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Abstract

Background: Fluid overload is frequently found in acute kidney injury patients in critical care units. Recent studies
have shown the relationship of fluid overload with adverse outcomes; hence, manage and optimization of fluid
balance becomes a central component of the management of critically ill patients.

Discussion: In critically ill patients, in order to restore cardiac output, systemic blood pressure and renal perfusion
an adequate fluid resuscitation is essential. Achieving an appropriate level of volume management requires
knowledge of the underlying pathophysiology, evaluation of volume status, and selection of appropriate solution
for volume repletion, and maintenance and modulation of the tissue perfusion. Numerous recent studies have
established a correlation between fluid overload and mortality in critically ill patients. Fluid overload recognition
and assessment requires an accurate documentation of intakes and outputs; yet, there is a wide difference in how
it is evaluated, reviewed and utilized. Accurate volume status evaluation is essential for appropriate therapy since
errors of volume evaluation can result in either in lack of essential treatment or unnecessary fluid administration,
and both scenarios are associated with increased mortality. There are several methods to evaluate fluid status;
however, most of the tests currently used are fairly inaccurate. Diuretics, especially loop diuretics, remain a valid
therapeutic alternative. Fluid overload refractory to medical therapy requires the application of extracorporeal
therapies.

Summary: In critically ill patients, fluid overload is related to increased mortality and also lead to several
complications like pulmonary edema, cardiac failure, delayed wound healing, tissue breakdown, and impaired
bowel function. Therefore, the evaluation of volume status is crucial in the early management of critically ill
patients. Diuretics are frequently used as an initial therapy; however, due to their limited effectiveness the use of
continuous renal replacement techniques are often required for fluid overload treatment. Successful fluid
overload treatment depends on precise assessment of individual volume status, understanding the principles of
fluid management with ultrafiltration, and clear treatment goals.
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Background
Fluid overload is frequently found in critically ill patients
with acute kidney injury (AKI). Increasing fluid overload
should not merely be considered an expected conse-
quence of fluid resuscitation or severe AKI, it should be
seen as a probably mediator of adverse outcomes. In critic-
ally ill patients, recent studies have highlighted the role of
fluid overload on adverse outcomes [1]. Observational

studies in pediatric patients who required continuous renal
replacement therapy (CRRT) have shown an association
between fluid overload and mortality [2–4]. Restrictive
fluid management strategies are beneficial during acute
respiratory distress syndrome and following major surgery
since they reduce the duration of mechanical ventilation
and the rate of cardiopulmonary complications [5, 6]. In
concert with these data, the control and optimization of
fluid balance is a key element of critically ill patients man-
agement, since inadequate fluid removal is associated with
peripheral edema and pulmonary edema, which can retard
weaning from mechanical ventilation, or compromise
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wound healing. We will focus on the evaluation and man-
agement of fluid overload in the intensive care unit (ICU).

Discussion
The role of fluid therapy in the development of fluid
overload
In critically ill patients, adequate fluid resuscitation is
essential to the restoration of cardiac output, systemic
blood pressure and renal perfusion in patients with car-
diogenic or septic shock [7, 8]. Prompt and adequate
treatment with intravenous solutions can also prevent
or limit subsequent AKI [9]. Achieving an appropriate
level of volume management requires knowledge of the
underlying pathophysiology, evaluation of volume sta-
tus, selection of appropriate solution for volume reple-
tion, and maintenance and modulation of the tissue
perfusion [10].
The administration of crystalloids solutions that are

recommend for the initial management of patients with
or at risk of AKI, and also in patients with sepsis ex-
pands the extracellular compartment, but over time
since critically ill patients have a increased capillary leak
intravenous solutions will leave the circulation and dis-
tribute in the extracellular volume leading to edema and
to fluid overload. These results in impaired oxygen and
metabolite diffusion, distorted tissue architecture, ob-
struction of capillary blood flow and lymphatic drainage,
and disturbed cell to cell interactions that may then con-
tribute to progressive organ dysfunction (Table 1). These
effects are prominent in encapsulated organs (liver and
kidneys) [11–13]. Fluid overload is not only a conse-
quence of fluid therapy but also occurs during severe
sepsis secondary to the release of complement factors, cy-
tokines and prostaglandin products and altered organ
microcirculation [14]. In this context, edema is attributed
to a combination of increased capillary permeability to
proteins and increased net trans-capillary hydrostatic pres-
sure through reduced pre-capillary vasoconstriction [15].

