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Intensive care medicine and renal transplantation 1

Management of patients at risk of acute kidney injury
Jill Vanmassenhove, Jan Kielstein, Achim Jörres, Wim Van Biesen

Acute kidney injury (AKI) is a multifaceted syndrome that occurs in different settings. The course of AKI can be 
variable, from single hit and complete recovery, to multiple hits resulting in end-stage renal disease. No interventions 
to improve outcomes of established AKI have yet been developed, so prevention and early diagnosis are key. Awareness 
campaigns and education for health-care professionals on diagnosis and management of AKI—with attention to 
avoidance of volume depletion, hypotension, and nephrotoxic interventions—coupled with electronic early warning 
systems where available can improve outcomes. Biomarker-based strategies have not shown improvements in 
outcome. Fluid management should aim for early, rapid restoration of circulatory volume, but should be more limited 
after the first 24–48 h to avoid volume overload. Use of balanced crystalloid solutions versus normal saline remains 
controversial. Renal replacement therapy should only be started on the basis of hard criteria, but should not be 
delayed when criteria are met. On the basis of recent evidence, the risk of contrast-induced AKI might be overestimated 
for many conditions.

Introduction
Acute kidney injury (AKI) is a clinical syndrome that is 
associated with many conditions. Interventional 
treatments for established AKI have been disappointing. 
Although renal replacement therapy (RRT) is the 
mainstay of treatment for advanced AKI, RRT is 
potentially harmful and not readily available in all 
settings and regions. Awareness of and care for patients 
with AKI are suboptimal.1 In most cases AKI is 
attributable to simple causes such as volume depletion, 
hypotension, and exposure to nephrotoxic medications.2 
Accordingly, attention has shifted in the past decade 
from treatment to prevention, early detection, and 
proactive management of AKI to avoid further damage 
in the short term and long term. AKI is often a 
continuum of kidney injury rather than a single-hit, 
freestanding condition (figure 1). Chronic kidney 
disease (CKD) is an important risk factor in AKI 
development and AKI in turn predisposes patients 
to CKD.

This Series paper will describe the strategies used to 
identify patients at risk of AKI and assess the potential 

effect of management strategies that aim to decrease the 
effect of nephrotoxicity and improve outcomes.

Identification of patients at risk and early 
diagnosis of AKI
Risk prediction for and early identification of AKI are 
key in the attempt to reduce the burden of AKI.3 
Prevention should not only apply to patients with a 
generic increased risk of AKI (table 1), but also to 
patients with impending and even established AKI to 
avoid additional kidney damage or delay in recovery. For 
patients at increased risk of AKI and those with 
impending and established AKI, use of interventions 
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that are potentially nephrotoxic should be balanced 
against their expected benefit.

The course, severity, and outcome of AKI can be very 
different from patient to patient and from situation to 
situation (figure 1). This variation is determined by the 
presence or absence of pre-existing underlying CKD 
(acute episode in chronically ill patients vs acute episode 
in previously healthy patients) and thus the initial GFR; 
early detection and intervention (or not); and additional 
nephrotoxic insults by drugs, hypotension, contrast 
media, post renal causes, or infections. In the best case 
(single hit in a previously healthy patient), kidney 
function recovers completely; however, presence of 
underlying chronic kidney disease, repetitive insults, and 
inadequate detection or intervention can contribute to 
incomplete recovery, which can lead to progressive CKD 
and need for chronic RRT.

Risk prediction
Many risk prediction scores for AKI have been described 
(see table 1 for externally validated scores and appendix 
for all risk prediction scores). Most are limited to a 
specific setting, so cannot be generalised outside that 
setting. Even within a specific setting, heterogeneity 
between populations can jeopardise the validity of risk 
prediction. External validation in large multicentre 
cohorts is thus necessary before risk prediction models 
can be adapted in clinical practice. In the post cardiac 
surgery population, the Cleveland Clinic Score provides 
reasonably accurate predictions of RRT, but validated 

scores predicting AKI without the need for RRT are 
scarce. In the setting of major non-cardiovascular 
surgery, most risk prediction models for AKI lack data 
on the effect of their clinical implementation.4 A 
predictive score for AKI was developed from a large 
database of routinely measured variables in a general 
ward population with AKI incidence of 8·6%; internal 
validation showed a sensitivity of 82% and a specificity 
of 65%, but external validation has not yet been 
checked.5

