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Editor’s key points

† Acute kidney injury is
common in critical illness
and is often diagnosed
late.

† Biomarkers indicating
kidney injury and
function would be
beneficial as changes in
creatinine are delayed.

† Several substances
undergoing evaluation
show potential but need
further study.

† Carefully designed
studies of potential
markers of this
multifactorial disease are
needed.

Summary. Acute kidney injury (AKI) has a number of triggers, including ischaemia,
nephrotoxins, radiocontrast, and bacterial endotoxins. It occurs in around one-third of
patients treated in intensive care unit (ICU) and is even more prevalent in cardiac
surgery patients. There is a higher mortality in patients with AKI compared with non-AKI
counterparts, and in severe AKI requiring renal support, the 6 month mortality is .50%.
Unlike the progressive development of biomarkers in cardiology, there have been few
changes in kidney diagnostic markers. Creatinine is still used as an indicator of kidney
function but not of the parenchymal kidney injury. Serum creatinine (sCr) concentration
does not change until around 50% of kidney function is lost, and varies with muscle
mass, age, sex, medications, and hydration status. The lag time between injury and loss
of function, risks missing a therapeutic opportunity, and may explain the high associated
mortality. Novel biomarkers of AKI- and failure include neutrophil gelatinase-associated
lipocalin, N-acetyl-b-D-glucosaminidase, kidney injury molecule-1, interleukin-18, and
cystatin C. The pathophysiology associated with accumulation of these markers in
plasma and urine is not clear, but a common denominator is inflammation. Some of
these new AKI biomarkers may have clinical applicability in anaesthesia and intensive
care in the future. It is possible that a ‘kidney biomarker panel’ will become standard
before and after major surgery. If elevated or positive, the anaesthetist must take special
care to optimize the patients after operation on the surgical wards or ICU to avoid
further nephrotoxic insults and initiate supplementary care.
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The use of biochemical markers of myocardial injury has
undergone profound changes in the past 50 yr. We have
moved from the measurement of aspartate amino transfer-
ase to the present use of troponins. This progress in diagnos-
tic ability and sensitivity has been a cornerstone in the
parallel improvement in treatment and survival after
cardiac injury.1 This stands in stark contrast to clinical prac-
tice relating to biochemical markers of kidney function and
injury which has remained focused on the measurement of
creatinine. Creatinine is an indicator of renal function but
not of kidney injury and serum creatinine (sCr) concentration
does not change until around 50% of kidney function is lost,2

and varies with muscle mass, age, sex, medications, and
hydration status. The lag time between the injury and the
resulting loss of function which finally results in an eleva-
tion of sCr is a missed therapeutic opportunity, and this
may explain the high mortality associated with acute
kidney injury (AKI). AKI is common, it occurs in more than
30% of critically ill patients and patients undergoing
major surgery are also at risk.3 4 A recent study showed

that AKI occurs in as many as 40% of patients after
cardiac surgery.5

The Acute Dialysis Quality Initiative (ADQI) proposed a
consensus definition, in 2004–5, for AKI using the Risk,
Injury, Failure, Loss of kidney function and End-stage
kidney disease (RIFLE) criteria (Table 1).6 7 Before this, AKI
(formerly called ‘acute renal failure’) lacked definition and
more than 35 definitions were used.8 This was beneficial
for the research area as we can compare studies, and
results, locally and globally. However, we must be aware of
the uncertain relationship between sCr and urine output,
our ‘gold standard’, and the pathophysiology behind AKI.

A number of promising biomarkers of kidney injury have
been identified during the last decade.

The properties of an ideal biomarker have been defined as:9

(i) It must be generated by the damaged cells and
exhibit the organ specificity.

(ii) Its concentration in the body must be proportional to
the extent of damage.
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(iii) It should be expressed early after the organ damage,
when such damage is still potentially reversible.

(iv) Its concentration should decrease quickly after the
acute injury episode to enable its use as a therapeutic
monitoring tool.

(v) It should be rapidly and reliably measurable.

This narrative review aims at describing some novel markers
of AKI and kidney failure, including neutrophil gelatinase-
associated lipocalin (NGAL), N-acetyl-b-D-glucosaminidase
(NAG), kidney injury molecule-1 (KIM-1), interleukin-18
(IL-18), and cystatin C. The theory behind the pathophysio-
logical events that leads to accumulation of these markers
in plasma and urine will be discussed.

