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 CURRENTOPINION Fluid resuscitation for acute kidney injury: an
empty promise

Scott C. Watkinsa and Andrew D. Shawb

Purpose of review
The past decade has seen more advances in our understanding of fluid therapy than the preceding
decades combined. What was once thought to be a relatively benign panacea is increasingly being
recognized as a potent pharmacological and physiological intervention that may pose as much harm as
benefit.

Recent findings
Recent studies have clearly indicated that the amount, type, and timing of fluid administration have
profound effects on patient morbidity and outcomes. The practice of aggressive volume resuscitation for
‘renal protection’ and ‘hemodynamic support’ may in fact be contributing to end organ dysfunction. The
practice of early goal-directed therapy for patients suffering from critical illness or undergoing surgery
appears to offer no benefit over conventional therapy and may in fact be harmful. A new conceptual
model for fluid resuscitation of critically ill patients has recently been developed and is explored here.

Summary
The practice of giving more fluid early and often is being replaced with new conceptual models of fluid
resuscitation that suggest fluid therapy be ‘personalized’ to individual patient pathophysiology.

Keywords
acute kidney injury, fluid overload, fluid resuscitation, goal-directed fluid therapy, early goal-directed fluid
therapy

INTRODUCTION
Acute kidney injury (AKI) is a common and serious
complication affecting more than half of the
patients admitted to the intensive care unit (ICU)
as well as hospitalized and postsurgical patients
[1&&,2]. The mainstay of prevention and treatment
of AKI has been intravenous fluid therapy with the
rationale being that fluid therapy augments cardiac
output (CO), maintains urine flow, and dilutes
nephrotoxic substances, thus minimizing ischemic
and toxic insults to the kidney [3]. Fluid therapy has
been the first step in the management of hemody-
namic compromise, low urine output, and AKI since
the use of an alkalinized salt solution for the treat-
ment of cholera was described in 1832 [3,4]. Over
the last few years, this decade-old practice has been
increasingly called into question with many recog-
nizing the deleterious effects of excess volume
administration [3,5,6]. Relatively small positive
fluid balances of 5–10% of body weight have been
associated with organ dysfunction and poor clinical
outcomes in the critically ill and after routine
surgery [7–9]. Benefits of fluid resuscitation are

short-lived and limited to the early stage of select
disease states such as sepsis, whereas fluid restrictive
strategies appear to pose no increased risk of AKI. In
addition to the harm posed by excess fluid, certain
types of fluid appear to impair renal function inde-
pendent of the quantity administered [10&&,11,12].
This review seeks to shed new light on recent advan-
ces involving fluid therapy and kidney function that
stand to change a practice that has seen little change
in decades.
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Fluid therapy for acute kidney injury
There is increasing recognition that intravenous
fluids are not inert substances but potent drugs with
complex pharmaco-therapeutic actions [4,13]. The
hemodynamic ‘half-life’ of intravenous fluids is
short-lived, with only !20% of intravenous fluids
remaining in the intravascular compartment after
90 min under normal physiological conditions, and
as little as 5% in disease states such as sepsis [14,15].
Despite the absence of data supporting its benefit
and increasing evidence suggesting harm, fluid
therapy remains a key component of the prevention
and treatment of AKI [3,16,17]. The belief that infu-
sions of large volumes of intravenous fluids can
improve organ perfusion and prevent or treat AKI
is not supported by data and does not reflect the
complex nature of AKI [3,16,17]. Over the last dec-
ade, numerous clinical studies [3,18–27] have dem-
onstrated harm from excess fluids and benefit from
removal of excess fluids in outcomes in patients
with AKI. Evidence is mounting that the practice
of aggressive fluid therapy with the intent of
improving end organ perfusion and function is
misguided and in fact may lead to fluid overload
and further end organ injury.