AKI diagnostic classification criteria
Despite criticism,6 the introduction of diagnostic 
classification criteria for AKI has been a major step 
forward. The KDIGO7 diagnostic criteria for AKI can be 
considered as a combination of the RIFLE8 and AKIN9 
criteria. KDIGO also defined the concept of acute kidney 
disease, which encompasses not only AKI, but also 
conditions with persistent signs of renal damage for 
more than 7 days and less than 90 days after the initial 
insult, or conditions that do not fulfil the classic AKI 
criteria.

Functional markers of AKI
The diagnostic classification criteria for AKI still rely on 
functional markers of kidney activity such as glomerular 
filtration rate (GFR) and urinary output. Currently, an 
increase in serum creatinine is used as a surrogate 
measure for a decrease in GFR. However, the 
relationship between serum creatinine concentration 
and GFR is not linear, and serum creatinine only starts 
to rise when GFR has already decreased substantially. 
Dilution due to fluid overload, decreased creatinine 
generation due to reduced food intake, and decreased 
muscle activity or sepsis can further increase the delay 
in serum creatinine increase after onset of AKI. 
Furthermore, the relationship between the clinical 
course and the pathology of AKI is not well understood. 
In a study by Chu and colleagues,10 many patients with 
histological evidence for AKI did not fulfil the clinical 
criteria for AKI or acute kidney disease, mainly because 
the serum creatinine increase was slower than the rate 
of increase required to meet the AKI definition.

Early detection of AKI through monitoring of urinary 
output is predictive of development of later AKI and is 
associated with mortality.11,12 In patients with sepsis, 
oliguria flags up impending AKI before detectable 
tubular injury occurs.13 Assessment of urinary output in 
6 h blocks is as effective as continuous urinary 
monitoring for prediction of AKI,11 and could be done in 
general wards, where the gain of early AKI awareness 
has most potential. Discriminative value of urinary 
output for evolution of AKI can be enhanced by use of 
the furosemide stress test, in which furosemide 
(1·0 or 1·5 mg/kg) is administered intravenously as a 
bolus. If the urinary output response is less than 100 mL 
over the following 2 h, both the risk for progression to 

Figure 1: The course of AKI over time
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stage 3 AKI and need for RRT increases. Furosemide 
binds to albumin and is actively secreted into the tubular 
lumen in the proximal convoluted tubule, so furosemide-
induced increase in urinary output can show the integrity 
of renal tubular function.14 The furosemide stress test 
outperforms urinary biomarkers in predicting the 

development of stage 3 AKI, the need for RRT, and 
inpatient mortality.15

Urinary biomarkers
The search for a troponin-like biomarker indicative of 
tubular damage, allowing earlier diagnosis of AKI 

Outcome derivation 
cohort

Derivation model 
population

Derivation model

Cardiac surgery

· · ·

·

· · · ·

 
 

· · · ·

· · · ·7

·
·

· ·

· · · ·

· · · ·

· ·

Contrast-induced AKI

· ·

·

· ·

· · ·
· ·

·

· · · ·





























Series

2142 www.thelancet.com   Vol 389   May 27, 2017

compared with the classic measurements, has been a 
top priority. These biomarkers reflect either damage to 
tubular cells (eg, N-acetyl β gluco saminidase, 
glutathione S transferase, and alkaline phosphatase), 
podocytes, or structural parts of the kidney (eg, F actin 
and sodium–hydrogen exchanger 3); or enhanced 
inflammatory crosstalk in the kidney (eg, 
interleukins 18, 6, 10, and 5), upregulation of genes in 
response to AKI (such as neutrophil gelatinase-
associated lipocalin [NGAL] and kidney injury 
molecule-1), decreased proximal tubular reabsorption 
(eg, retinol binding protein, cystatin C and β₂ 
microglobulin) or markers of cell cycle arrest (eg, tissue 
inhibitor metalloproteinase-2 [TIMP-2] and insulin-like 
growth factor binding protein-7 [IGFBF-7]). Use of 
proteomics has facilitated development of panels of 
biomarkers to increase diagnostic accuracy.16 
Biomarkers do not always translate usefully from the 
research setting to clinical practice17 for different 
reasons. AKI is often not a single hit at a well defined 
timepoint; the window of opportunity is mostly short, 
and differs between biomarkers, so timing of sampling 