Pathophysiology of AKI and biomarkers
The current understanding of the pathophysiology of AKI in
humans is mainly transferred from animal studies. Irrespect-
ive of the type of insult and of the clinical setting [after major
surgery or in intensive care unit (ICU) patients], an inflamma-
tory response seems to play a major role in the initiation of
AKI (Fig. 1). Triggers of AKI (ischaemia, nephrotoxins, and
bacterial endotoxins) induce the release of inflammatory
mediators (e.g. cytokines and chemokines) from endothelial
and tubular cells in the kidney. Neutrophils and other leuco-
cytes migrate to the site of inflammation and marginate
along the peritubular capillary wall very early after the
insult.10 Endothelial inflammatory injury is followed by
increased vascular permeability which, within 24 h, facilitates
migration of neutrophils into the kidney interstitium and
tubular lumen.10 During transmigration, neutrophils release
pro-inflammatory cytokines that further aggravate the
tubular injury.11 Eventually, the tubular response to AKI is
characterized by a loss of cytoskeletal integrity leading to
desquamation of viable cells and also apoptosis and necro-
sis.12 The underlying pathology behind and the timing of
decreased glomerular filtration rate (GFR) during this
process is yet to be determined. Tubular obstruction from
desquamated cells, renal vasoconstriction due to the
release of vasoactive mediators, and direct effects on the
glomerular filter have been proposed as mechanisms.

During the development of AKI, a number of causes result
in biomarkers accumulating in plasma and urine and may
represent different pathophysiological events during the
process of kidney injury and repair (Fig. 2). Biomarkers accumu-
late in urine due to an induced tubular epithelial synthesis in
different parts of the nephron (NGAL, IL-18, NAG, KIM-1) and
as an effect of impaired reabsorption of the filtered load in
the proximal tubule (NGAL, cystatin C). Secretion of biomarkers
from activated immune cells migrating into the tubular lumen
may also be a source (NGAL, IL-18). Finally, increased synthesis
of some biomarkers in extra-renal tissues has been shown in
animal AKI models (NGAL, IL-18).13 This extra-renal produc-
tion will most certainly increase circulating biomarker levels
and a decline in GFR will further amplify this increase.
However, the secretion from immune cells and extra-renal
tissues into the bloodstream can increase in response to sys-
temic inflammation, for example during sepsis and after
major surgery or trauma, even in the absence of AKI. This
must be taken into account when elevated biomarker levels
are evaluated in critically ill and postoperative patients.

Markers of kidney injury
Neutrophil gelatinase-associated lipocalin

NGAL, also known as human neutrophil lipocalin or Lipocalin
2, was first identified as a 25 kDa protein in the secondary
granules of human neutrophils.14 15 In response to bacterial
infection, NGAL is released into the bloodstream. Raised con-
centrations can be used to distinguish between bacterial and
viral infection.16 Later, NGAL was localized in a number of
human tissues, including trachea, lung, stomach, colon,
and kidney.17 NGAL secretion from epithelial cells is
induced by several pathological conditions.18 19 In the
search for novel biomarkers of AKI, NGAL was identified as
the most rapidly induced protein in murine models of ischae-
mic and nephrotoxic AKI.20 Concentrations increased several
fold in both serum and urine within hours of the insult. This
serendipitous finding shifted the focus on NGAL from a
marker of bacterial infection to an early signal for AKI.

Evidence of the biological role of NGAL in different patho-
logical states has recently emerged. By its ability to bind side-
rophores (small iron-binding molecules) produced by

Table 1 Definition of AKI according to the RIFLE and AKIN criteria. *Modifications by the AKIN group. †When baseline creatinine is unknown, it is
recommended to estimate baseline using the modification of diet in renal disease (MDRD) equation assuming a GFR of 75 ml min21 1.73 m22.
‡Patients with chronic kidney dysfunction reach class Failure when creatinine increases ≥44.2 mmol litre21 from baseline to .354 mmol litre21

AKI severity Serum creatinine criteria Urine output criteria

Risk ≥1.5-fold increase in serum creatinine from baseline†

(or an absolute increase in serum creatinine of ≥26.3 mmol litre21

within 48 h*)

,0.5 ml kg21 h21 for ≥6 h

Injury ≥2.0-fold increase in serum creatinine from baseline† ,0.5 ml kg21 h21 for ≥12 h