Fluid overload and outcomes
Several observational studies have demonstrated a cor-
relation between fluid overload and mortality in critically
ill patients with acute respiratory distress syndrome,
acute lung injury, sepsis, and AKI. Bouchard et al., have
shown that patients with fluid overload defined as an in-
crease in body weight of over 10 % had significantly
more respiratory failure, need of mechanical ventilation,
and more sepsis. After adjusting for severity of illness,
AKI patients with fluid overload had increased 30 day
and 60 day mortality. Among survivors, AKI patients who
required renal replacement therapy had a significantly
lower level of fluid accumulation at initiation of dialysis and
at dialysis cessation than non-survivors. Renal recovery was
significantly lower in patients with fluid overload [1]. In

children, a multicenter prospective study found that the
percentage of fluid accumulation at initiation of CRRT was
significantly lower in the survivors (14.2 % ±15.9 % vs.
25.4 % ±32.9 %, P = 0.03) [3].
Lungs are one of the organs in which adverse effects of

fluid overload are most evident, which can lead to acute
pulmonary edema or acute respiratory distress syndrome
[16]. Several studies have provided evidence associating
positive fluid balances with poorer respiratory outcomes. In
one of these studies, septic shock patients with acute lung
injury who received conservative fluid management after
initial fluid resuscitation had lower in-hospital mortality
[17]. In another study, Wiedemann et al. randomized 1000
patients to either a conservative or to a liberal strategy of
fluid management. Patients randomized to the conservative
fluid strategy had lower cumulative fluid balance, improved
oxygenation index and lung injury score, increased number
of ventilator-free days, and reduction in the length of ICU
stay. It is worth to mention that the conservative fluid
management strategy did not increase the incidence or
prevalence of shock during the study or the need for renal
replacement therapies [5]. Finally, in the Vasopressin in
Septic Shock Trial (VASST) study authors found that
higher positive fluid balance correlated significantly with in-
creased mortality with the highest mortality rate observed
in those with central venous pressure >12 mmHg [18].

Table 1 Consequences of fluid overload in organ systems
Organ Consequences

Cerebral edema Impaired cognition

Delirium

Myocardial edema Conduction disturbance

Impaired contractility

Diastolic dysfunction

Pulmonary edema Impaired gas exchange

Reduced compliance

Increased work of breathing

Renal interstitial edema Reduced RBF

Increased interstitial pressure

Reduced GFR

Uremia

Salt and water retention

Hepatic congestion Impaired synthetic function

Cholestasis

Gut edema Malabsorption

Ileus

Tissue edema Poor wound healing

Wound infection

Pressure ulceration

RBF renal blood flow, GFR glomerular filtration rate
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Fluid overload recognition and assessment
Fluid overload recognition and assessment in critically ill
patients requires an accurate documentation of intakes
and outputs; however, there is a wide variation in how
this information is recorded, reviewed and utilized. Mehta
RL and Bouchard J proposed some useful definitions to
help us to standardize the approach and facilitated com-
parisons [10]:

1. Daily fluid balance: daily difference in all intakes
and all outputs, which frequently does not include
insensible losses.

2. Cumulative fluid balance: sum of each day fluid
balance over a period of time.

3. Fluid overload: usually implies a degree of
pulmonary edema or peripheral edema.

4. Fluid accumulation: positive fluid balance, with or
without linked fluid overload.

5. Percentage of fluid overload adjusted for body
weight: cumulative fluid balance that is expressed
as a percent. A cutoff of ≥10 % has been associated
with increased mortality. Fluid overload percentage
can be calculated using the following formula [19]:

% Fluid overload
¼ total fluid in−total fluid outð Þ=admission body weight$ 100ð Þ

Fluid status assessment
Accurate volume status evaluation is essential for appro-
priate therapy as inadequate assessment of volume status
can result in not providing necessary treatment or in the
administration of unneeded therapy, both associated with
increased mortality. There are several methods to evaluate
fluid status; however, most of the tests currently used
are fairly inaccurate. We will describe some of these
methods.

