
Introduction
Hyponatraemia and hypernatraemia are frequent in 
patients admitted to the ICU and may even be acquired 
during their stay [1-8]. ! ese patients have a higher 
overall mortality, and even slight changes in plasma [Na+] 
(P-[Na+]) are associated with an increased risk of death 
[3,9].

Case story
A 58-year-old male is admitted somnolent (Glasgow 
Coma Scale = 11) to the emergency department. He has a 
newly discovered tonsil cancer, consumes too much 
alcohol, has arterial hypertension that is being treated 

with losartan/thiazid and is receiving nonsteroidal anti-
infl ammatory drugs (NSAIDs). He is spontaneously 
breathing with a patent airway. Mean arterial pressure is 
100 mmHg, heart rate = 120 beats/minute. Arterial blood 
gas analysis is as follows: pH  = 7.57, pCO2  = 3.4  kPa/ 
26 mmHg, pO2 = 7.9 kPa/59 mmHg, Hgb = 7.3, lactate = 
1.6  mmol/l, BE  = 1.3, plasma [Glucose] (P-[Glc])  = 
7.6 mmol/l, P-[Na+] = 90 mmol/l and P-[K+] = 3.5 mmol/l. 
Cerebral CT scanning shows no bleeding. Infusion of 
0.9% NaCl is instituted and he is transferred to the ICU. 
After 6 hours (P-[Na+] = 95 mmol/l), the patient is more 
awake, but delirious. To achieve P-[Na+]  = 120  mmol/l, 
the 0.9% NaCl infusions are increased. After 12 hours (P-
[Na+] = 105 mmol/l), the patient is awake but confused, 
and phenobarbital and haloperidol are given. Respiratory 
insuffi  ciency necessitates intubation after 24  hours 
(P-Na+  = 115  mmol/l). ! e patient is seen by an 
oncologist and diagnosed quite informally with syndrome 
of inappropriate antidiuretic hormone (SIADH). P-[Na+] 
rises progressively. On day  6, quadriplegia and coma 
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(Glasgow Coma Scale = 3 without sedation) are observed 
(P-[Na+]  = 144  mmol/l). A neurologist proposes a diag-
nosis of osmotic demyelinisation (OD). Over the next 
2 days, P-[Na+] increases to 151 mmol/l and he dies from 
intractable cardiac arrest.

! is case story illustrates common and important 
problems in managing the hyponatraemic patient. First, 
the initial 0.9 % NaCl approach is inadequate to ensure a 
rapid and controllable response [10]. Second, no 
measures to avoid overcorrection are taken, and he gets 
hypernatraemia despite being in the ICU [8]. ! ird, 
hyponatraemia often has multiple causes [11]. Fourth, 
nothing is done to identify the mechanisms of hypo-
natraemia [12].

! is review takes a practical approach to the critically 
ill patient with dysnatraemia.

Plasma [Na+] is determined by water and 
electrolytes
Knowledge about what determines P-[Na+] is crucial for 
understanding the mechanisms behind dysnatraemia and 
how to correct/prevent these disorders. Within a popu-
lation of heterogeneous patients, Edelman and colleagues 
[13] demonstrated that P-[Na+] is determined by ex-
change able cations (eNa+ and eK+) and total body water 
(TBW) according to Equation 1:
                                              eNa+ + eK+
                     P-[Na+] = α × —————— + β            Equation 1
                                                   TBW
where α and β are the coeffi  cients from the linear 
regression.

Equation 1 is not readily useful at the bedside; however, 
it was recently demonstrated that it is valid in the 
individual and that changes in P-[Na+] can be determined 
by the external balances of water and cations (Na+ + K+) 
[14]. ! e simplifi ed version (Equation 2) where α = 1 and 
β  = 0 provides a good estimate of the P-[Na+] changes 
and is useful for planning fl uid and electrolyte treatment 
in the individual patient [14-16]:
                         [Na+]1 × TBW + Δ(Na+ + K+)         [Na+]2 = ————————————————       Equation 2
                                   TBW + ΔTBW
where [Na+]1 is the initial plasma concentration and 
[Na+]2 is the concentration that results from the change 
in the external balances of water (ΔTBW) and cations 
(Δ(Na+ + K+)).

Equation 2 is fundamental in understanding changes in 
P-[Na+]. It is, therefore, also fundamental in practical 
patient treatment. It is important, however, to keep in 
mind that the impending output side of the water and 
cation balances can only be guessed. Frequent measure-
ment of output (especially diuresis) and P-[Na+] is 
necessary and input of fl uids must be adjusted 
dynamically.

Equations  1 and 2 assume that plasma tonicity is 
determined by P-[Na+]. ! is is true in hypernatraemia 
and, by far, in the most common hyponatraemic condi-
tions. Translocational hyponatraemia is an exception. In 
this condition osmotically active substances confi ned to 
the extracellular/plasma compartment cause a shift of 
water from the intracellular compartment. In this 
situation, the resulting hyponatraemia is hypertonic. ! e 
most frequent clinical condition is hyperglycaemia (P-
[Na+] is reduced approximately 0.4  mmol/l per mmol/l 
increase in P-[Glc] (or a reduction of 2.4  meq/l per 
100 mg/dl increase)) [17], but the condition can also be 
caused by mannitol. Pseudohyponatraemia is an unusual 
measurement fl aw in patients with hyperlipaemia/hyper-
proteinaemia whose plasma tonicity is normal. In the rest 
of this article, ‘hyponatraemia’ refers to hyponatraemia 
where plasma tonicity is decreased.

