia.

There are several strategies to avoid citrate

accumulation. These include ensuring that no added

citrate is being used (e.g., with blood products

administration). In addition, the citrate infusion rate can

be decreased by 75% of the dose being used to that point.

This is accompanied by an increase in the blood flow rate

and replacement fluid and dialysate rate by at least 25%. A

third option is to continue titrating the calcium chloride

infusion rate, and lastly, if the ratio increases, the citrate

infusion can be stopped and a non-anticoagulation RRT

modality can be initiated.94 Safe implementation of citrate

requires a well-designed and flexible protocol with

adjustable dosing and monitoring; strict adherence to the

Table 2 Modes of anticoagulation during renal replacement therapy

Mode Characteristics

No anticoagulation No bleeding risk, but increased risk of circuit clotting

UFH Widely available, easy to use, but increased risk of bleeding

LMWH Limited use in patients with acute kidney injury

Thrombin

antagonist

Indicated for patients with HIT

RCA Highest filter patency rates, lower risk of bleeding, but requires rigorous protocols and is associated with potential citrate

toxicity

HIT = heparin-induced thrombocytopenia; LMWH = low molecular weight heparin; RCA = regional extracorporeal citrate anticoagulation; UFH

= unfractionated heparin
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protocol and its algorithm can prevent metabolic

complications. It is feasible and safe to use RCA even in

patients with liver failure.100

Conclusions

Acute kidney injury is a complex and frequent

complication among critically ill patients. When AKI

occurs, RRT is required in about one out of ten patients.

Although there is no mortality difference between IHD and

CRRT, the latter seems to provide better renal recovery and

dialysis independence, and is the therapy of choice in

hemodynamically unstable patients. CRRT can be provided

in different modes of increasing complexity depending on a

given patient’s clinical needs. Systemic anticoagulation

with UFH is the most common strategy worldwide but

RCA is currently the recommended therapy of choice in

patients requiring CRRT.
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