Fluid volume and acute kidney injury
Clinical dogma has long dictated that fluids were
the treatment of choice for maintaining adequate
renal perfusion and ensuring urine output in
patients with or at risk of AKI [28&]. This traditional
dogma is challenged by increasing evidence that
leaves little doubt that fluid overload is associated
with AKI, prolonged ICU stay, development or

worsening of organ dysfunction, and excess
mortality [7,8,29–35,36&,37,38]. The causality link
between fluid overload and AKI remains less clear, in
part because the effects of both AKI and fluid over-
load are similar and the fact that fluid overload
frequently accompanies AKI regardless of cause
[6]. Endothelial dysfunction appears to be the
underlying nephrotoxic effect of fluid overload.
Alteration and breakdown of the endothelial glyco-
calyx causes an increase in vascular fluid capaci-
tance, capillary leak, and interstitial edema,
creating a vicious cycle in which intravascular
depletion leads to the need for intravascular volume
expansion, but fluid replacement leads to worsening
edema and volume overload [3]. Disruption of the
endothelial glycocalyx has been demonstrated in
numerous disease processes including sepsis,
surgery, trauma, and postischemic states [39&&,40–
44]. Increasing interstitial edema and fluid overload
impair renal perfusion by increasing renal venous
pressure, extra-renal compression, and renal inter-
stitial pressure, which ultimately decrease the glo-
merular ultrafiltration gradient [3]. Fluid overload
may lead to visceral edema and intra-abdominal
hypertension (IAH), which has been linked to AKI
[45,46]. Intra-abdominal pressures are transmitted
to the encapsulated kidney, causing an elevation in
intra-capsular pressure and a decrease in renal blood
flow and glomerular filtration rate [46]. In addition
to the evidence linking fluid overload to AKI, there is
evidence that avoidance of fluid overload may be
associated with lower need for renal replacement
therapy, a lower incidence of AKI, increased survival
from septic shock, and AKI treated with renal
replacement therapy [30,32,47]. The evidence
would suggest that fluid overload might be a pre-
ventable source of renal morbidity and patient
mortality [28&].

Fluid type and acute kidney injury
In addition to the volume of intravenous fluid
administered, the type of fluid appears to impact
renal function and may contribute to AKI. The most
common intravenous fluid administered to patients
worldwide is isotonic saline (0.9% salt solution)
[4,5]. Isotonic saline’s popularity remains despite
increasing evidence linking it to a greater risk of
AKI, morbidity, and death when compared with
other balanced electrolyte solutions [48,49&]. A
recent meta-analysis of 21 studies found a signifi-
cantly higher risk of AKI, renal failure, metabolic
acidosis, blood transfusion, and duration of mech-
anical ventilation in patients receiving high-
chloride fluid resuscitation [10&&]. Two recent pro-
pensity matched studies [50,51], one involving

KEY POINTS

" Evidence is mounting that the practice of aggressive
fluid therapy with the intent of improving end organ
perfusion and function is misguided and in fact may
lead to fluid overload and further end organ injury.

" After the initial acute phase of illness, additional fluids
are unlikely to augment CO and tissue perfusion and
may in fact contribute to worsening organ dysfunction.

" GDT or protocol-based fluid therapy offers no benefit
over conventional fluid therapy that maintains organ
perfusion and avoids fluid overload.

" The composition, quantity, and timing of fluid therapy
should be personalized to each patient based on the
patient’s unique physiological response to fluids.
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adult cardiac surgery patients and another involving
adults with sepsis, demonstrated an increased risk of
mortality associated with hyperchloremic fluids.
The mechanism of harm from isotonic saline
appears to result from its ability to cause hyper-
chloremia and metabolic acidosis [52–54]. The
increased chloride load results in constriction of
the afferent renal arteries, a reduction in renal arte-
rial flow, and a reduction in renal cortical tissue
perfusion, even when administered to healthy
volunteers [55,56]. Isotonic saline is not the only
fluid type linked to patient morbidity and mortality.
Results from several large studies [11,57–61] using
6% hydroxyethyl starch for resuscitation of septic
and critically ill patients demonstrated an increase
in AKI and/or use of renal replacement therapy
leading to restriction in its use. Conversely, evi-
dence suggests that fluid resuscitation with 4%
albumin solution is safe, except for patients with
traumatic brain injury, and poses no increased risk
of AKI or nephrotoxicity [12].