Failure‡ ≥3.0-fold increase in serum creatinine from baseline†

(or initiation of renal replacement therapy*)
,0.3 ml kg21 h21 for ≥24 h or anuria ≥12 h

Loss of kidney function Complete loss of kidney function .4 weeks

End-stage kidney disease End-stage kidney disease .3 months
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eukaryotic cells, NGAL is involved in iron transport to and
from cells. NGAL assists in the delivery of iron to kidney
tubular cells and may be involved in the injury-repair-process
of AKI by inducing differentiation of renal progenitor cells
into epithelial tubules.21 22 Siderophores are also produced
by bacteria to acquire iron necessary for bacterial growth
from the surrounding tissues. By binding to these sidero-
phores, NGAL blocks the iron supply and may act as an en-
dogenous bacteriostatic agent.23 Interestingly, tissues in
which NGAL is expressed are all frequently exposed to micro-
organisms, and this supports its role in host defence.

In an early study, elevated NGAL levels were detected
in both urine and plasma in adult patients with established
AKI.22 Human kidney biopsies also showed an accumulation
of NGAL in cortical tubules in AKI patients. Accumulation was
most pronounced in the most injured cells. The first clinical
study evaluating NGAL as an AKI predictor was in children
at risk of AKI after cardiopulmonary bypass (CPB). Urinary
NGAL increased almost 100-fold and serum NGAL 20-fold
within 2 h post-CPB in children who later (24–48 h)

developed AKI.24 The area under the receiver-operating char-
acteristic curve (AuROC) using the 2 h urinary NGAL concen-
tration for AKI prediction was almost perfect (0.998).25 Since
these encouraging results, the predictive performance of
NGAL has been tested on adult patients in various clinical
settings.

Cardiac surgery

Studies in adult patients after cardiac surgery show conflict-
ing results with AuROC for AKI prediction within 48 h up to 10
days ranging from 0.50 to 0.98.26 – 35 This was different from
most paediatric studies where NGAL generally performed
better.25 36 Co-morbidities such as diabetes37 and pre-
existing kidney dysfunction38 may explain the limited ability
of NGAL to predict AKI in adult patients. Non-uniform defini-
tions of AKI used are likely to have contributed to the varying
predictive performances. The value of NGAL as an AKI pre-
dictor with increasing AKI severity has recently been demon-
strated.39 Finally, it was recently shown that extracorporeal
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Fig 1 Pathophysiological mechanisms of AKI and repair. Adhesion molecules up-regulate on the surface of endothelial cells and facilitate mi-
gration of neutrophils into the kidney interstitium and tubular lumen. Inflammatory and vasoactive mediators and reactive oxygen species
(ROS) damage the tubular cells. Shedding of the proximal tubule brush border, loss of polarity with mislocation of Na+/K+- ATPase and
also apoptosis and necrosis may occur. With severe injury, viable and non-viable cells are desquamated, leaving parts of the basement mem-
brane denuded. Inflammatory and vasoactive substances released from the injured tubular cells worsen the pathophysiological changes. If the
repair process is successful, viable cells de-differentiate and spread to cover exposed areas of the basement membrane and restore the func-
tional integrity of the nephron. AC, apoptotic cell; DC, de-differentiating cell; NC, necrotic cell.
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circulation through the CPB circuit per se increases NGAL
levels several fold in urine in non-AKI patients.40

Critically ill/emergency department

Evaluating NGAL for AKI prediction in general ICU patients is
difficult for several reasons. First, as part of multiorgan
failure, AKI is already present at ICU admission in the major-
ity of cases. Even if a ‘window’ exists on the ICU before AKI is
diagnosed, the timing of the kidney insult is often unknown.
Secondly, the aetiology of AKI in this setting is often multi-
factorial including ischaemic insults, nephrotoxic drugs, and
bacterial toxins. Thirdly, an ICU population displays a hetero-
geneous mixture of co-morbidities. Finally, a baseline cre-
atinine is lacking in many patients admitted to the ICU.
This clearly increases the risk of misclassification of the AKI
diagnosis defined by the RIFLE criteria.