becomes troublesome and nearly continuous sampling 
might be required. None of the biomarkers are specific 
for kidney disease and all biomarkers can be increased 
by other underlying causes, irrespective of the presence 
of kidney damage. Because it is unclear how much 
damage is clinically relevant, the diagnostic threshold 
for these biomarkers is unknown; improvements in 
diagnostic sensitivity by use of biomarkers compared 
with existing criteria might just reflect false positive 
results.

Whether reported thresholds are relevant in all 
conditions, irrespective of age, sex, other comorbidities, 
and eventual presence of underlying chronic kidney 
damage, is uncertain. Furthermore, technical issues 
remain in sampling, storage, and handling of samples. 
The test methods for measuring biomarkers need to be 
validated and standardised, and the effect of issues such 
as antibody configuration of the test clarified.

Whereas initial studies with NGAL in the well 
defined setting of paediatric cardiac surgery were 
promising,18 later studies did not show an improvement 
in diagnostic performance over existing criteria.19,20 

Outcome derivation 
cohort

Derivation model 
population

Derivation model

Heart failure

Liver surgery

· · ·

General surgery

· · ·

Orthopaedic surgery

· · · ·

Rhabdomyolysis

· · · ·

Table 1: Externally validated risk prediction models for AKI
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NGAL is associated with inflammation so is not useful 
in patients with sepsis.21,22 In the Acute Kidney Injury 
NGAL Evaluation of Symptomatic Heart Failure Study 
(AKINESIS),23 plasma NGAL was not superior to 
serum creatinine for predicting AKI stage 2 or poor in-
hospital outcome in patients with decompensated 
heart failure.

Cell cycle inhibitors appear to be an early signal of 
renal injury. When cells are injured they respond by 
shutting down and arresting their cell cycle to avoid cell 
death and inflammation. Several large studies in 
critically ill patients underlined the role of these 
biomarkers for prediction of KDIGO stage 2 and 3 
AKI.24 The US Food and Drug Administration (FDA) 
approved the use of [TIMP-2]*[IGFBP-7], but stressed 
that the use of these markers is not a standalone test for 
KDIGO stage 2 or 3 AKI and should not be used at point 
of care.25 Concerns about the usefulness of [TIMP-
2]*[IGFBP-7] for AKI prediction remain because these 
markers are influenced by several other comorbidities26 
and do not outperform clinical measures.15 Only when 
biomarkers have clearly been shown to outperform a 
standard clinical model and improve patient outcomes 
will they be ready for implementation in clinical 
practice. Only a handful of studies have incorporated 
biomarkers as a clinical decision aid or risk stratification 
tool and results from these studies have been 
inconsistent.27–30

Imaging techniques
The need for non-invasive tools to aid in (differential) 
diagnosis, prediction of recovery, and unravelling of the 
pathophysiology of AKI, have led to renewed interest in 
ultrasound and functional MRI techniques.

Doppler resistive index (RI) has been used in different 
settings for prediction of AKI as well as for identification 
of prerenal azotaemia and for assessment of AKI 
severity, and has shown promising results.31–33 Changes 
in renal perfusion can be assessed in different 
pathological conditions by use of contrast-enhanced 
ultrasonography (CEUS), which allows organ blood 
quantification. This technique might allow assessment 
of renal perfusion in response to different therapeutic 
actions.34,35