Regulation of P-[Na+]
P-[Na+] is tightly regulated between 135 and 145 mmol/l 
primarily by water intake (thirst) and renal water 
excretion [15]. Of lesser quantitative importance, P-[Na+] 
is regulated by the kidney’s regulation of cation excretion 
via the renin-angiotensin-aldosterone system. ! irst is 
stimulated when P-[Na+] increases a few percent [18]. It 
is also stimulated by a decrease in the eff ective circulating 
volume, which is the part of the extracellular volume 
(ECV) that eff ectively perfuses the tissue [19]. Arginine 
vasopressin (vasopressin, or antidiuretic hormone (ADH)) 
reduces renal water excretion. Vasopressin binds to the 
V2-receptor in the collecting duct. ! is promotes 
traffi  cking of aquaporin 2 to the apical membrane and 
passive water reabsorption to the hypertonic medullary 
interstitium [20]. Vasopressin secretion is stimulated 
when P-[Na+] increases [18]. Vasopressin release can also 
be stimulated non-osmotically by a reduced eff ective 
circulating volume, stress, pain, nausea, vomiting, various 
drugs and exercise.

Irrespective of vasopressin, the kidney’s ability to 
excrete water is infl uenced by solute intake (protein/urea 
and cations) since the urine volume is the solute 
excretion divided by the urine osmolality:
                          solute excretion       urea + electrolytes  urinevolume = —————————— = ———————————
                          urine osmolality        urine osmolality

A low solute intake reduces urine solute excretion and 
thereby urine volume despite maximally diluted urine. In 
contrast, a high protein/urea intake or generation will 
increase the urine volume. However, urea does not 
directly determine P-[Na+] (according to Equation  2). 
! is is so because in the whole body perspective, urea 
eventually crosses cell membranes and therefore is an 
ineff ective osmolyte that does not contribute to water 
fl ux between cells and extracellular volume [15]. 
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Altogether, the renal eff ects infl uencing P-[Na+] are 
gathered in excretion of electrolyte-free water [21]:
                                                       U[Na+] + U[K+]         cH2Oe = urinevolume × (1 – —————————   )
                                                               P-[Na+]
where U[Na+] and U[K+] are urine Na+ and K+ con cen-
trations. If electrolyte free water clearance (cH2Oe) is 
positive, the urine increases P-[Na+]; and if cH2Oe is 
negative, urine decreases P-[Na+].

Part l: hyponatraemia
In a patient with hyponatraemia, it must fi rst be deter-
mined whether acute correction is required. ! is 
decision is made based on the patient’s symptoms at a 
time when the mechanisms causing the hyponatraemia 
are rarely known. ! e discussion of hyponatraemia there-
fore begins with the symptoms and possible interventions 
(initial approach shown in Figure  1). Next, the mecha-
nisms and fi nal diagnostics are discussed.

Hyponatraemia with severe symptoms: airway, breathing, 
circulation and 3% NaCl bolus therapy
Severe hyponatraemia symptoms (Table  1) are believed 
to be caused by cerebral oedema. ! is corresponds well 
with cellular swelling as the extracellular tonicity decreases 
[22]. Intracranial pressure (ICP) rises when the brain cells 
swell in the rigid skull. An effl  ux of excitatory neuro-
transmitters (for example, glutamate) as a response to 
cell swelling [23] or decreased chloride conductance 
caused by the corresponding, low plasma [Cl-] might 
also, in part, explain the symptoms [24]. Because severe 
cerebral symptoms indicate ongoing brain damage and a 
substantial risk of incarceration, treatment should 
normally not be delayed by cerebral CT scanning as was 
the case in the case story [25].

Crucially, secondary brain damage caused by hypoxia, 
hypercapnia and hypoperfusion should ardently be 
avoided with an ABC approach [10,26]. Next, immediate 
ICP reduction is best induced with one or more boluses 
of 2 ml/kg 3% NaCl (or a corresponding amount of more 
hypertonic NaCl) given intravenously/intraosseously 
[27-29]. ! e eff ect is immediate, and bolus doses may be 
repeated at 5-minute intervals. One 2 ml/kg 3% NaCl 
bolus causes a controllable rise in P-[Na+] of about 
2  mmol/l (Example 1 in Box 1). Cerebral symptoms 
decrease when P-[Na+] increases by 4 to 6  mmol/l 
[27-29]. Infusion of 0.9% NaCl should not be used to 
acutely increase P-[Na+] as in the case story: such an 
infusion does not cause an immediate, controllable 
increase in P-[Na+], and 0.9% NaCl might worsen the 
hyponatraemia in SIADH (see SIADH section and Box 1). 
Vaso pressin V2-receptor antagonists are not recom-
mended: V2-receptor antagonists do not induce a 
controllable and fast increase in P-[Na+] and the 

induction/worsening of hypovolemia can be hazardous 
[30].

Cerebral disease, hepatic encephalopathy and sedation 
can cause severe symptoms similar to those of hypo-
natraemia [31], but a slight P-[Na+] increase will not 
worsen these conditions [32,33]. However, the clinician 
must always consider other conditions if the patient fails 
to respond, and a maximum of three boluses should be 
given (complete awakening cannot be anticipated if the 
patient has suff ered elevated ICP/seizures for hours [29]).

! ere is no set P-[Na+] level below which severe symp-
toms arise. Cerebral symptoms have been described at 
P-[Na+] levels between 125 and 130  mmol/l [34,35]. A 
MRI study in pigs demonstrated that cellular swelling in 
the brain oedema corresponds with the relative reduction 
in P-[Na+] [22]. ! is indicates that it is the relative 
reduction and its speed that are clinically interesting and 
not an arbitrarily defi ned absolute P-[Na+] value [36]. 
Hence, a P-[Na+] reduction from 160 to 128  mmol/l 
induces as much osmotic stress to the brain as a reduction 
from 113 to 90 mmol/l (illustrated in the case story). ! is 
also implies that patients with intracranial pathology (for 
example, intracranial bleeding, tumour or oedema) have 
an increased risk of cerebral deterioration if brain cells 
swell and that they may need correction at a higher 
P-[Na+] (for example, P-[Na+] = 135 mmol/l). Bolus treat-
ment is therefore instituted based on the patient’s symp-
toms and not on the basis of an arbitrarily defi ned 
P-[Na+] value.