Activated neutrophils release NGAL and raised plasma
concentrations have been observed in non-AKI patients
with sepsis.41 NGAL concentrations were shown to be
almost 80% higher in septic than in non-septic AKI
patients.42 This may affect the predictive value of plasma
NGAL in AKI. In patients with septic shock, the AuROC for
AKI prediction within 12 h was not significant in one
study,41 but in studies, where sepsis was over-represented
in the AKI patients, AuROC’s between 0.78 and 0.96 were
found.43 – 45 An AuROC of 0.82 was found for NGAL as a pre-
dictor for AKI [44.2 mmol litre21 increase in sCR or acute renal
replacement therapy (RRT)] within 72 h in septic patients ad-
mitted to an emergency department (ED), but when a more
common AKI classification (RIFLE R) was used, the sensitivity
decreased.46

Urinary NGAL on admission to ICU reasonably predicted
subsequent AKI within 12 h to 7 days.41 45 47 On ED admis-
sion, urinary NGAL was a strong predictor of sustained AKI
(.3 days) with an AuROC of 0.95.48

The effect of sepsis on urinary NGAL levels is not clear. In
non-AKI patients, urinary levels were virtually unaffected by
the presence of sepsis in one small study,41 and predictive
values did not change when patients with septic shock
were studied exclusively. In contrast, septic AKI patients
had urinary concentrations more than five-fold higher than
non-septic patients in another study.42

Studies have used different platforms for NGAL quantifica-
tion including western blotting, radio-immuno assay,
enzyme-linked immunosorbent assay, and Triagew device.
It was recently shown that the antibody configuration has
an impact on the clinical performance of the assay,40 and
this may explain the variable results for NGAL as an AKI pre-
dictor. In addition, different forms of NGAL are secreted by
kidney epithelial cells (mainly monomeric NGAL) and neutro-
phils (mainly dimeric NGAL), respectively.49 In view of the
timescale of pathophysiological changes as AKI develops,
monomer-specific assays may improve the early detection
of renal cell injury and avoid the confounding effect of
urinary tract infection.50

N-acetyl-b-D-glucosaminidase

NAG is a large (.130 kDa) lysosomal enzyme found in
several human cells including the renal tubules. Its size pre-
cludes glomerular filtration, and raised urinary concentra-
tions are believed to have a tubular origin. Increased NAG
levels reflect tubular injury, but could also be due to
increased lysosomal activity without cell damage. NAG cata-
lyses hydrolysis of terminal glucose residues in glycoproteins
and is the most active glycosidase found in proximal tubular
epithelial cell lysosomes. Urinary NAG activity has been
shown to be high during active renal disease.51

A cross-sectional study compared nine different urinary
markers, including NAG, in a total of 102 patients with AKI,
tested at the time of nephrology consultation, and non-AKI
patients.52 An AuROC of 0.83 [95% confidence interval (CI),
0.77–0.88] was found for NAG in the identification of estab-
lished AKI. NAG was found to predict RRT, mortality, and their
composite endpoint in patients with AKI. The median nor-
malized NAG level in patients with AKI who underwent RRT
was 0.06 U mg Cr21, compared with 0.02 U in those who
did not.

Urinary NAG and KIM-1 were studied in 201 consecutive
adult patients with AKI at the time of nephrology consult-
ation.53 For the composite outcome of RRT requirement or
hospital death, NAG had an AUC of 0.71 (95% CI, 0.63–
0.78), which was better than that of sCr (0.60, 95% CI,
0.52–0.68) or urine output (0.65, 95% CI, 0.57–0.73).

A study of 73 patients with ‘initially non-oliguric acute
tubular necrosis (ATN)’ had measured urinary excretion of
NAG and other biomarkers early in the course of ATN.54 The
urinary excretion of NAG was significantly higher in patients
requiring RRT. The AuROC for NAG was 0.81 (95% CI, 0.73–
0.88). At a cut-off of 4.5 U mmol Cr21, NAG was a sensitive
(85%) but non-specific (62%) predictor for RRT. In a study
of 635 unselected emergency room patients, urinary NAG
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      in the proximal tubule
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Fig 2 Proposed mechanisms for increased biomarker levels in
plasma and urine in AKI.
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did not predict the composite outcome of ICU admission,
need for RRT, nephrology consultation, or mortality.48

Kidney injury molecule-1

KIM-1 is a type I cell membrane glycoprotein. It has a cleav-
able ectodomain, localized in the apical membrane of dilated
tubules in acute and chronic injury.55 KIM-1 and its soluble
ectodomain in urine (90 kDa) are believed to play a role in
the regeneration processes after epithelial injury.