% History and physical examination:
The usefulness of medical history, symptoms, and
signs along with routine diagnostic studies (chest
radiograph, electrocardiogram, and serum B-type
natriuretic peptide (BNP)) that differentiate heart
failure from other causes of dyspnea in the emergency
department were evaluated in a meta-analysis. Many
features increased the probability of heart failure, with
the best feature for each category being the presence
of past history of heart failure (positive LR = 5.8; 95 %
CI, 4.1–8.0); paroxysmal nocturnal dyspnea (positive
LR = 2.6; 95 % CI, 1.5–4.5); third heart sound gallop
(positive LR = 11; 95 % CI, 4.9–25.0); chest radiograph
showing pulmonary venous congestion (positive
LR = 12.0; 95 % CI, 6.8–21.0); and electrocardiogram
showing atrial fibrillation (positive LR = 3.8; 95 % CI,
1.7–8.8). A low serum BNP proved to be the most

useful test (serum BNP <100 pg/mL; negative
LR = 0.11; 95 % CI, 0.07–0.16) [20].
Importantly, signs like pulmonary rales, lower
extremity edema, and jugular venous distention have
significant limits for assessing fluid overload. There
are some studies that have correlated these sings
during physical examination and invasive measures
(e.g., pulmonary catheter wedge pressure (PCWP)).
Butman et al. [21] found that the presence of jugular
venous distension, at rest or inducible, had a
sensitivity (81 %), and a specificity (80 %) for
elevation of the pulmonary capillary wedge pressure
(≥18 mmHg). Using hepato-jugular reflux and
Valsalva maneuvers, Marantz et al. showed that
these maneuvers were valid in the diagnosis of
congestive heart failure in acutely dyspneic patients,
with low a sensitivity (24 %) and a high specificity
(94 %) [22].
On the other hand, in a prospective study, physical
signs of fluid overload were compared with
hemodynamic measurements in 50 patients with
known chronic heart failure. Sings like rales, edema,
and elevated mean jugular venous pressures were
absent in 18 of 43 patients with pulmonary capillary
wedge pressures ≥22 mmHg. The combination of
these signs had a sensitivity of 58 % and specificity
of 100 % [23].

% Chest radiography
Chest x-ray has been one of the most used tests to
evaluate for hypervolemia. Radiographic sings of
volume overload include dilated upper lobe vessels,
cardiomegaly, interstitial edema, enlarged pulmonary
artery, pleural effusion, alveolar edema, prominent
superior vena cava, and Kerley lines. However, up to
20 % of patients diagnosed with heart failure had
negative chest radiographs at initial emergency
department evaluation. Additionally, these
radiographic sings can be minimal in patients with
late-stage heart failure [24].
In patients with congestive heart failure,
radiographic signs had poor predictive value for
identifying patients with PCWP values ≥30 mmHg
where radiographic pulmonary congestion was
absent in 39 % of patients [25].
The X-ray technique and the clinical status of patient
impact radiographic performance for detecting
volume overload. Portably chest X-ray, reduce the
sensitivity of findings of volume overload [26], and
pleural effusions can be missed if the film is performed
supine. With intubated patients and patients with
pleural effusions, the sensitivity, specificity, and
accuracy of supine chest X-ray was reported to be
as low as 60 %, 70 %, and 67 % respectively [27].
Conversely, the frequency of volume overload findings
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in the chest X-ray increased with the severity of fluid
overload such as severe heart failure [28].

% Natriuretic peptides
High levels of BNP can be found with volume
overload; however, some conditions like myocardial
infraction and pulmonary embolism can cause elevated
levels of BNP. Other conditions that have to be taken
into account when evaluating BNP levels are obesity,
associated with lower BNP levels and renal failure,
associated with high BNP levels. Patients with heart
failure who have elevated base-line levels of BNP.
The greatest utility of BNP levels is in the absence of
elevation, since low BNP levels have a high negative
predictive value for excluding heart failure diagnosis.
On the other hand, high BNP levels can be non-
specific for volume overload [26].

% Bioimpedance vector analysis
Bioelectrical impedance analysis is a commonly used
method for estimating body composition, specifically
detecting soft tissue hydration with a 2–3 %
measurement error. It is a noninvasive, inexpensive
and highly versatile test that transforms electrical
properties of tissues into clinical information [29].
Bioimpedance vector analysis (BIVA) measures whole
body fluid volume and is based on patterns of the
resistance-reactance graph, relating body impedance
to body hydration [29]. Clinical information on
hydration is obtained through patterns of vector
distribution with respect to the healthy population
of the same race, sex, class of body mass index,
and age. Changes in tissue hydration status below
500 ml are detected and ranked. BIVA was examined
as an indicator of fluid status compared to central
venous pressure (CVP) in 121 critically ill patients
[30]. In this study patients were classified in three
groups according to their CVP value: low (0 to
3 mmHg); medium (4 to 12 mmHg); and high (13
to 20 mmHg). The agreement between BIVA and
central venous pressure indications was good in the
high CVP group, moderate in the medium CVP
group, and poor in low CVP group. The combined
evaluation of peripheral tissue hydration (BIVA)
and central filling pressure (CVP) could provide a
useful clinical assessment instrument in the planning
of fluid therapy in critically ill patients, particularly in
those with low CVP [31].