Cerebral symptoms determine treatment, not the assumed 
time course
Treatment should be guided by the patient’s symptoms 
and not by the assumed acute (<48  hours) or chronic 
nature of hyponatraemia. Classifi cation of acute versus 
chronic hyponatraemia is based on brain-adaptive res-
ponses to hyponatraemia. Patients with days of hypo-
natraemia have fewer cerebral symptoms than patients 
with newly developed hyponatraemia [37]. ! is has been 
linked with cerebral volume regulation [38,39]. Adaption 
to sustained hyponatraemia by loss of organic osmolytes 
has also been proposed to increase the risk of OD 
(formerly known as central pontine myelinolysis) when 
correcting hyponatraemia [40-43]. OD is a devastating 
clinical condition with progressive quadriplegia, dys-
arthria, dysphagia and alterations of consciousness days 
after hyponatraemia correction, and it is proposed to be 
due to cell shrinkage and/or water diff usion diff erences in 
the brain [22,44]. Alcoholism, malnutrition, hypo kalae-
mia, liver failure and malignant disease increase the risk 
of OD [45].

! ese observations lie at the root of the distinction 
between acute and chronic hyponatraemia in treatment 
protocols [46,47]. ! is distinction is arbitrary, though, 
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and diffi  cult to implement in practice. First, asymp to-
matic chronic hyponatraemic patients bear the highest 
risk of symptomatic hyponatraemia, that is, acute 
worsening of chronic hyponatraemia with looming brain 
oedema (for example, as in the case story) [48]. Second, it 
is diffi  cult to determine the time frame of hyponatraemia 
in the comatose patient brought to the emergency 
department (for example, as in the case story). Finally, 
OD has been demonstrated in case reports after 
correction of acute (<48 h) hyponatraemia, so cautious 
correction is also important in these cases [42,49].

Measures to avoid P-[Na+] overcorrection
Avoiding overcorrection is pivotal to diminish the risk of 
OD (see the case story). No prospective studies have estab-
lished an absolutely safe and defi nitive speed for correc-
tion of hyponatraemia. In retrospective studies, OD has 
been seen in patients corrected with more than 12 mmol/
l day and not in less rapidly corrected patients [41,43,50]. 
In a small clinical MRI study, OD lesions were seen in 
patients corrected with more than 10 mmol/l/day [42].

Because OD is more likely when the patients are 
corrected by more than 12 mmol/l/day, it seems reason-
able, in the light of the brain’s adaption mecha nisms, not 
to correct at a faster pace, even though there is no 
absolutely safe rate. Conservative therapeutic goals for 
correction of 8  mmol/l in 24  hours, 14  mmol/l in 
48 hours and 16 mmol/l in 72 hours have been proposed 
[51]. ! erefore, only three 2 ml/kg 3% NaCl bolus doses 
should be given to patients with severe symptoms [51,52].

Brisk diuresis is the most common cause of over-
correction even without sodium input [51,53]. Diuresis 
can be counteracted by administering water and, if 
necessary, using desmopressin [54]. Hypokalaemia cor-
rec tion can contribute to P-[Na+] overcorrection. If renal 
replacement therapy is necessary (for example, fl uid 
overload or hyperkalaemia), P-[Na+] changes can be con-
trolled by lowering the Na+ concentration in the 
replacement fl uid to the desired P-[Na+] level by adding 
water (note that this will also reduce the concentration of 
all other components in the fl uid) [55] or by reducing the 
blood fl ow [56].

Figure 1. Initial approach to the hyponatraemic patient. P-[Na+], plasma [Na+].

P-[Na+] is determined by external balances of 
water and ca!ons according to Equa!on 2:Ini!al pa!ent assesment

ABCDa)

[Na+]1: Ini!al plasma concentra!on
[Na+]2: Resul!ng concentra!on
TBW: Total body water
ΔTBW: Change in external water balances  
Δ(Na++K+): Change in external ca!on balances.

P-[Na+] < 130 mmol/lb)

Severe symptoms:
D d i

No severe symptoms ( ) g
Decreased consciousness 

Seizures 
Muscle rigidity Avoid overcorrec!on

Monitor P-[Na+] and 
diuresis

Bolus 2 ml/kg 3% NaClc)

Conserva!ve goals:
8 mmol/l in 24 hours

14 mmol/l in 48 hours

P-[Na+] increases too 
rapidlyd)

Bolus 2 ml/kg 3% NaCl

Severe symptoms persist

16 mmol/l in 72 hours
Give water per os/5% 

glucose iv/0.45% NaCl iv
Bolus 2 ml/kg 3% NaCl

Severe symptoms persist

Consider alterna!ve 
causes

Desmopressin can be used 
to control brisk diuresise)

Final 
diagnos!cs/correc!on 

(   Figure  2)

Severe symptoms persist

a) A=Airway,  B=breathing, C=circula!on, D=disability: Avoid secondary brain damage. 
Diagnose hypo-/hyperglycemia.

b) Higher levels in pa!ents with intracranial pathology/known hypernatremia 
        

               
          

      
d) Large diuresis crea!ng a nega!ve water balance is the most frequent cause of 

overcorrec!on. K+-subs!tu!on: 1 mmol K+ increase P-[Na+] as much as 1 mmol Na+

(Equa!on 2)
e) Proposed desmopressin doses: 1-2 µg iv/10-20 µg nasal spray/60-120 µg mel!ng tablet

c) Bolus = peripheral or central intravenous/intraosseous infusion in a few minutes.
        Response to a bolus is observed a#er 5 minutes: if symptoms decrease, go to “no
        severe symptoms”; if severe symptoms persist, infuse a maximum of three boluses.
        Corresponding amounts of more concentrated NaCl can be used.
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Mechanisms and treatment of hyponatraemia without 
severe symptoms
! e population of hyponatraemia patients in the ICU 
without severe symptoms comprises two groups: one 
initially with severe symptoms stabilized with bolus 
therapy and one initially not having severe symptoms. In 
these patients, treatment must be individualized and the 
underlying mechanisms identifi ed for safe and lasting 
correction.