In a recent multisite, preclinical, rat toxicology study, the
diagnostic performance of urinary KIM-1 was compared
with traditional biomarkers as predictors of kidney tubular
histopathological changes. In multiple models of kidney
injury, urinary KIM-1 significantly outperformed sCr and
BUN. The AuROC for KIM-1 was between 0.91 and 0.99
when compared with 0.79–0.9 for BUN and 0.73–0.85 for
sCr.56 These striking results have not been shown in
humans. In the study mentioned earlier,53 KIM-1 did not
perform better than sCr or urine output in the prediction of
RRT or death, with an AuROC of 0.61 (95% CI, 0.53–0.61).
Patients in the highest KIM-1 quartile had 3.2-fold higher
odds (95% CI, 1.4–7.4) for the composite outcome compared
with patients with the lowest quartile, but after multivariable
analysis, this was not significant. Similar results were found
in another study, also mentioned in the NAG section52

where KIM-1 did not predict the need for RRT, but was a sig-
nificant predictor for mortality.

Interleukin-18

IL-18 is a proinflammatory cytokine with a molecular weight
of 18 kDa. It is produced by renal tubular cells and by macro-
phages. In a number of renal disease processes such as
apoptosis, ischaemia/reperfusion, allograft rejection, infec-
tion, autoimmune conditions, and malignancy, IL-18 has
an active role.

Several novel biomarkers have been compared in a hetero-
geneous high-risk population as diagnostic and predictive
markers of AKI, need for dialysis, and prediction of mortality
at 7 days in patients stratified both for time elapsed after
renal insult and for GFR at the time of ICU admission.57 CysC,
IL-18, and NGAL were the strongest predictors of dialysis
(AuROC .0.70). In patients without AKI on entry, AP (alkaline
phosphatase), NGAL, and IL-18 were the strongest predictors
of dialysis. All biomarkers except KIM-1 were moderately pre-
dictive of death within 7 days (AuROC .0.60), especially IL-18
(AuROC¼0.68). No biomarker predicted AKI within 48 h. IL-18
was the only one to predict more severe AKI (AuROC .0.7).

Three studies of patients undergoing coronary artery
bypass surgery (CABG)30 58 59 involving a total of 258 patients
showed that urinary IL-18 had a moderate predictive per-
formance for AKI (AuROCs from 0.53 to 0.66) at post-CABG
ICU admission. The combination of urinary IL-18 and
urinary NGAL was shown to diagnose AKI after CABG much
earlier than the increase in sCr.59 Urinary IL-18 correlated
with the duration of CPB, suggesting that IL-18 levels may

represent a non-specific marker of bypass-associated sys-
temic inflammation rather than tubular damage.58

In a study of patients undergoing coronary angiography,
urinary IL-18 and NGAL levels were significantly increased
in the CIN group 24 h after the procedure, but not in the
control group (P,0.05).60 IL-18 and NGAL outperformed sCr
(P,0.05) for the detection of CIN. Elevated urinary IL-18
levels 24 h post-contrast administration have also been
found to be an independent predictive marker for later
major cardiac events (relative risk, 2.09; P,0.01).

Urine cystatin C

Cystatin C, a 13 kDa proteinase inhibitor, enters the proximal
tubules by glomerular filtration. The protein is reabsorbed
and completely broken down by the healthy proximal
tubular cells and only minimal concentrations are found in
urine under normal conditions. Urinary levels of cystatin C in-
crease when the reabsorptive capacity of proximal tubular
cells is impaired. Cystatin C has therefore been proposed as
a marker of AKI. Urinary cystatin C was a good predictor of
dialysis requirement in ICU patients with established AKI.54

As a predictor of less severe AKI, results are less convincing
mainly due to the lack of sensitivity.28 30 33 61 62

Low molecular weight proteins such as cystatin C are
reabsorbed by the proximal tubular cells by receptor-
mediated endocytosis.63 Excess albumin in the urine com-
petes with this process and may decrease the tubular
uptake of cystatin C.64 Sepsis alone may be associated with
albuminuria65 and could therefore cause elevated cystatin
C levels in urine without AKI being present. Recently, higher
cystatin C levels were found in the urine of non-AKI patients
with septic shock when compared with non-septic patients.41

