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T he combination of sepsis and
acute renal failure is common
in the critically ill (1, 2) and is
associated with a high mortal-

ity (3). Optimal treatment is essential to
maximize survival. Although underdos-
ing of antibacterials may result in de-
creased bacterial killing, failure of clini-
cal resolution, and increased resistance,

overdosing may result in toxicity (4). Un-
like many other drugs, the dose of anti-
bacterials cannot be titrated to effect as
changes in clinical markers usually occur
over days (5). Instead, dosing is adjusted
to achieve pharmacokinetic targets that
are associated with improved outcome.
These targets are related to in vitro in-
hibitory concentrations for relevant or-
ganisms and the class of antibacterial.
Correct dosing, therefore, requires con-
sideration of several factors.

First, the pharmacokinetics of anti-
bacterials in critically ill patients with
acute renal failure are substantially dif-
ferent from those encountered in less ill
subjects. Alterations in protein binding
(PB) and total body water affect pharma-
cokinetic parameters such as volume of
distribution and renal clearance by arti-
ficial modes. Additionally, variation in the
efficiency of continuous renal replace-
ment therapy (CRRT) among institu-
tions, as well as inter- and intrapatient
variation in dose of CRRT, may lead to
substantial variation in antibacterial
clearance. This is, of course, only relevant

to those drugs that are eliminated by
CRRT, which are those that usually un-
dergo significant (�25% to 30%) renal
elimination (6). Last, there are well-
known differences among classes of anti-
bacterials in the relationship between
pharmacokinetic parameters and phar-
macodynamic characteristics. Dosing re-
gimes should, therefore, be individual-
ized and take all of these factors into
account (7).

This review aims to summarize the
important pharmacokinetic and pharma-
codynamic considerations encountered
in critically ill patients receiving CRRT
and antibacterial therapy, and provides
some practical recommendations to as-
sist in individualized dosage. To aid the
reader, a list of frequently used abbrevia-
tions is given in Table 1.

Pharmacokinetic–Pharmacodynamic
Relationships

Appropriate antibacterial dosing re-
quires implementation of sound pharma-
cokinetic–pharmacodynamic principles.
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Objectives: To outline the concepts involved in optimizing
antibacterial dosing in critically ill patients with acute renal
failure undergoing continuous renal replacement therapy (CRRT),
provide a strategy for optimizing dosing, and summarize the data
required to implement the strategy.

Data Sources: MEDLINE search from February 1986 to 2008.
Data Extraction and Synthesis: Optimal dosing of antibacterials

is dependent on achieving pharmacokinetic targets associated
with maximal killing of bacteria and improved outcomes. The
initial dose is dependent on the volume of distribution. Mainte-
nance doses are dependent on clearance. Both should be adjusted
according to the pharmacokinetic target associated with optimal
bacterial killing, when known. The volume of distribution of some
antibacterials is altered by critical illness or acute renal failure or
both. Clearance by CRRT is dependent on the dose and mode of
CRRT and the sieving or saturation coefficient of the drug. Both
sieving and saturation coefficient are related to the plasma pro-
tein binding and thus may be altered in renal failure.

Conclusions: Appropriate dose calculation requires knowledge
of the pharmacokinetic target and the usual minimum inhibitory
concentration of the suspected organism in the patient’s locality
(or if unavailable, the break point for the organism), published
pharmacokinetic data (volume of distribution, non-CRRT clear-
ance) on critically ill patients receiving CRRT (which may differ
substantially from noncritically ill patients or those without renal
failure), the sieving or saturation coefficient of the relevant
drug in critically ill patients, the dose and mode of CRRT being
used, and the actual dose of CRRT that is delivered. This large
number of variables results in considerable inter- and intrapa-
tient heterogeneity in dose requirements. This article provides
basic principles and relevant data to guide the clinician in
prescribing individualized dosing regimes. (Crit Care Med
2009; 37:2268 –2282)
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dynamics
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These have recently been reviewed (8) . In
brief, the killing characteristics and phar-
macokinetic targets associated with opti-
mal bacterial killing vary among antibi-
otics (Table 2). Killing characteristics can
be described as time dependent (or non-
concentration dependent) and concentra-
tion dependent. For agents that exhibit
time-dependent killing (e.g., �-lactams),
killing is related to the time during which
the blood concentration is above a
threshold concentration. Appropriate val-
ues for both the threshold concentration
and the time are controversial, with rec-
ommended concentrations ranging from
one to five times minimum inhibitory
concentration (MIC) (9) and the time
ranging from 40% to 100% of the dosing

interval (10). The use of continuous infu-
sions of time-dependent killing antibac-
terials may be superior in maximizing
time above the threshold concentration
without unnecessarily high peak concen-
trations (11–14); however, data demon-
strating improved patient outcome are
scarce (15).