Traditional classifi cations according to volume status 
are of little use in clinical practice since hypo- and 
normo volaemia cannot be reliably separated [57,58], and 
multiple combined causes are common so a simple 
scheme cannot be used (see the case story) [11,59]. 
Mechanisms causing hyponatraemia are often revealed 
by the patient’s treatment response [60]. Importantly, the 
initial mechanisms causing hyponatraemia may be 
evanescent and a rapid P-[Na+] increase may occur. In all 
patients with hyponatraemia spot urine for urine 
osmolality and U-[Na+] determination should be sampled 
as fast as possible and preferably before treatment.

! e mechanisms causing hyponatraemia are discussed 
in the following sections and summarized in Figure 2.

Hyponatraemia despite suppressed vasopressin
Young, normally functioning kidneys have an enormous 
capacity to excrete water (1 l/h), so excessive water input 
(polydipsia, infusion of hypotonic fl uids or absorption of 
irrigant solutions) must exceed 1  l/h to produce 
hyponatraemia. Much less water ingestion can produce 
hyponatraemia when the kidney’s ability to excrete water 
is reduced. In beer potomania and severe malnutrition 
(for example, due to chronic disease like cancer or 
anorexia nervosa), a low solute intake (protein and 
cations) decreases the kidney’s ability to excrete water as 
pure water cannot be excreted [15,61]. ! is is a possible 
contributing mechanism in the case story. ! e kidney’s 
diluting capacity is also reduced independently of 
vasopressin [62] with decreased delivery of fl uid to the 
distal nephron. A reduction in the glomerular fi ltration 
rate with increasing age, various drugs (Table  2) and 

various disease states (for example, reduced eff ective 
circulating volume) will therefore render the patient 
more vulnerable to water ingestion. Treatment should 
address these mechanisms: reduce water intake (avoid 
hypotonic fl uids), improve nutrition and restore kidney 
function.

Thiazide-induced hyponatraemia
! iazide-induced hyponatraemia (TIH) is common and 
may have contributed to the hyponatraemia in the case 
story [50,63]. ! e mechanisms by which some individuals 
(females more than males) develop TIH are not clear 
[63]. In contrast to loop diuretics, thiazides do not reduce 
the medullary concentration gradient in the kidneys 
necessary for concentrating the urine, but reduce NaCl 
transport in the diluting segment of the nephron. 
Desalination is a necessary consequence of thiazides [64], 
but whether this results in overt hyponatraemia is 
dependent on other partly unknown factors. A pre-
existing urine dilution defect (old age, medications like 
NSAIDs) may be worsened by thiazides independently of 
the vasopressin levels [65]. One study proposes increased 
thirst as a mechanism for TIH [66]. However, a small 
decrease in eff ective circulating volume with non-
osmotically stimulated thirst/vasopressin-secretion may 
also contribute. Following TIH, a substantial risk of 
overcorrection looms.

Optimize e! ective circulating volume in hypervolaemic 
conditions
In conditions with increased ECV/plasma volume (con-
gestive heart failure, cirrhosis, nephrotic syndrome and 
sepsis), hyponatraemia is caused by non-osmotic stimu-
lation of vasopressin and thirst due to a reduced eff ective 
circulating volume. Stigmata and the patient’s history 
may help the diagnosis. Optimizing the haemodynamics 
is the cornerstone of treatment in this situation. ! e 
underlying conditions can occasionally be improved, 
such as by angiotensin-converting-enzyme (ACE) inhibi-
tors in heart failure [67] and the use of spironolactone in 
advanced liver disease [68]. P-[Na+] is corrected with 
water restriction (avoid hypotonic fl uids) and loop 
diuretics [68]. Treatment with V2-receptor antagonists 
seems rational, but a randomized trial has shown no 
survival benefi ts [69], and overcorrection may occur [70]. 
Hypertonic saline infusion (improves eff ective circulating 
volume) together with loop diuretics has been shown to 
be eff ective sometimes in refractory heart failure and 
ascites [33].

Restore e! ective circulating volume in conditions with 
hypovolaemia
In hypovolaemia conditions, loss of total body solutes 
(Na+ and K+) results in a reduced eff ective circulating 

Table 1. Cerebral symptoms in hyponatraemia
Severe symptoms
Decreased consciousness
Seizures
Muscle rigidity

Other symptoms
Nausea and vomiting
Headache
Bloating, ‘pu#  ness’
Muscle weakness, cramps or spasms
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volume, non-osmotic vasopressin secretion and thirst. In 
this situation, hypotonic fl uid ingestion/infusion causes 
hyponatraemia. Diff erentiating these conditions from 
SIADH can be challenging because the reduced eff ective 
circulating volume (and ECV) is diffi  cult to determine 
clinically [57,58].

Extra-renal causes of solute loss are diagnosed by the 
patient’s history (bleeding, gastrointestinal loss, exercise 
[71] and sweating) and by U-[Na+] <30  mmol/l in spot 
urine; however, exceptions exist (concurrent use of diu-
retics, compensating renal loss of NaHCO3 in metabolic 
alkalosis (vomiting) or mineralocorticoid insuffi  ciency).