% Thoracic ultrasound
Sonographic artifacts known as B-lines that suggest
thickened interstitial or fluid-filled alveoli can be
detected using thoracic ultrasound (Fig. 1). PCWP
and fluid accumulation in lungs have been correlated
with the presence of B-lines ("comet-tail images") in
patients with congestive heart failure [32]. Agricola
et al., used thoracic ultrasound to detect “comet-tail

images” and obtained an individual patient comet-
tail image score by summing the number of B-lines
in each of the scanned spaces assessed (right and left
hemi thorax, from second to fourth intercostals’
space, from para-sternal to mid-axillary line);
authors found significant positive linear correlations
between comet-tail images score and extra-vascular
lung water determined by the PiCCO System,
between comet score and PCWP, and between
comet-tail images score and radiologic sings of fluid
overload in the lungs [33].

% Vena cava diameter ultrasound
The measurement of the inferior vena cava (IVC)
diameter can also be use to assess volume status.
Normal diameter of IVC is 1.5 to 2.5 cm (measured
3 cm from the right atrium); volume depletion is
considered with an IVC diameter <1.5 cm while an
IVC diameter >2.5 cm suggests volume overload.
In an observational study on blood donors, Lyon et al.
evaluated the inferior vena cava diameter (IVCd)
during inspiration (IVCdi) and during expiration
(IVCde), before and after blood donation of 450 mL.
Significant differences were found between the IVCde
before and after blood donation and between IVCdi
before and after donation (5.5 mm and 5.16 mm,
respectively) [34]. In patients treated for hypovolemia,
Zengin et al. evaluated the IVC and right ventricle
(RVd) diameters and diameter changes with the
diameters and diameter changes of healthy volunteers.

Fig. 1 Lung comet tail image. ‘B lines’ also known as comet-tail
images are a marker of pulmonary edema. In the presence of
extravascular lung water the reflection of the ultrasound beam
on the sub-pleural interlobular septa thickened by edema creates
comet-tail reverberation artifacts. The ultrasound appearance is of
a vertical, discrete, hyperechogenic image that arises from the
pleural line and extends to the bottom of the screen moving
synchronously with the respiration (white arrows)
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The IVCd was measured ultrasonographically by
M-mode in the subxiphoid area and the RVd was
measured in the third and fourth intercostals spaces
before and after fluid resuscitation. As compare with
healthy volunteers average diameters in hypovolemic
patients of the IVC during inspiration and expiration,
and right ventricule diameter were significantly lower.
After fluid resuscitation, there was a significant
increase in mean IVC diameters during inspiration
and expiration as well as in the right ventricule
diameter [35]. Bedside inferior vena cava diameter
and right ventricule diameter evaluation could be a
practical noninvasive instrument for fluid status
estimation and for evaluating the response to fluid
therapy in critically ill patients.

Fluid overload management
Diuretic therapy
Diuretics, especially loop diuretics, remain a valid thera-
peutic alternative for relieving symptoms and improving
pathophysiological states of fluid overload such as con-
gestive heart failure and in patients with AKI. At this time,
there is no evidence that favors ultrafiltration over diuretic
use in volume overload patients with or without AKI in
terms of less progression of AKI, improved clinical out-
comes or reduce incidence of AKI [36]. Despite that more
patients developed AKI during diuretic treatment, numer-
ous studies have demonstrated that more aggressive use of
loop diuretics to achieve greater volume removal is associ-
ated with improved outcomes (Table 2) [37–40].
What should be the goal of urine output when using

diuretics to manage fluid overload? Some empirical obser-
vations have shown that a urine output of 3–4 ml/kg/h
rarely causes intravascular volume depletion as capillary
refill can meet such rates in almost all patients [41]. Di-
uretics could be either administered by bolus or using a
continuous infusion. There has been controversy about
which of these strategies is better; some authors advocate
that diuretic infusion is superior to boluses since urinary
output could be maintain easily [41]. In one study diuretic
infusion was associated with greater diuresis and this was
achieved with a lesser dose [42]; infusion was also

