Fluid resuscitation for acute kidney injury: an empty promise

Scott C. Watkins and Andrew D. Shaw

Purpose of review
The past decade has seen more advances in our understanding of fluid therapy than the preceding decades combined. What was once thought to be a relatively benign panacea is increasingly being recognized as a potent pharmacological and physiological intervention that may pose as much harm as benefit.

Recent findings
Recent studies have clearly indicated that the amount, type, and timing of fluid administration have profound effects on patient morbidity and outcomes. The practice of aggressive volume resuscitation for ‘renal protection’ and ‘hemodynamic support’ may in fact be contributing to end organ dysfunction. The practice of early goal-directed therapy for patients suffering from critical illness or undergoing surgery appears to offer no benefit over conventional therapy and may in fact be harmful. A new conceptual model for fluid resuscitation of critically ill patients has recently been developed and is explored here.

Summary
The practice of giving more fluid early and often is being replaced with new conceptual models of fluid resuscitation that suggest fluid therapy be personalized to individual patient pathophysiology.

Keywords
acute kidney injury, fluid overload, fluid resuscitation, goal-directed fluid therapy, early goal-directed fluid therapy

INTRODUCTION
Acute kidney injury (AKI) is a common and serious complication affecting more than half of the patients admitted to the intensive care unit (ICU) as well as hospitalized and postsurgical patients [1**,2]. The mainstay of prevention and treatment of AKI has been intravenous fluid therapy with the rationale being that fluid therapy augments cardiac output (CO), maintains urine flow, and dilutes nephrotoxic substances, thus minimizing ischemic and toxic insults to the kidney [3]. Fluid therapy has been the first step in the management of hemodynamic compromise, low urine output, and AKI since the use of an alkalinized salt solution for the treatment of cholera was described in 1832 [3,4]. Over the last few years, this decade-old practice has been increasingly called into question with many recognizing the deleterious effects of excess volume administration [3,5,6]. Relatively small positive fluid balances of 5–10% of body weight have been associated with organ dysfunction and poor clinical outcomes in the critically ill and after routine surgery [7–9]. Benefits of fluid resuscitation are short-lived and limited to the early stage of select disease states such as sepsis, whereas fluid restrictive strategies appear to pose no increased risk of AKI. In addition to the harm posed by excess fluid, certain types of fluid appear to impair renal function independent of the quantity administered [10**,11,12]. This review seeks to shed new light on recent advances involving fluid therapy and kidney function that stand to change a practice that has seen little change in decades.

*Department of Anesthesiology, Division of Pediatric Cardiac Anesthesiology, Monroe Carell Jr. Children’s Hospital at Vanderbilt and aDepartment of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
Correspondence to Dr Andrew D. Shaw, MB, FRCA, FFICM, FCCM, Professor and Executive Vice Chair, Department of Anesthesiology, Vanderbilt University School of Medicine, 1211 21st Avenue South, Medical Arts Building, Room 722, Nashville, TN 37212, USA.
Tel: +1 615 875 3142; e-mail: andrew.shaw@vanderbilt.edu

Curr Opin Crit Care 2016, 22:000–000
DOI:10.1097/MCC.0000000000000363
KEY POINTS

- Evidence is mounting that the practice of aggressive fluid therapy with the intent of improving end organ perfusion and function is misguided and in fact may lead to fluid overload and further end organ injury.
- After the initial acute phase of illness, additional fluids are unlikely to augment CO and tissue perfusion and may in fact contribute to worsening organ dysfunction.
- GDT or protocol-based fluid therapy offers no benefit over conventional fluid therapy that maintains organ perfusion and avoids fluid overload.
- The composition, quantity, and timing of fluid therapy should be personalized to each patient based on the patient’s unique physiological response to fluids.

REVIEW

Fluid therapy for acute kidney injury

There is increasing recognition that intravenous fluids are not inert substances but potent drugs with complex pharmaco-therapeutic actions [4,13]. The hemodynamic ‘half-life’ of intravenous fluids is short-lived, with only ~20% of intravenous fluids remaining in the intravascular compartment after 90 min under normal physiological conditions, and as little as 5% in disease states such as sepsis [14,15]. Despite the absence of data supporting its benefit and increasing evidence suggesting harm, fluid therapy remains a key component of the prevention and treatment of AKI [3,16,17]. The belief that infusions of large volumes of intravenous fluids can improve organ perfusion and prevent or treat AKI is not supported by data and does not reflect the complex nature of AKI [3,16,17]. Over the last decade, numerous clinical studies [3,18–27] have demonstrated harm from excess fluids and benefit from removal of excess fluids in outcomes in patients with AKI. Evidence is mounting that the practice of aggressive fluid therapy with the intent of improving end organ perfusion and function is misguided and in fact may lead to fluid overload and further end organ injury.