Several functional MRI techniques such as blood 
oxygen level dependent (BOLD), arterial spin labelling 
(ASL), and ultrasmall superparamagnetic iron oxide 
particle (USPIO) MRI have also gained interest.36 These 
non-invasive techniques, which allow simultaneous 
evaluation of renal morphology and renal function, are 
based on the paramagnetic properties of deoxy-
haemoglobin (BOLD), magnetic labelling of water 
protons (ASL), and administration of superparamagnetic 
iron particles (USPIO).36 BOLD MRI has been used in 
patients with allografts to differentiate between acute 
tubular necrosis and acute rejection; however, studies 
have shown inconsistent results.37,38 ASL39 assesses renal 

perfusion, USPIO40 measures inflammation, and BOLD 
MRI reflects tissue oxygen bioavailability—although it 
cannot differ entiate between changes in oxygen delivery 
(renal blood flow), oxygen consumption (sodium 
transport), and efficiency of oxygen use. BOLD MRI 
works on the assumption that tissue oxygen levels are in 
equilibrium with, and proportional to, blood oxygen 
levels, but this premise has been questioned.41 
Furthermore, no standardised method to analyse renal 
BOLD MRI data exists.42 Doppler RI and CEUS have 
several shortcomings as well.43–45 RI measurement is 
affected by numerous confounding factors such as 
changes in intrarenal compliance, renal interstitial 
pressure, heart rate, and intra-abdominal pressure.46,47 
Although CEUS can indicate substantial changes in 
cortical perfusion, interobserver variability is high and 
responses among patients are heterogeneous, 
unpredictable, and have an unclear relationship with 
patient characteristics.47

Before these imaging techniques can be used in 
clinical practice, larger studies in different settings and 
patient groups, with standardisation of techniques, are 
needed.

Electronic automated early warning systems
Care in AKI is often suboptimal and many opportunities 
for AKI prevention are missed.1 Although early 
nephrology involvement seems beneficial,48,49 non-
nephrologists should also be educated about AKI since 
they are most likely to be the first or main health-care 
professionals involved in care for patients with AKI.50 

Electronic automated early warning systems for AKI 
are being developed and implemented. Such systems 
require two essential steps: detection and alerting. 
Detecting algorithms differ in the type of data (eg, sex, 
age, and change of serum creatinine), the extent of data 
sources (data collected during hospital admission or 
previous data from external sources), and the decision 
support rules they use. This heterogeneity results in 
varying sensitivity, specificity, accuracy, and robustness. 
Alerting systems can be passive (eg, a pop up in the 
health record), active (a text message requiring reading 
confirmation), or even interruptive (patient data cannot 
be used further until action is taken). Furthermore, the 
alert should be accompanied by clear instructions on 
what action to take in response to the alert and 
implementation of automated warning systems should 
also include education and awareness campaigns. 
Differences in approach for these steps might explain 
why some systems work51 and others do not;52 an AKI 
care bundle including the use of electronic alert 
systems improved in-hospital mortality rates and 
reduced odds for AKI deterioration,51 whereas an 
electronic alerting system used without well structured 
instructions on how to follow up an alert did not 
change practice and thus failed to improve patient 
outcomes.52
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Preventive interventions
In patients at risk, preventive measures should be taken 
to avoid renal injury or prevent further injury progression 
(figure 1). So far, only volume loading for the prevention 

of contrast-induced AKI and avoidance of drugs that 
might contribute to AKI have proven to be of value, 
whereas results for other strategies are inconclusive or 
indicate potential harm (table 2).

Effect on AKI 
incidence

Evidence for effect Comments

Contrast-induced AKI

··

··

··

··

··

··

··

Perioperative major non-vascular surgery

··

··

··

··

··

Perioperative cardiovascular surgery

··

··

 

··

··

Intensive care unit

··

Table 2: Interventions for prevention of AKI
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Optimisation of volume status
Restoration and maintenance of adequate systemic and 
renal perfusion are key, and can be achieved by 
administration of fluids and vasoactive drugs. However, 
patients with early-stage AKI are at increased risk of 
developing fluid overload because of oliguria. Fluid 
overload is associated with increased mortality in 
patients with AKI and does not contribute to restoration 
of kidney function. Thus, a conflict exists between 
adequate fluid resuscitation in hypotension and the 
harmful consequences of fluid overload.53 In any case 
over zealous administration of intravenous fluids should 
be avoided. Changes in fluid status can be independent, 
and even occur in opposite directions, in the interstitial 
space and intravascular compartment. Correct 
assessment and monitoring of volume status is a major 
challenge.