associated with fewer adverse events such as worsening
AKI, hypokalemia, and ototoxicity. However, in the
DOSE-AHF(Diuretic Optimization Strategy Evaluation in
Acute Decompensated Heart Failure) study, authors found
that patients with acute heart failure may benefit from an
initial bolus strategy [43].
Since common electrolyte disturbances could be en-

countered during diuretic therapy, it is important to
monitor electrolytes levels and also to assess acid-based
status. In order to avoid hypokalemia, administration of
oral potassium it is easy. Measuring urinary potassium
concentration and calculating the daily losses of potas-
sium, which require replacement is a strategy that can be
used to estimate daily potassium requirements. Another
strategy is the use of potassium-sparing diuretics like spir-
onolactone. Hypomagnesemia is frequently found during
diuretic therapy, magnesium replacement can be achieved
either intravenously or orally, typically with 20–30 mmoL
per day. Finally in some patients, chloride losses exceed
sodium losses and hypochloremic metabolic alkalosis de-
velops; this is usually corrected with the administration of
potassium chloride and magnesium chloride.
A recent comprehensive review have shown that torse-

mide and bumetanide have more favorable pharmacoki-
netic profiles than furosemide, and in the case of
torsemide it could be more efficacious than furosemide
in patients with heart failure (decreased mortality, de-
crease hospitalizations, and improved New York Heart
Association functional classification). In AKI patients, as
compared with torsemide the use of furosemide was as-
sociated with a significant improvement in urine output.
Moreover, two trials comparing bumetanide with fur-
osemide showed conflicting results [44].
Finally, in patients with AKI the response to furosem-

ide may be reduced due to multiple mechanisms includ-
ing a reduced tubular secretion of furosemide and
blunted response of Na-K-2Cl co-transporters at the
loop of Henle [45]. This reduced response to furosemide
in AKI patients often requires the use of higher doses
that may increase the risk of ototoxicity, especially as
the clearance of furosemide is severely reduced in AKI.
High doses of furosemide may also result in myocardial

Table 2 Studies assessing the effect of diuretics on AKI and mortality
Study Number Comparison Effect on AKI Effect on mortality

Mehta et al. [37] 552 Diuretics versus no diuretics Increased risk of death or non-recovery
of renal function

OR 1.68 for death with
diuretic use

Uchino et al. [38] 1743 Diuretics versus no diuretics N/A No difference

Cantarovich et al. [39] 338 Furosemide versus placebo No difference on renal recovery were found No difference

Grams et al. [40]
FACTT trial

306 Fluid conservative
(Furosemide dose of 80 mg) versus
fluid liberal
(Furosemide dose of 23 mg)

No difference in peak sCr No difference

FACTT fluid and catheter treatment trial, sCr serum creatinine, NA non-assessed, OR odds ratio
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dysfunction secondary to furosemide induced vasocon-
striction [46].

Extracorporeal therapies
Fluid overload refractory to medical therapy requires the
use of extracorporeal therapies such as continuous renal re-
placement therapies since critically ill patients often show
hemodynamic instability and/or multiple organ dysfunc-
tions. Accurate management of fluid balance becomes ob-
ligatory with the ultimate goal of improving pulmonary gas
exchange and organ perfusion while maintaining stable
hemodynamic parameters. The optimal renal replacement
therapy for patients with AKI and fluid overload has not
been defined yet and there is still an ongoing debate.
Choice of the initial modality needs to be based on the
availability of resources, local expertise; the individual needs
of the patients, and finally on patient’s hemodynamic status.

In patients with fluid overload, CRRT provides a
slower fluid removal over intermittent hemodialysis (IHD)
resulting in more hemodynamic stability and better fluid
balance control, other advantages of CRRT over IHD in-
clude: a slower control of solute concentration avoiding
large fluctuations and fluid shifts, which reduce the risk of
cerebral edema, the great flexibility in terms of treatment
adjustment to patient’s needs at anytime, and finally CRRT
allows to perform the treatment with relatively simple and
user friendly machines [47]. Some large observational
studies have suggested that CRRT is an independent pre-
dictor of renal recovery among survivors [48–50].
In the absence of definite data to support the use of

particular type of renal replacement therapy, one should
consider CRRT and IHD as complementary therapies.
Therefore, during the treatment of critically ill patients
with AKI and fluid overload transitions between CRRT

Table 3 Order chart for achieving hourly fluid balance
Technique Dialysate flow

rate (Qd)
Replacement fluid flow
rate (Qr)