This was supported by a study which found higher urine
cystatin C levels in septic than in non-septic patients. This
applied to patients with and without AKI. Urinary cystatin C
was only predictive of AKI in the subgroup of septic
patients.61

Markers of kidney function
Plasma cystatin C

Cystatin C is believed to be a more robust endogenous
marker of GFR than creatinine as it is:

(i) thought to be produced at a constant rate by all
nucleated cells,

(ii) freely filtered by the glomeruli,
(iii) minimally bound to proteins, and
(iv) not reabsorbed to the systemic circulation after

filtration.24 66

The cystatin C molecule is more than 100 times larger than
creatinine. In theory, narrowing of the glomerular filter
could impair filtration of cystatin C but still allow free
passage of creatinine. This has led researchers to investigate
whether an increase in plasma cystatin C precedes the con-
ventional creatinine-based AKI criteria. In a mixed ICU popu-
lation, a .50% increase in plasma cystatin C was shown to
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predict AKI within 24 h, with an AuROC of 0.97.67 However,
these results have not been verified in subsequent
studies.28 68 Recently, cystatin C was shown to be a poor pre-
dictor of AKI,69 and another study showed no benefit of
cystatin C over creatinine, serum urea nitrogen, or even
urine output as an AKI predictor.70

Although the increase in cystatin C seems to coincide with
creatinine when GFR decreases acutely, cystatin C might be
better than creatinine as a GFR monitor at a later stage in
ICU patients. Immobilized and catabolic ICU patients lose
muscle mass and hence a gradual decline in sCR is expected.
A .20% decline in sCR during the first week in the ICU has
been observed in non-AKI patients. During the same time
frame, cystatin C significantly increased in these patients.71 72

Future studies assessing the agreement between cystatin
C- and creatinine-based GFR estimations and gold-standard
GFR methods (e.g. using inulin) in the ICU are vital to deter-
mine which endogenous marker best reflects GFR.

The future

This review has focused on a number of potential biomarkers
of kidney function and structural kidney injury that finally are
moving from a laboratory setting to the bedside. However,
other promising AKI biomarkers, like L-type fatty acid-
binding protein, may be of use.73 In the future, we will hope-
fully see physicians in the field of anaesthesia and intensive
care having the possibility of detecting, treating, and, hope-
fully, preventing AKI. If a kidney biomarker panel is ‘positive’,
the patients will have to be monitored intensively, with
control over fluid balance, urine output, electrolytes, and
functional kidney markers. Equally important will then be
to avoid further harm from hypotension, hypovolaemia, con-
trast agents, and nephrotoxic medications.

The properties of an ideal biomarker have been described
above, but as the pathophysiology behind AKI is multifaceted
(Figs 1 and 2), it is unlikely that we will find a single marker
that fulfils all criteria. Instead, combinations of different bio-
markers with specific characteristics are probably needed.
Searching for a future panel of novel biomarkers of AKI
needs to address three problems.

(i) The risks of using creatinine as a ‘gold standard’ when
investigating potential injury markers.74

(ii) Problems of study design. Several studies of AKI bio-
markers have evaluated the predictive properties of
the substance when the insult already has occurred,
but a prospective case–control setting is more appro-
priate. Studying AKI in a general ICU this can be dif-
ficult, as many patients are admitted already with
AKI. However, some studies have accounted for this
and made an effort to find patients without AKI in
the study of predictive biomarkers.41 57

(iii) Problems of patient stratification. In a population
undergoing major surgery and for patients in the
ICU, it is not uncommon that patients have lower
pre-ICU GFR (,60 ml min21). This could lead to
poorer performance of a biomarker due to impaired

excretion in chronic kidney disease, or because more
variable excretion occurs in CKD. For example, NGAL
excretion is increased in CKD.75 As a consequence,
the biomarker may have to be measured against
already raised levels.

As cardiology moved from lactate dehydrogenase to tropo-
nins for the diagnosis of myocardial infarction, intensive
care nephrology will have to evolve from sCr to tissue-specific
injury biomarkers. At the same time, it is essential to further
investigate the pitfalls of functional markers (measurements
of estimated GFR) in order to properly assess dosage of anti-
biotics and other drugs in the postoperative or intensive care
setting. To conduct treatment studies of AKI, it is important
that future studies take into account the methodological
issues and utilize the differences between the various poten-
tial of kidney function (i.e. GFR) and markers for structural
kidney injury.
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