Early goal-directed therapy can prevent organ failure and 
improve patient survival.54 Implementation of protocolised 
haemodynamic management strategies aim ing to achieve 
central venous pressures of 8–12 mm Hg rapidly, and more 
restricted fluid loading later on, are recommended.7,55 Three 
large randomised trials56–58 in patients with early septic 
shock did not show benefit from early goal-directed therapy 
versus control. However, mortality was substantially lower 
in the treatment groups than in the control group in the 
study by Rivers and colleagues,54 suggesting that key 
components such as rapid and adequate fluid resuscitation 
and haemodynamic management have already become 
standard care and led to an overall reduction in mortality.

Assessment of fluid status
Whereas oedema should be checked for in the ankles of 
all patients, the thighs and buttocks should also be 
assessed in those who are bedridden. Presence of 
oedema does not exclude intravascular volume 
depletion. Oliguria can indicate reduced renal 
perfusion. The use of central venous pressure and 
pulmonary artery catheters to assess volume status are 
debated in critically ill patients because they do not 
predict the response to a fluid challenge59 or improve 
outcome in the general intensive care unit (ICU) 
population.60 Pulse wave and pulse contour analysis 
allows continuous monitoring of cardiac output and 
beat-to-beat variations after administration of a fluid 
bolus or during a passive leg raise test, and their use 
might improve outcomes in patients undergoing high-
risk surgery.61 In patients who are critically ill and on a 
mechanical ventilator, dynamic measures such as 
stroke volume variation and pulse pressure variation 
can be used to identify hypovolaemia and fluid 
responsiveness. Pulmonary congestion can be a sign of 
genuine fluid overload in the circulating compartment 
or of a failing heart. Volume depletion in the circulating 
compartment can be assessed by ultrasonographic 
measurement of the diameter and collapsibility of the 
inferior vena cava.62

Type of fluid to administer
Colloid solutions theoretically provide a longer duration 
of plasma expansion compared with a similar volume 
of crystalloid solutions. Randomised trials investigating 
the use of crystalloids or colloids as the primary source 
of volume resuscitation found no difference (albumin 
vs crystalloid in the SAFE trial),63 no difference in 
mortality but higher need for RRT with colloids 
(hydroxyethylstarch vs crystalloids in the CHEST 
study),64 or increased mortality with hydroxyethylstarch 
versus Ringer’s lactate (in the 6S Trial).65 In a meta-
analysis,66 hydroxyethylstarch was associated with an 
increase in mortality, AKI incidence, and use of RRT. 
Therefore, the European Medicines Agency and the 
FDA have issued warnings against the use of 
hydroxyethylstarch solutions in patients who are 
critically ill, and their use is now (correctly) no longer 
recommended.

Excess levels of chloride in 0·9% saline solutions 
might have adverse effects on acid–base homoeostasis 
and renal function. In observational studies67 a chloride-
restrictive strategy in patients who were critically ill was 
associated with reduced incidence of AKI and need for 
RRT, although these results were not confirmed in a 
recent trial68 in a general ICU population (including 
mostly postsurgery patients). However as rather limited 
amounts of fluids were applied, the recent trial might 
have been false negative.

Avoidance of nephrotoxicity and further insult
AKI is often iatrogenic. Use of drugs that can contribute 
to AKI, either directly or by inducing AKI through 
haemodynamic factors, should be scrutinised, 
especially in patients at high risk (eg, older patients, 
those with volume depletion, or patients taking a 
combination of non-steroidal anti-inflammatory drugs 
[NSAIDs], diuretics, and renin-angiotensin-aldos terone 
system [RAAS] blockers).69 The duration and dose of 
exposure should be minimised and, if appropriate, 
therapeutic drug monitoring should be done (eg, in 
patients given vancomycin or aminoglycosides). 
Electronic alerts can increase awareness of these 
dangerous combinations. Of note, even topical NSAIDs 
increase the risk of AKI.70