For agents that demonstrate concen-
tration-dependent killing, optimal killing
may be associated with the postdistribu-
tion peak plasma concentration (Cmax):
MIC ratio (e.g., aminoglycosides), the ra-
tio of the area under the plasma
concentration–time curve during a 24-
hour period (AUC24) to MIC (AUC24:MIC)
(e.g., linezolid), or both (e.g., fluoro-
quinolones). For aminoglycosides, main-

taining a fixed dosage with prolonged
dosing interval not only increases the ef-
ficacy of the treatment but also mini-
mizes toxicity (8, 16, 17).

Basic Principles of CRRT

Modern CRRT is performed as a veno-
venous procedure as continuous veno-
venous hemofiltration (CVVH), hemodi-
alysis (CVVHD), or hemodiafiltration
(CVVHDF) (18 –20). Being a relatively
slow and continuous process, there is a
risk that the delivered dose of CRRT may
be substantially less than the prescribed
dose in the intensive care unit because of
unnoticed interruptions in treatment
(e.g., transport out of the intensive care
unit for investigations or surgery, or fre-
quent filter clogging).

Hemofiltration

Hemofiltration uses convective re-
moval. Plasma water passes across the
filter membrane down a (predominantly
hydrostatic) pressure gradient dragging
solute with it (Fig. 1, A and B). For most
commonly used antibacterials, which in-
clude large molecules such as vancomy-
cin (1448 Da) and teicoplanin (1878 Da),
convective transport across commonly
used modern membranes (pore sizes
10,000–30,000 Da) is independent of mo-
lecular weight (21, 22). The ability of a
drug to pass through the membrane is
expressed as the sieving coefficient (Sc):
the ratio of drug concentration in the
ultrafiltrate to plasma.

Sc �
�Drug�ultrafiltrate

�Drug�plasma

In general, Sc ranges from 0 to 1. Drug
PB is the main determinant of Sc and it
has been suggested that Sc can be esti-
mated from published values of PB, such
that Sc � 1 � PB. Measured Sc and Sc

estimated from published values of PB
are correlated (23). However, as discussed
below, PB in the critically ill is variable
and for some drugs (e.g., levofloxacin) Sc

varies widely (24–28). Furthermore, Sc

may be affected by membrane material,
drug–membrane interactions, and flux
properties.

Replacement fluid can be added to the
circuit either before the filter (predilu-
tion) or after (postdilution) (Fig. 1, A and
B). In postdilution mode, drug clearance

Table 1. Frequently used abbreviations

Abbreviation Meaning

AUC24 Area under the concentration-time curve over 24 hrs
Cmax Maximum post distribution plasma concentration
ClCVVH Clearance by continuous venovenous hemofiltration
ClCVVHD Clearance by continuous venovenous hemodialysis
ClCVVHDF Clearance by continuous venovenous hemodiafiltration
CRRT Continuous renal replacement therapy
CVVH Continuous venovenous hemofiltration
CVVHD Continuous venovenous hemodialysis
CVVHDF Continuous venovenous hemodiafiltration
Cltot Total clearance
MIC Minimum inhibitory concentration
PB Plasma protein binding
Qb Blood flow rate
Qd Dialysate flow rate
Qf Ultrafiltrate flow rate
Qrep Replacement fluid flow rate
Sc Sieving coefficient
Sd Saturation coefficient
Vd Volume of distribution

Table 2. Killing characteristics of different antibacterials and pharmacokinetic targets associated with
optimal bacterial killing

Antibacterial Killing Characteristics Pharmacokinetic Targets

Aminoglycosides Concentration dependent Cmax:MIC 8–10 (17)
Metronidazole Concentration dependent Not established
Fluoroquinolones Concentration dependent Cmax:MIC 6–8, AUC24:MIC 100–125 (Gram

negatives), 34 (Streptococcus pneumoniae)
(62, 74)

Vancomycin Concentration dependent AUC24:MIC �400 (vs. Staphylococcus aureus)
(75)

Macrolides, azalides,
ketolides

Concentration dependent Probably AUC24:MIC (drug concentration at
target site)

Relevance of plasma concentrations doubtful
given the fact that drugs are concentrated
in tissue (73)

Linezolid Concentration dependent AUC24:MIC 50 (Streptococcus pneumoniae),
AUC24:MIC 82 (Staphylococcus aureus) (76)

Beta lactams Time dependent 40–100% of dosing interval �MIC or
40–100% of dosing interval �5 times MIC (9)

AUC24, area under concentration-time curve over 24 hrs; Cmax, post distribution peak concentra-
tion; MIC, minimum inhibitory concentration.
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depends on ultrafiltration rate and Sc

such that:

CICVVH(post) � Qf � Sc

In predilution mode (Fig. 1A), the
plasma entering the hemofilter is diluted
by replacement fluid, so drug clearance
will be lowered by a correction factor

(CF) determined by blood flow rate (Qb)
and predilution replacement rate (Qrep).
Drug clearance in predilution mode can
be calculated as:

Figure 2. Continuous venovenous hemodialysis. The countercurrent flow maintains a concentration gradient across the membrane. Protein bound
molecules are unable to cross the membrane. Reproduced with permission from ICU web (www.aic.cuhk.edu.hk/web8).