The false promise of early goal-directed
therapy
In 2001, a single-center, randomized control trial
(RCT) of protocol-based resuscitation for patients
with septic shock led to the widespread adoption
of ‘early goal-directed therapy’ (EGDT) for the man-
agement of sepsis [62]. Despite the inability of fol-
low-up studies to reproduce and validate EGDT, it
was incorporated into the Surviving Sepsis Cam-
paign (SSC) guidelines in 2004 [63]. Recently, the
SSC revised their guidelines and removed recom-
mendations for aggressive fluid administration
based in part on the results of several large RCTs
demonstrating no outcome benefit to aggressive
fluid administration [64,65,66&,67]. The SSC guide-
lines had previously recommended aggressive fluid
administration targeting a central venous pressure
(CVP) of greater than 8 mmHg, but that level of CVP
may decrease renal blood flow and has been associ-
ated with an increased risk of AKI and mortality [68–
70]. In addition, up to half of septic patients have
been found to be ‘nonresponders’ to fluid therapy
and thus receive no benefit from fluid adminis-
tration [5]. Recently, another systematic review
and meta-analysis [71&&] found no benefit in out-
comes with EGDT for patients in septic shock.

The reported benefits of EGDT in septic patients
have led numerous groups to extrapolate goal-
directed hemodynamic therapy to other patient
populations, most notably surgical patients. In a
meta-analysis of 24 studies of GDT during surgery,
Prowle et al. [72] found that GDT was associated
with lower incidence of AKI, but only in studies in

which the amount of fluid administered in the GDT
group did not exceed the control group and the GDT
group incorporated inotropic medications. The
authors concluded that the observed reduction in
AKI was a function of maintenance of CO, that is,
renal perfusion, and avoidance of fluid overload,
that is, renal injury [72].

New strategies for fluid therapy
Recognizing that a large percentage of patients are
subjected to inappropriate fluid therapy, the Acute
Dialysis Quality Initiative (ADQI) recently sought to
establish a new model for evidence-based fluid
therapy [73]. The ADQI used expert consensus to
develop a new model for the resuscitation of crit-
ically ill patients consisting of four distinct phases:
Rescue, Optimization, Stabilization, and De-escala-
tion [73] (see Fig. 1 and Table 1). During the Rescue
phase, fluid is administered as boluses to support
acute life-threatening hemodynamic instability, for
example, uncompensated shock. Once the patient is
no longer at risk for acute decompensation, for
example, compensated shock, additional fluid is
titrated carefully using fluid challenges to Optimize
end organ perfusion and CO. Once the patient has
Stabilized, that is, no longer in state of compensated
or uncompensated shock, fluids are minimized to
achieve a fluid steady state. The final phase, De-
escalation, aims to remove excess fluid and mini-
mize additional harm. The Rescue, Optimization,
Stabilization, and De-escalation fluid model reflects
the current understanding that beyond the initial
acute phase of illness, additional fluids are unlikely
to augment CO and tissue perfusion and may in fact
contribute to worsening organ dysfunction [73].

Rescue
Optimization

Stabilization

Stage of resuscitation

De-escalation

Volume
status

FIGURE 1. Volume status at different stages of resuscitation.
Reproduced with permission from ADQI (www.ADQI.org).
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Although it is increasingly clear that aggressive fluid
administration is not beneficial, determining what
constitutes the optimal fluid resuscitation strategy
for each patient is less clear and a ‘one size fits all’
strategy is unlikely to be found. In the future, fluid
therapy may need to be ‘personalized’ for each
patient using a host of patient-specific targets and
physiological values to determine the optimal vol-
ume, type, and timing of fluid to administer or
restrict [74&&].

CONCLUSION
Intravenous fluids are routinely administered with
the clinical intent to increase mean arterial pressure
and CO in an effort to improve renal perfusion
pressure and renal blood flow, respectively. Unfortu-
nately, the tools needed to guide appropriate fluid
resuscitation are unreliable at best or simply not
available [3,75]. Without tools to guide fluid
titration, fluid accumulation (fluid overload) will
occur as frequent boluses and/or continuous infu-
sions are administered to achieve short-lived hemo-
dynamic effects [76–78]. With increasing evidence
linking fluid overload to end organ dysfunction, the
focus of fluid resuscitation will likely shift from
aggressive fluid replacement to one of aggressive
prevention of fluid overload. Future research is
needed to determine the best strategies for person-
alizing fluid therapy to patient and disease proc-
esses.
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