The argument that RAAS blockers should be stopped 
in the perioperative setting or in cases of intercurrent 
illness is controversial. In observational studies, an 
association between continuing RAAS inhibitor 
treatment preoperatively and reduced AKI incidence is 
only found when the analysis is restricted to studies with 
propensity matching and not in the overall patient 
group.71 The effect on AKI incidence of stopping rather 
than continuing RAAS inhibitor treatment in the 
perioperative period will be assessed in a systematic 
review.72 In the setting of cardiac surgery,73 temporarily 
stopping treatment with RAAS blockers prevented AKI 
associated with cardiac surgery. Continuation versus 
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temporary suspension of treatment with RAAS 
inhibitors74 was associated with a higher incidence of 
contrast-induced AKI, an effect more pronounced in 
older patients and in those with pre-existing chronic 
kidney disease. Stopping of RAAS inhibitor treatment 
can be promoted provided the RAAS inhibition is 
restarted after the intervention.75

Intensity of glycaemic control in the perioperative 
phase and in patients in the ICU has been a matter of 
controversy. Early single-centre studies showed that 
glycaemic control reduced mortality and incidence of 
AKI, but later multicentre trials did not confirm these 
findings.76 Because long-term benefits of strict 
glycaemic control are offset by the risk of hypoglycaemia, 
modest glycaemic control—ie, achieving serum glucose 
concentration of 8·3–10·0 mmol/L—is the preferred 
strategy.

Many interventions for prevention of contrast-
induced AKI have shown inconsistent results except for 
fluid loading with water and salt (table 2) and the use of 
small volumes of contrast media. Whereas 

hyperosmolar contrast media should be avoided, there 
is insufficient evidence to prefer the use of iso-osmolar 
over low-osmolar contrast media for prevention of 
contrast-induced AKI.7,55 For intravenous fluid 
administration, the use of bicarbonate is not superior 
to normal saline in prevention of this form of AKI.77 
Controversy remains about the appropriate schedule 
for volume expansion, especially in patients with heart 
failure, in whom the increased risk of AKI should be 
balanced against increased risk of hypervolaemia. 
Devices that aim to titrate the infusion rate to urinary 
output during volume expansion report seemingly 
promising results, but have often used suboptimal 
control strategies.78–81 Short, rapid volume expansion 
with sodium bicarbonate before contrast-enhanced CT 
was non-inferior to peri-procedural saline volume 
expansion,82 which is an important observation in view 
of logistics and costs in the ambulatory setting; oral 
fluids for volume expansion suffice in most patients 
receiving intravenous contrast.83,84 However, only two-
thirds of patients at risk of contrast-induced AKI are 

Figure 2: Flowchart for prevention of contrast-induced (CI) AKI

Administration of intravenous or intra-arterial contrast medium*

Risk stratification

Risk category

eGFR >60 mL/min per 1·73 m2†

Low risk of CI AKI Intermediate risk of CI AKI High risk of CI AKI

No diabetes or heart failure and eGFR
30–60 mL/min per 1·73 m2†

OR
Diabetes or heart failure and eGFR

45–60 mL/min per 1·73 m2†

No diabetes or heart failure and eGFR
<30 mL/min per 1·73 m2†

OR
Diabetes or heart failure and eGFR

<45 mL/min per 1·73 m2†
OR

Monoclonal gammapathy†

Course of action

Liberal fluid intake‡
1 L over 12 h before contrast administration

and 1 L over 12 h after contrast administration

Per oral volume expansion schedule‡
1 g NaCI + 150 mL of H2O every hour from 2 h before

until 6 h after contrast administration

Intravenous volume expansion with isotonic
saline or sodium bicarbonate‡

 1 L NaCI 0·9% over 12 h before and after contrast
 administration

OR

 1 L glucose 5% + 150 mmol/L bicarbonate 8·4%/L, 
 3 mL/kg per h over 1 h before and 1 mL/kg per h 
 during 6 h after contrast administration§
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sufficiently volume expanded before contrast 
administration.85 To improve precontrast hydration 
while safeguarding logistical challenges and costs, a 
step-up approach with oral fluid protocols for low-risk 
patients and intravenous fluid protocols for high-risk 
patients should be promoted (figure 2).86