! e solute loss can also have renal causes. TIH has 
previously been discussed as a potential cause. Other 
renal mechanisms are osmotic diuresis, salt-losing 
nephro pathy including mineralocorticoid defi ciency, and 
cerebral salt wasting (CSW).

CSW is a condition with reduced eff ective circulating 
volume and unexplained/inappropriate natriuresis. ! e 

mechanisms leading to it are not clear [72,73]. Diagnostic 
diffi  culties are rooted in the problem of determining the 
eff ective circulating volume and in the fact that the 
neuro intensive patient (for example, traumatic brain 
injury, subarachnoid haemorrhage) receives large amounts 
of normal and hypertonic saline to avoid hypovolaemia 
and hyponatraemia [74]. ! is sodium loading induces 
natriuresis in the normal kidney [75,76]. Inadequate 
release of brain natriuretic peptide has been proposed as 
a contributing mechanism in CSW [77].

Renal causes of hyponatraemia result in high U-[Na+] 
levels and may have characteristics similar to those of 
SIADH. Responses to infusion of 1 to 2 l 0.9% NaCl can 
help clarify the diagnosis. Increased P-[Na+] favours 
ECV/Na+ defi cit: sodium, and to a lesser extent water, is 
retained, which increases P-[Na+]. Additionally, normal 
saline restores the eff ective circulating volume and 
reduces the non-osmotic stimulus of vasopressin secre-
tion. Unchanged or decreased P-[Na+] makes SIADH 

Figure 2. Hyponatraemia without severe symptoms: diagnostics and treatment. ACTH, adrenocorticotropic hormone; CHF, congestive heart 
failure; CSW, cerebral salt wasting; ECV, extracellular volume; GFR, glomerular ! ltration rate; SIADH, syndrome of inappropriate antidiuretic hormone; 
TSH, thyroid-stimulating hormone; U-[Na+], urine [Na+]; U-Osm, urine osmolality.
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likely: the patient with SIADH is normally in sodium 
balance (output is refl ected in input) and the infused Na+ 
is excreted. However, the urine is concentrated and urine 
cations are generally higher than the 0.9% NaCl 
(308  mOsm) resulting in retention of water and a 
decrease in P-[Na+] (cH2Oe is negative) (Example  2 in 
Box  1) [15]. Infusions of 0.9% NaCl must increase ECV 
by 1 to 2 l and the infusion speed must therefore exceed 
ongoing losses [78].

Hyponatraemia induced by diuretics may entail a 
fractional excretion of uric acid (FE-UA  = (U-[uric 
acid]  × P-[creatinine])/(U-[creatinine]  × P-[uric acid])) 
below 8% [79]. However, CSW and SIADH can both have 
an FE-UA >12%, and it may be necessary to distinguish 
between the two conditions in terms of their response to 
water restriction or a vasopressin V2-receptor antagonist 
(FE-UA and P-[Na+] is normalized in SIADH) [80]. 
However, this approach is not recommended in the 
neurointensive patient because it involves a substantial 
risk of worsening the hypovolaemia [74]. A practical 
approach is to control P-[Na+] with 0.9% NaCl and 
hypertonic NaCl in the neurointensive patient [81].

Once the diagnosis is established, the underlying 
disease should be treated and the balances, including 
potassium and water defi cit, should be restored. Aboli-
tion of the non-osmotic stimulus of vasopressin secretion 

involves a substantial risk of overcorrection caused by 
brisk diuresis.

Syndrome of inappropriate antidiuretic hormone
Non-osmotic vasopressin secretion and abnormal thirst 
are present in SIADH despite a normal eff ective 
circulating volume [78,82-85]. In the critically ill patient, 
the mechanisms of inappropriate vasopressin secretion 
and thirst are heterogeneous. ! is may be due to various 
drugs (Table  2), malignant disease, central nervous sys-
tem disorders (infection, bleeding, thrombosis, space-
occupying disorders, psychosis and generalised dis-
orders), pulmonary disorders (infection, asthma, respirator 
treatment) or other causes (general anaesthesia, post-
operative nausea, pain and stress) [78,86]. ! ese causes 
of SIADH may be divided into self-limiting mecha nisms 
with an inherent risk of overcorrection when the vaso-
pressin stimuli are abolished, and persis tent conditions, 
for example, a paraneoplastic phenome non that, in the 
absence of vasopressin V2-receptor antagonist treatment, 
will rarely be overcorrected.

When hyponatraemia persists, SIADH may be diag-
nosed by conventional criteria: plasma hypo-osmolality (P-
Osm <275 mOsm/kg) with a not maximally diluted urine 
osmolality (typically U-Osm >100  mOsm/kg), high U-
[Na+] (>30  mmol/l), normal eff ective circulating volume 
and normal renal, thyroid and adrenal function [78,86-88].

Other hyponatraemia mechanisms are likely to co-exist 
in the critically ill patient (for example, thiazide therapy, 
low solute intake, renal impairment), and it is important 
to determine and correct these causes. Urine investi-
gation (U-Osm and U-Na+) is important, although it is 
not always performed [12]. U-Na+ can be low in SIADH 
with a low salt intake. Failure to increase P-[Na+] with 1 
to 2 l 0.9% NaCl intravenously is a practical way of tracing 
SIADH without inviting the risk of circulatory collapse 
(Example 2 in Box 1). Plasma uric acid below 238 µmol/l 
(<4  mg/dl) and FE-UA above 12% also likely suggest 
SIADH [79].