Fluid volume and acute kidney injury

Clinical dogma has long dictated that fluids were the treatment of choice for maintaining adequate renal perfusion and ensuring urine output in patients with or at risk of AKI [28*]. This traditional dogma is challenged by increasing evidence that leaves little doubt that fluid overload is associated with AKI, prolonged ICU stay, development or worsening of organ dysfunction, and excess mortality [7,8,29–35,36*,37,38]. The causality link between fluid overload and AKI remains less clear, in part because the effects of both AKI and fluid overload are similar and the fact that fluid overload frequently accompanies AKI regardless of cause [6]. Endothelial dysfunction appears to be the underlying nephrotoxic effect of fluid overload. Alteration and breakdown of the endothelial glycocalyx causes an increase in vascular fluid capacitance, capillary leak, and interstitial edema, creating a vicious cycle in which intravascular depletion leads to the need for intravascular volume expansion, but fluid replacement leads to worsening edema and volume overload [3]. Disruption of the endothelial glycocalyx has been demonstrated in numerous disease processes including sepsis, surgery, trauma, and postischemic states [39**,40–44]. Increasing interstitial edema and fluid overload impairs renal perfusion by increasing renal venous pressure, extra-renal compression, and renal interstitial pressure, which ultimately decrease the glomerular ultrafiltration gradient [3]. Fluid overload may lead to visceral edema and intra-abdominal hypertension (IAH), which has been linked to AKI [45,46]. Intra-abdominal pressures are transmitted to the encapsulated kidney, causing an elevation in intracapsular pressure and a decrease in renal blood flow and glomerular filtration rate [46]. In addition to the evidence linking fluid overload to AKI, there is evidence that avoidance of fluid overload may be associated with lower need for renal replacement therapy, a lower incidence of AKI, increased survival from septic shock, and AKI treated with renal replacement therapy [30,32,47]. The evidence would suggest that fluid overload might be a preventable source of renal morbidity and patient mortality [28*].

Fluid type and acute kidney injury

In addition to the volume of intravenous fluid administered, the type of fluid appears to impact renal function and may contribute to AKI. The most common intravenous fluid administered to patients worldwide is isotonic saline (0.9% salt solution) [4,5]. Isotonic saline’s popularity remains despite increasing evidence linking it to a greater risk of AKI, morbidity, and death when compared with other balanced electrolyte solutions [48,49*]. A recent meta-analysis of 21 studies found a significantly higher risk of AKI, renal failure, metabolic acidosis, blood transfusion, and duration of mechanical ventilation in patients receiving high-chloride fluid resuscitation [10*]. Two recent propensity matched studies [50,51], one involving...
adult cardiac surgery patients and another involving adults with sepsis demonstrated an increased risk of mortality associated with hyperchloremic fluids. The mechanism of harm from isotonic saline appears to result from its ability to cause hyperchloremia and metabolic acidosis [52–54]. The increased chloride load results in constriction of the afferent renal arteries, a reduction in renal arterial flow, and a reduction in renal cortical tissue perfusion, even when administered to healthy volunteers [55,56]. Isotonic saline is not the only fluid type linked to patient morbidity and mortality. Results from several large studies [11,57–61] using 6% hydroxyethyl starch for resuscitation of septic and critically ill patients demonstrated an increase in AKI and/or use of renal replacement therapy leading to restriction in its use. Conversely, evidence suggests that fluid resuscitation with 4% albumin solution is safe, except for patients with traumatic brain injury, and poses no increased risk of AKI or nephrotoxicity [12].

The false promise of early goal-directed therapy

In 2001, a single-center, randomized control trial (RCT) of protocol-based resuscitation for patients with septic shock led to the widespread adoption of ‘early goal-directed therapy’ (EGDT) for the management of sepsis [62]. Despite the inability of follow-up studies to reproduce and validate EGDT, it was incorporated into the Surviving Sepsis Campaign (SSC) guidelines in 2004 [63]. Recently, the SSC revised their guidelines and removed recommendations for aggressive fluid administration based in part on the results of several large RCTs demonstrating no outcome benefit to aggressive fluid administration [64,65,66*,67]. The SSC guidelines had previously recommended aggressive fluid administration targeting a central venous pressure (CVP) of greater than 8 mmHg, but that level of CVP may decrease renal blood flow and has been associated with an increased risk of AKI and mortality [68–70]. In addition, up to half of septic patients have been found to be ‘nonresponders’ to fluid therapy and thus receive no benefit from fluid administration [5]. Recently, another systematic review and meta-analysis [71**] found no benefit in outcomes with EGDT for patients in septic shock.