Ultrafiltration flow
rate (Quf)

Effluent flow rate
(Qeff)

Substitution fluid flow
rate (Qs)
using an external IV pump

Machine fluid balance
(NetUF)

aCVVHDF 1000 mL/h 500 mL/h 1000 mL/h 2500 mL/h Varying rate from 200 to
1000 mL/h,

−300 mL/h

aCVVHDF continuous veno-venous hemodiafiltration

Fig. 2 Circuit set up at University of California San Diego, Medical Center. The mean infusion rate of tri-sodium citrate was 180 ml/h and blood flow
rate (Qb) was set at 100 ml/min. Tri-sodium citrate was added at the arterial catheter port with ionized calcium levels been measured post-filter.
Post-filter ionized calcium levels were used to adjust tri-sodium citrate flow rates. Pre-filter BUN value was measured after the infusion of tri-sodium
citrate and after pre-dilution replacement fluid (Qr), thus accounting for the pre-dilutional effect. A fixed ultrafiltration rate (Quf) was used
(set at 1000 ml/h) for achieving fluid balance. A target effluent volume was adjusted by hourly modifying substitution fluid rate (Qs) to achieve a
negative, zero, or positive fluid balance. Qb, blood flow rate; Qd, dialysate flow rate; Qr, replacement fluid rate; Quf, total ultrafiltration rate; Qnet, net
fluid removal rate
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and IHD are frequent, and are frequently driven by
patients’ hemodynamic status.
Slow continuous ultrafiltration (SCUF) is a type of

continuous renal replacement therapy that is usually
performed with low blood flow rates (50 to 100 ml/min),
and ultrafiltration rates between 100 and 300 ml/h ac-
cording to fluid balance necessities. Relatively small
surface-area filters can be employed with reduced hep-
arin doses since low ultrafiltration and blood flow rates
are required, [51].
Continuous veno-venous hemofiltration (CVVH) is an-

other CRRT technique that allows meticulous, minute-to-
minute control of fluid balance by providing continuous
fluid, electrolyte, and toxin clearance.
The prescription of CRRT related fluid management

and its integration into overall patient fluid management
could be improved by using a specific order chart for
the machine fluid balance as shown on Table 3. Machine
fluid balance refers to the total balance over 24-h period
of fluids administered by the CRRT machine (dialysate
or replacement fluid or both depending on the technique)
and fluids removed by the CRRT machine (spent dialysate
or ultrafiltrate or both depending on the technique). This
set up will help to achieve the planned hourly fluid balance
as shown on Table 3 and Fig. 2.
The ultimate goal is to preserve tissue perfusion, op-

timizing fluid balance by effectively removing fluid
without compromising the effective circulating fluid
volume; therefore, meticulous monitoring of fluid bal-
ance is critical for all patients [52].
Another option for treating patients with fluid over-

load are the new smaller and more portable devices like
the Aquadex FlexFlow System (Baxter Healthcare). In
patients with heart failure, Costanzo et al. compare ad-
justable ultrafiltration using a small ultrafiltration device
to the use of intravenous loop diuretics. The authors
found a trend to longer time to recurrence of heart failure
within 90 days event after hospital discharge in patients
treated with the ultrafiltration device, and fewer heart fail-
ure and cardiovascular events. Changes in renal function
and the 90-day mortality were similar in both groups.
However, more patients who were randomized to adjust-
able ultrafiltration experienced an adverse effect of special
interest (p = 0.018) and a serious study product-related
adverse events (p = 0.026) [53].

Conclusions
Several complications like congestive heart failure, pul-
monary edema, delayed wound healing, tissue breakdown,
and impaired bowel function are associated with fluid
overload. Fluid overload has also been related to increased
mortality. The optimal assessment of volume status in
critically ill patients is of vital importance particularly dur-
ing the early management of these patients. One key

aspect of fluid overload management is to maintain
hemodynamic stability and optimize organ function. Loop
diuretics are frequently used as the initial therapy to treat
critically ill patients with fluid overload; nevertheless, di-
uretics have limited effectiveness due to several factors
such as underlying acute kidney injury that contribute to
diuretic resistance. Renal replacement therapies are often
required for optimal volume management in critically ill
patients with fluid overload. In this setting, successful vol-
ume management depends on an accurate estimation of
patients’ fluid status, an adequate understanding of the
principles of fluid overload treatment with ultrafiltration,
and clear treatment goals.
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