Meta-analyses suggest a beneficial role for statins in 
the prevention of contrast-induced AKI87 in the setting of 
coronary intervention, but the results might not be 
generalisable to other settings. The beneficial effect of 
statins in prevention of contrast-induced AKI is not 
consistent in patients with CKD.88,89 The greatest 
reductions in contrast-induced AKI was observed when 
patients were treated with N-acetylcysteine (NAC) plus 
intravenous saline and with statins plus NAC and 
intravenous saline,90 but the role of NAC is debated 
because it also increases tubular secretion of creatinine 
and thus impairs assessment of changes in serum 
creatinine.

A study91 using data from the Nation Wide Inpatient 
Sample demonstrated that risk of contrast-induced AKI 
might be overestimated, confirming previous reports.92 
Depending on the underlying condition, the absolute 
risk of AKI attributable to contrast administration varied 
from modest to non-existent. In non-adjusted models 
risk of AKI was, for most conditions, even lower in 
patients who received contrast, compatible with the 
concept that physicians avoid using contrast in patients 
with more comorbidities because of the perceived risk of 
AKI. The low risk of AKI attributable to contrast 
administration suggests such a strategy might not be 
warranted in many conditions. However, the risk of 
contrast-induced AKI is not zero, and therefore this risk 
should always be balanced against the consequences of 
an incomplete diagnostic or interventional work-up 
caused by avoiding contrast administration.

Interventions to prevent (further) damage
Despite much research in AKI in the past decades, no 
candidate molecules have successfully translated from 
animal models to human beings. Because AKI can be 
the result of various insults, the likelihood of finding 
one substance for the prevention and treatment of the 
various forms of AKI is low. Alpha-melanocortin 
stimulating hormone receptor agonist (ABT-719), for 
example, has anti-inflammatory effects, but in a 
phase 2b trial93 ABT-719 treatment did not lower AKI 
incidence, affect concentrations of novel biomarkers, or 
change 90-day outcomes in patients after cardiac 
surgery. The most promising treatment for AKI in 
patients with sepsis is the recombinant human alkaline 
phosphatase, which is currently being tested in a 
phase 2b study.94

Several other interventions have either been 
controversial or not beneficial (table 2). The use of 
dopamine for AKI prevention has been abandoned, data 
on the efficacy of fenoldapam provide conflicting 

results,95 and mixed results have been shown for 
natriuretic peptides in AKI prevention.96,97 The rationale 
for use of statins in the perioperative period is a 
pleiotropic effect, but they have not been effective in 
human beings98 and increases in serum concentrations 
of creatinine and AKI incidence have been reported 
in patients treated de novo with atorvastatin 
or rosuvastatin.99,100

Low-quality evidence indicates a beneficial effect of 
levosimendan for prevention of AKI in cardiac surgery;101 
although the addition of levosimendan to standard 
treatment in adults with sepsis was not associated with 
less severe organ dysfunction or lower mortality than in 
those not given levosimendan.102 Recently, neither 
perioperative clonidine nor aspirin prevented AKI in 
non-cardiovascular surgery, possibly because the negative 
impact of the side-effects (hypotension with clonidine, 
and bleeding due to aspirin use) could not overcome the 
small positive effects.103

Non-pharmacological means to prevent AKI
Limb remote ischaemic preconditioning (RIPC) activates 
endogenous protective mechanisms against injury by 
ischaemia-reperfusion in distant organs, including the 
kidney. In a multicentre study in patients undergoing 
on-pump cardiac surgery, RIPC was induced by inflation 
of a blood pressure cuff applied to one of the patient’s 
upper arms to 200 mm Hg for 5 min, followed by 5 min 
reperfusion, for three cycles. This intervention reduced 
the incidence of AKI within 72 h after the operation and 
the use of RRT, and TIMP-2 plus IGFBP-7 and NGAL 
were lower in the RIPC group than in the control group 
4–24 h postoperatively.104 However, these results were not 
reproduced in two multicentre studies in cardiac 
surgery.105,106 A systematic review107 showed a benefit of 
RIPC for contrast-induced AKI but not for ischaemia-
induced AKI. Confounding variables, such as patient 
characteristics and ischaemic preconditioning protocols, 
might explain these conflicting results.