The reported benefits of EGDT in septic patients have led numerous groups to extrapolate goal-directed hemodynamic therapy to other patient populations, most notably surgical patients. In a meta-analysis of 24 studies of GDT during surgery, Prowle et al. [72] found that GDT was associated with lower incidence of AKI, but only in studies in which the amount of fluid administered in the GDT group did not exceed the control group and the GDT group incorporated inotropic medications. The authors concluded that the observed reduction in AKI was a function of maintenance of CO, that is, renal perfusion, and avoidance of fluid overload, that is, renal injury [72].

New strategies for fluid therapy

Recognizing that a large percentage of patients are subjected to inappropriate fluid therapy, the Acute Dialysis Quality Initiative (ADQI) recently sought to establish a new model for evidence-based fluid therapy [73]. The ADQI used expert consensus to develop a new model for the resuscitation of critically ill patients consisting of four distinct phases: Rescue, Optimization, Stabilization, and De-escalation [73] (see Fig. 1 and Table 1). During the Rescue phase, fluid is administered as boluses to support acute life-threatening hemodynamic instability, for example, uncompensated shock. Once the patient is no longer at risk for acute decompensation, for example, compensated shock, additional fluid is titrated carefully using fluid challenges to optimize end organ perfusion and CO. Once the patient has stabilized, that is, no longer in state of compensated or uncompensated shock, fluids are minimized to achieve a fluid steady state. The final phase, De-escalation, aims to remove excess fluid and minimize additional harm. The Rescue, Optimization, Stabilization, and De-escalation fluid model reflects the current understanding that beyond the initial acute phase of illness, additional fluids are unlikely to augment CO and tissue perfusion and may in fact contribute to worsening organ dysfunction [73].
Although it is increasingly clear that aggressive fluid administration is not beneficial, determining what constitutes the optimal fluid resuscitation strategy for each patient is less clear and a ‘one size fits all’ strategy is unlikely to be found. In the future, fluid therapy may need to be ‘personalized’ for each patient using a host of patient-specific targets and physiological values to determine the optimal volume, type, and timing of fluid to administer or restrict [74●●].

CONCLUSION

Intravenous fluids are routinely administered with the clinical intent to increase mean arterial pressure and CO in an effort to improve renal perfusion pressure and renal blood flow, respectively. Unfortunately, the tools needed to guide appropriate fluid resuscitation are unreliable at best or simply not available [3,75]. Without tools to guide fluid titration, fluid accumulation (fluid overload) will occur as frequent boluses and/or continuous infusions are administered to achieve short-lived hemodynamic effects [76–78]. With increasing evidence linking fluid overload to end organ dysfunction, the focus of fluid resuscitation will likely shift from aggressive fluid replacement to one of aggressive prevention of fluid overload. Future research is needed to determine the best strategies for personalizing fluid therapy to patient and disease processes.

Acknowledgements

None.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

2. An ancillary study to the ProCESS (Protocalized Care for Early Septic Shock) explored the impact of three different resuscitation strategies on renal outcomes in septic shock. They found no difference between the three fluid strategies studied: EGDT, protocol-based standard care, or conventional fluid therapy.
3. Intravenous fluids are routinely administered with the clinical intent to increase mean arterial pressure and CO in an effort to improve renal perfusion pressure and renal blood flow, respectively. Unfortunately, the tools needed to guide appropriate fluid resuscitation are unreliable at best or simply not available [3,75]. Without tools to guide fluid titration, fluid accumulation (fluid overload) will occur as frequent boluses and/or continuous infusions are administered to achieve short-lived hemodynamic effects [76–78]. With increasing evidence linking fluid overload to end organ dysfunction, the focus of fluid resuscitation will likely shift from aggressive fluid replacement to one of aggressive prevention of fluid overload. Future research is needed to determine the best strategies for personalizing fluid therapy to patient and disease processes.

Acknowledgements

None.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.
Fluid resuscitation for acute kidney injury Watkins and Shaw

A single-center, single ICU prospective study of the effects of restricting the use of chloride-rich fluids in a tertiary ICU and confirmed an overall increased incidence of AKI and renal replacement therapy requirement over a 1-year period. The authors compare their findings with those of similar studies and identify a number of potential confounders.

54. Prough DS, Bidani A. Hyperchloremic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthesiology 1990; 90:1247–1249.

A large, multicenter study comparing EGDT with conventional therapy on septic shock outcomes. The study found no benefit to EGDT for primary or secondary outcomes. In addition, they performed integrated cost-effectiveness analysis, which demonstrated increased cost with EGDT over conventional therapy.

Renal system

This article is of special interest to perioperative clinicians. The authors bring to light the need for personalized fluid therapy and provide practical recommendations to guide clinicians.