When a reduced eff ective circulating volume has been 
ruled out and persistent SIADH is a likely diagnosis, the 
cornerstone is investigation and treatment of its under-
lying causes. In the critically ill patient, the input side of 
Equation  2 is controlled and hyponatraemia may be 
corrected with water restriction and avoidance of hypo-
tonic fl uids. Loop diuretics and increased solute intake 
(for example, 0.5 to 1  g/kg/day urea in the gastric tube 
[89]) can be used to increase water excretion. Compliance 
problems with urea administration in the critically ill 
patient seem small, and urea (as ineff ective osmolytes) 
has been shown to reduce the risk of OD in experimental 
studies [90]. If SIADH persists, vasopressin V2-receptor 
antagonists may be the most eff ective option in terms of 
correcting P-[Na+]. However, lack of studies in the 

Table 2. Drugs associated with hyponatraemia 
  Other
Groups SIADH mechanism mechanisms

Diuretics Thiazides Thiazides
 Indapamide Indapamide

Antidepressant agents SSRI  

 TCA (mirtazapine) 

 SNRI (venlafaxine/duloxetin) 

Antipsychotic agents Phenothiazine
 Butyrophenones  

Anti-seizure drugs Carbamazapine
 Oxcarbazepine
 Valproate
 Nicotine
 Clo! brate 

Antineoplastic agents Cyclophosphamide Cisplatin
 Vincristine
 Ifosfamide 

V2-receptor agonist Desmopressin
 Vasopressin
 Oxytocin(?) 

Miscellaneous NSAIDs NSAIDs
 Voriconazole
 Methylenedioxymethyl-
 amphetamine (ecstacy)

Hypotonic $ uids  

NSAID, nonsteroidal anti-in! ammatory drug; SIADH, syndrome of inappropriate 
antidiuretic hormone; SNRI, serotonin-norepenephrine reuptake inhibitor; SSRI, 
selective serotonin-reuptake inhibitor; TCA, tricyclic antidepressant.
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Box 1. Calculations

Example 1: Treatment with 2 ml/kg 3% NaCl
A 70 kg female with severe cerebral symptoms and P-[Na+]1 = 
118 mmol/l is given a 2 ml/kg bolus of 3% NaCl ([Na+] = 
513 mmol/l). According to Equation 2, the resulting P-[Na+]2 can be 
calculated.

[Na+]1 = 118 mmol/l

TBW: estimated to 35 l (TBW is 50% of the total weight)

Δ(Na+ + K+) = 72 mmol (513 mmol/l × 0.14 l)

ΔTBW = 0.14 l (2 ml/kg × 70 kg).

                         [Na+]1 × TBW + Δ(Na+ + K+)         [Na+]2 = —————————————
                                   TBW + ΔTBW

                        118 mmol/l × 35 l + 72 mmol         [Na+]2 = —— ——— — — — — — — ———
                                        35 l + 0.14 l

         [Na+]2 = 120 mmol/l

Conclusion: One bolus of 2 ml/kg 3% NaCl results in an immediate, 
controllable rise in P-[Na+] of about 2 mmol/l.

Example 2: Treatment of SIADH with 0.9% NaCl
A 70 kg male with P-[Na+]1 = 112 mmol/l is given 1 litre of 0.9% 
NaCl and has a diuresis of 750 ml with U-[Na+] = 154 mmol/l and 
U-[K+] = 80 mmol/l over the next 12 h.

According to Equation 2, the resulting P-[Na+]2 can be calculated.

[Na+]1 = 112 mmol/l

TBW: estimated to 42 l (TBW is 60% of the total weight)

Cation input = 1 l × 154 mmol/l = 154 mmol

Cation output = 0.75 l urine × (154 mmol/l + 80 mmol/l) = 
176 mmol

Δ(Na++K+) = input minus output = 154 mmol - 176 mmol = 
-22 mmol.

ΔTBW = input minus output = 1 l - 0.75 l = 0.25 l.

                         [Na+]1 × TBW + Δ(Na+ + K+)         [Na+]2 = —————————————
                                   TBW + ΔTBW

                        112 mmol/l × 42 l – 22 mmol         [Na+]2 = —— ——— — — — — — — ——
                                       42 l + 0.25 l

         [Na+]2 = 111 mmol/l

Conclusion: 0.9% NaCl worsens his hyponatraemia and SIADH is 
likely.

This is also illustrated by a negative electrolyte free water clearance 
cH2Oe:

                                                       U[Na+] + U[K+]         cH2Oe = urinevolume × (1 – ———————   )
                                                               P-[Na+]

                                                 154 + 80         cH2Oe = 750 ml × (1 – ————   )
                                                      112

         cH2Oe = –817 ml

Example 3: Estimated water de! cit in hypernatraemia
An 80 kg male is admitted with P-[Na+] = 158 mmol/l and 
P-[Glucose] = 32 mmol/l (577 mg/dl with a correction factor 
of 2.4 meq/l per 100 mg/dl increase in P-[Glucose]). What is his 
estimated water de! cit?

First, P-[Na+] is corrected for hyperglycaemia:

[Na+]corrected = [Na+]measured + 0.4 mmol/l × ([Glucose] – 5.6 mmol/l)

[Na+]corrected = 158 mmol/l + 0.4 mmol/l × (32 mmol/l – 5.6 mmol/l)

[Na+]corrected = 169 mmol/l)

From Equation 2:

                          [Na+]corrected × TBW + Δ(Na+ + K+)         [Na+]2 = ————————————————
                                           TBW + ΔTBW
Ù

                   [Na+]corrected × TBW + Δ(Na+ + K+)       ΔTBW = ————————————————  – TBW
                                            [Na+]2

With Δ(Na+ + K+) = 0 and P-[Na+]2 = 140 mmol/l:
�

                                 [Na+]corrected       ΔTBW = TBW × ( —————  – 1)
                                           140

With P-[Na+]corrected = 169 mmol/l and TBW 60% of weight:
�

                                             169 mmol/l       ΔTBW = 80 kg × 0.6 × ( ——————  – 1)
                                                  140 mmol/l

       ΔTBW = 10 l

So, he has an estimated water de! cit of about 10 l. There is 
concomitant, reduced total body sodium because sodium is lost 
with the osmotic diuresis.