Starting time of renal replacement therapy 
in AKI
For some conditions, such as pulmonary oedema or 
severe hyperkalaemia not responsive to conservative 
therapy, RRT can be life-saving. For all other situations, 
the start time of RRT is a matter of ongoing debate 
because data seem to conflict. Confusingly, different 
studies use time factors, biochemical factors, or clinical 
characteristics to define early versus late start of RRT. In 
an observational cohort,108 early start of RRT was 
associated with higher mortality than late start of RRT 
and lower versus higher serum creatinine to define early 
or late start of RRT (criterion based), whereas assessment 
on the basis of duration of ICU stay (time based) showed 
that early start of RRT was associated with lower mortality 
than late start of RRT. Because most studies have used a 
criterion-based approach rather than a time-based 
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approach, it might be better to use the terminology 
immediate start versus delayed start of RRT to indicate 
the relation of the timing of RRT with the moment a 
certain criterion has been met, rather than the 
terminology early versus late. In a meta-analysis no 
benefit of immediate start of RRT was observed when 
randomised trials were included, whereas observational 
cohort studies showed a 28% risk reduction in mortality, 
with a high risk for publication bias.109 Two recent large 
trials presented conflicting results. The single centre 
ELAIN study,30 which assessed patients in ICU with AKI 
stage 2 and with either severe sepsis or refractory fluid 
overload, showed that immediate initiation of RRT 
reduced 90-day mortality compared with delayed start of 
RRT (44 of 112 patients in the immediate RRT initiation 
group vs 65 of 119 patients in the delayed RRT initiation 
group, hazard ratio 0·66, 95% CI 0·45–0·97). The 
immediate group started RRT (100%) within 8 h of 
inclusion, whereas the delayed group started within 12 h 
of reaching AKI stage 3 (91%); only 9% of patients in this 
group did not start RRT—so in reality, this protocol 
tested the effect of delaying RRT in a patient group with 
a clear indication for renal replacement. The multicentre 
Artificial Kidney Initiation in Kidney Injury study 
(AKIKI)110 included patients in ICU who were critically ill 
needing pressors or invasive ventilation with AKI stage 3, 
but excluded patients who had a hard indication for RRT 
at eligibility screening. In the early initiation group RRT 
was started immediately after inclusion, whereas in the 
late initiation group start of RRT was delayed until one of 
the well defined hard criteria for starting RRT was met. 
In effect, this study compared start of RRT based on 
KDIGO stage 3 AKI criteria versus start of RRT based on 
existing hard indications. In this setting, no advantage 
for immediate start compared with delayed start of RRT 
was observed (mortality at 60 days was 150 of 311 patients 
vs 153 of 308 patients). In the delayed start group, 49% of 
patients did not start RRT at all, and recovery of residual 
diuresis was faster, and the occurrence of line infection 
was lower than in patients in the immediate start group 
(5% vs 10% of patients). This finding indicates that a too 
precocious start of RRT is not helpful, and might 
contribute further damage to an already injured kidney. 
Given the vast heterogeneity of underlying clinical 
scenarios and complications that patients with AKI have, 
doubts remain about whether this clinical dilemma can 
eventually be solved by decisive randomised trials. 
Instead, a practical way to improve clinical care might lie 
in the development of algorithms that provide a 
framework of specific recommendations to assist 
clinicians in their individual decision making.111

CKD after AKI
Many patients who develop AKI will not have any follow-
up of their kidney function, although the risks of 
recurrent AKI are well known.112 Over the past decade, 
evidence has accumulated suggesting that severe AKI 

predisposes patients to faster progression of CKD later 
on—especially if they have had multiple hits of AKI 
or have pre-existing CKD (figure 1).112 Therefore, it is 
important that patients are actively involved in the 
preservation of their kidney health and postdischarge 
follow-up of kidney function is organised.
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