Overgaard-Steensen and Ring Critical Care 2013, 17:206 
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critically ill population with persistent SIADH weakens 
this approach [91].

Exclude adrenal and thyroid insu"  ciency
In adrenal insuffi  ciency with glucocorticoid defi ciency, 
the hyponatraemia mechanisms include an increased 
vasopressin/thirst response [92] and a decreased eff ective 
circulating volume [93]. In the critically ill patient with 
suspected adrenal insuffi  ciency, a random serum cortisol 
and plasma adrenocorticotropic hormone is obtained 
followed by 100  mg hydrocortisone intravenously. A 
serum cortisol level above 700 nmol/l (25 µg/dl) virtually 
excludes adrenal insuffi  ciency [94,95]. If this is 
inconclusive, low-dose adrenocorticotropic hormone 
stimulation should be performed after cessation of 
hydro cortisone (details in Figure 2).

Hypothyroidism is occasionally associated with hypo-
natraemia. ! e mechanisms are unclear. Fluid retention, 
impaired cardiac and renal function are likely [96]. 
Patients should be screened with plasma thyroid-
stimulating hormone and T4 [95].

Part 2: hypernatraemia
Why did the man in the case story develop hyper-
natraemia while staying in the ICU and how could it have 
been prevented? Hypernatraemia is less common than 
hyponatraemia, but the patient is generally more ill and 
has a higher mortality [3]. ! e initial approach is ABC 
management followed by treatment of underlying 
diseases and restoration of the distorted physiology. ! e 
discussion of hypernatraemia therefore addresses fi rst 
the mechanisms, then treatment. ! e discussion of the 
mechanisms addresses situations of water and solute loss, 
pure water loss and increased total body solutes. Multiple 
combined causes are common. Mechanisms and treat-
ment are summarized in Figure 3.

Hypernatraemia with water and solute loss
! is condition arises by a negative water balance exceed-
ing a concomitant negative cation balance (Equation 2). 
! e resulting hypovolaemia is the most common 
condition in hospitalised hypernatraemic patients [97].

Diminished water intake is a pivotal mechanism of 
increased P-[Na+] [97]. Individuals at risk of insuffi  cient 
drinking often have an altered mental status (critical 
illness, sedation, neurological impairment) or they are 
intubated patients, infants [98] or geriatric patients [99].

An enhanced water above salt loss contributes to hyper-
natraemia. Fever is a common contributing factor [21,97, 
100]. A high loss through the skin can result from a high 
temperature in the environment, from exercise or wounds 
(for example, burns). Gastrointestinal loss of hypotonic 
fl uid is increased by diarrhoea (for example, infection, 
lactulose).

A renal concentrating defect frequently contributes to 
hypernatraemia. Several mechanisms are responsible for 
this. Loop diuretics contribute, especially in the critically 
ill patient [21]. Osmotic diuresis (U-Osm >300  mOsm 
with hypernatraemia) can be induced by hyperglycaemia. 
Osmotic urea diuresis is seen with excessive protein 
nutrition and protein wasting and diagnosed by increased 
electrolyte-free water excretion [101]. Mannitol also 
induces osmotic diuresis. A renal concentrating defect is 
seen with kidney insuffi  ciency. Rare causes are hyper-
calcaemia and potassium depletion.

! e patient is treated by restoring the ECV and water 
defi cit (Example 3 in Box 1).

Hypernatraemia with pure water loss
! is condition develops when the water balance is 
negative and the cation balance is normal. ! e reduction 
in ECV is far less than with a concomitant salt loss. 
Diminished water intake is obligatory [102]. Individuals 
with reduced water intake (infants, old, debilitated 
patients) will have appropriate, maximally concentrated 
urine. Patients with a functionally decreased vasopressin 
response to hypertonicity (central or nephrogenic 
diabetes insipidus) only develop hypernatraemia when 
water intake is restricted (for example, critical illness). 
Diabetes insipidus occasionally develops in the critically 
ill patient (for example, by traumatic brain injury and 
late-phase septic shock) and U-Osm is inappropriately 
low. In rare situations, the set point for osmolality is 
directly increased due to cerebral disease resulting in 
essential hypernatraemia and reduced thirst at a given 
sodium concentration.

Treatment is restoration of the water defi cit (Example 3 
in Box 1). Water loss in central diabetes insipidus can be 
reduced with desmo pressin. Treatment of nephrogenic 
diabetes insipidus is challenging and may comprise drug 
evaluation, correction of hypercalcaemia or hypokalae-
mia and low-solute diet to decrease urine volume and 
thiazides.

Hypernatraemia with increased total body solute
Hypernatraemia with increased ECV develops when the 
cation balance is positive, which is frequently observed in 
ICU-acquired hypernatraemia [6,21]. Increased input of 
cations is mandatory. ! is is seen in conjunction with 
correction of water loss with 0.9% NaCl. Also, correction 
of hypokalaemia with hypertonic potassium-containing 
solutions (for example, 0.9% NaCl added 40 mmol KCl) 
may contribute to hypernatraemia. Hypernatraemia can 
be induced therapeutically with hypertonic saline to 
reduce ICP [103] or as a side eff ect seen with NaHCO3 
treatment. In healthy individuals, an increased salt load is 
excreted in the urine [75,76]. Natriuresis can be 
diminished in the critically ill patient with a reduced 
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eff ective circulating volume and a low glomerular 
fi ltration rate [104]. A diagnosis of solute overload is 
made from the history, water- and cation balances and, if 
available, weight changes. Salt intoxi cation outside the 
hospital is rare, but may arise by suicide attempts with 
soya sauce and by inappropriate administration of solute 
in nursery homes [105].

Treatment consists of creating a negative cation 
balance by reducing the cation input and increasing the 
cation output with diuretics or, rarely, dialysis.

Symptoms and correction of hypernatraemia
Hypernatraemic patients are generally critically ill and it 
may be diffi  cult to determine whether cerebral symptoms 
stem from hypernatraemia (decreased level of conscious-
ness, irritability, hyper-refl exia, spasticity and seizures) or 
the underlying disease.

! e fi rst principle in treatment is ABC. Circulatory 
collapse/hypoperfusion is treated with infusion of 0.9% 
NaCl according to haemodynamic parameters (Figure 3) 

[106]. ! is should be paralleled by investigation and 
treatment of the underlying mechanisms (for example, 
insulin, antibiotics and antipyretics). Clinical evaluation 
of volume status is notoriously imprecise, and the only 
sign may be cerebral symptoms in the elderly/infant 
[98,99]. Next, total body solute cannot be measured in a 
clinical setting. Simple measures can be helpful (for 
example, history, weight, accumulated fl uid/electrolyte 
balances and electrolyte-free water clearance to diagnose 
the mechanisms behind the hypernatraemia (Figure  3)). 
Finally, the water/cation balance is restored.

Too rapid P-[Na+] correction can provoke seizures, 
probably from cerebral oedema [107-110]. ! is has been 
linked with the brain cells’ adaption to the hypertonic 
state by accumulation of solute [108]. ! e relative 
reduction in tonicity results in cellular swelling. However, 
failure to correct the hypernatraemia is associated with 
higher mortality [111,112]. No optimal correction rate 
has been determined, but it has been suggested that it 
should not exceed 0.5  mmol/l/h [107]. A practical 

Figure 3. Hypernatraemia: diagnostics and treatment. ECV, extracellular volume; HR, heart rate; MAP, mean arterial pressure; P, plasma; P-[Glc], 
plasma [Glucose]; SvO2, central venous oxygen saturation; U, urine; U-Osm, urine osmolality.

Cation input > renal cation output

Solute gainWater and solute loss

Diminished water intake: altered mental status intubated infants geriatrics

Pure water deficit
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should decrease less than 12 mmol/l  in 24 hours to avoid rebounding brain oedema.
c)    Determine mental status, P[Na+],[Glucose] and calculation of [Na+]corrected, frequently.  
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approach is to decrease P-[Na+] 5 to 6  mmol/l the fi rst 
hours (1  mmol/l/h) and then slow down the correction 
rate so the total correction is 12  mmol/l in 24  hours 
(0.5 mmol/l/h) [97,98]. ! e change in tonicity is impor-
tant. ! e measured P-[Na+] must therefore be corrected 
for any hyperglycaemia.

In hypernatraemia with water loss, the water correction 
rate can roughly be estimated from:
                                                   [Na+]corrected                ΔTBW = TBW × ( ———————   –1)
                                                  Target [Na+]
where [Na+]corrected is the measured P-[Na+] corrected for 
any hyperglycaemia and Target [Na+] is the desired 
P-[Na+] (Example 3 in Box 1). However, frequent measure-
ments of P-[Na+], P-[K+] and P-[Glucose] and calculation 
of [Na+]corrected are necessary to avoid overcorrection.

In severe cases with renal failure, renal replacement 
therapy should be instituted. Here, the Na+ content in the 
replacement fl uid/dialysate must be increased to the 
desired P-[Na+] by NaCl addition to avoid overly rapid 
correction [55].

Conclusion
Dysnatraemia is common in the critically ill patient and 
is associated with increased mortality. ! e case story 
illustrates common and important treatment problems in 
the hyponatraemic patient. ! e key principle in 
treatment and prevention is that P-[Na+] is determined 
by external water and cation balances. First, the patient 
should be treated according to an ABC approach to 
diminish secondary organ damage. Next, symptoms are 
critical when handling a patient with hyponatraemia. 
Severe symptoms are treated with 2 ml/kg 3% NaCl bolus 
infusions irrespective of the proposed time course. ! e 
goal is to reduce cerebral symptoms. ! e bolus therapy 
gives an immediate, controllable rise in P-[Na+]. A 
maximum of three boluses are given. In hyponatraemic 
patients, any correction exceeding 10  mmol/l/day must 
be avoided to reduce the risk of OD. Reduced vasopressin 
action and brisk diuresis are the most common 
mechanism and they must be counteracted by increasing 
water input and, if necessary, by desmopressin. ! e risk 
of overcorrection is associated with the mechanisms 
causing hyponatraemia. Traditional classifi cations accord-
ing to volume status are notoriously diffi  cult to apply in 
clinical practice. Moreover, multiple mechanisms are 
common and may easily be mixed. More than one 
mechanism must therefore be investigated for safe 
correction.

First and foremost, the patient in the case story 
develops hypernatraemia in the ICU because the problem 
is not addressed. Pivotal is treatment of the underlying 
diseases and restoration of the distorted water and salt 
balances based on knowledge of what determines 

P-[Na+]. Multiple combined mechanisms are common 
and must be identifi ed. Importantly, hypernatraemia is 
not only a matter of water defi cit, and treatment of a 
critically ill patient with an accumulated fl uid balance of 
20  litres and corresponding weight gain is not more 
water, but a negative cation balance. Reduction of P-
[Na+]/plasma tonicity in hypernatraemia is important, 
but should not exceed 12 mmol/l/day to reduce the risk 
of rebounding brain oedema.
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