Figure 1. A, Hemofiltration (continuous venovenous hemofiltration) (predilution). Dilution of blood with replacement fluid before the blood enters
the filter results in a fall in concentration in the filter and hence a reduction in efficiency of solute removal. Protein bound molecules are unable
to cross the membrane. B, Hemofiltration (continuous venovenous hemofiltration) (postdilution). Reproduced with permission from ICU web
(www.aic.cuhk.edu.hk/web8).
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CICVVH(pre) � Qf � Sc � CF,

where CF � Qb/(Qb � Qrep)
Thus, the point of dilution is only

likely to significantly affect clearance if
the rate of fluid replacement is high. This
may partially explain the discrepancy be-
tween an in vitro study that failed to
demonstrate a clinically significant effect
of point of dilution (29) and an in vivo
study that revealed a clinically significant
reduction in clearance during predilution
CVVH (30). In addition, the ratio of predi-
lution:postdilution influences Sc as well
as clearance. For vancomycin, Sc steadily
decreased as the proportion of predilu-
tion decreased (30).

It is evident from the above equations
that clearance by CVVH is proportional to
the ultrafiltration rate and therefore dosing
needs to be altered with changes in
ultrafiltration rate. As the expected
magnitude of change in ultrafiltration
is substantially greater than the vari-
ability of Sc, ultrafiltration is the more
important consideration.

Hemodialysis

Hemodialysis uses diffusion of solute
across filter membrane down a concen-
tration gradient between plasma and di-
alysate (Fig. 2). Equilibration across the
filter membrane is dependent on the

interaction among molecular weight,
blood flow, and dialysate flow. Given
that the dialysate flow rate in CVVHD
and CVVHDF is relatively low compared
with blood flow rate (31), neither blood
flow nor molecular size is an important
factor in clearance of most commonly
used antibacterials.

The ability of a drug to diffuse through
the filter membrane is most simply ex-
pressed as the saturation coefficient (Sd):

Sd �
�Drug�dialysate

�Drug�plasma

Again, PB is the main determinant of
Sd. Similar to sieving coefficient, Sd is
membrane specific, subject to drug–
membrane interactions and flux proper-
ties, and ranges in value from 0 to 1. In
usual clinical practice, blood flow is so
much greater than dialysate flow that
complete saturation occurs and drug
clearance is effectively dependent on dia-
lysate flow rate (Qd) and Sd:

ClCVVHD 	 Qd � Sd

Hemodiafiltration

Hemodiafiltration uses both convec-
tion and diffusion to eliminate drugs. In
general, drug clearance in CVVHDF may
be estimated as:

ClCVVHD � (Qf � Qd) � Sd

However, during CVVHDF the two
processes interact to reduce each other’s

Table 3. Factors affecting elimination of antibacterials in patients receiving continuous renal
replacement therapy CRRT

Factors Notes

Pharmacokinetic factors
Residual renal elimination

Nonrenal elimination May be increased in acute renal failure but may be
decreased by concomitant hepatic failure

Volume of distribution Increase in volume of distribution results in need for larger
loading dose and reduces efficacy of removal by CRRT

Protein binding Only the unbound fraction is removed by CRRT
CRRT factors

Mode of CRRT
Dose of CRRT delivered In clinical practice effluent volume is the most important

CRRT variable in determining drug elimination. Effluent
volume is dependent on both effluent flow and duration
of CRRT

Blood flow rate Within usual clinical limits varying blood flow has little
effect on elimination

Filter material Sieving coefficient may vary between different filter
materials for some antibacterials

Surface area This has no direct effect on elimination

Table 4. Currently available methods of estimating antibacterial dose in patients receiving CRRT

Method Authors Mode of CRRT Formula Assumptions

1 Golper et al (23) CVVH D � CSS � UBF � UFR � I Assays to measure antibacterial concentration
are widely available

Sieving coefficient is equal to unbound
fraction of drug

2 Bugge et al (51) CVVHDF
D � DN�Px � 
1 � Px�

ClCRtot

ClCRn
� Assays to measure antibacterial concentration

are widely available
Sieving coefficient is equal to unbound

fraction of drug
Normal dose achieves pharmacokinetic targets

associated with optimal killing
3 Schetz et al (6) CVVH

D � DN�ClNR � (UFR � Sc)
ClN

� Normal dose achieves pharmacokinetic targets
associated with optimal killing

4 Schetz et al (6) All modes
D �

Danuria

1 � � ClEC

ClEC � ClNR � ClR
�

Assays to measure antibacterial concentration
are widely available

Dose given to anuric patients achieves
pharmacokinetic targets associated with
optimal killing

Css, measured blood concentration at steady state; ClANUR, drug clearance in anuric patient; ClCRn, normal creatinine clearance; ClCRtot, sum of renal
and extracorporal creatinine clearance; ClEC extracorporeal clearance; ClN, normal total drug clearance; ClNR, non renal clearance; ClR renal clearance;
Danuria, recommended dose for anuric patients; DN, dose recommended for patients with normal renal function; I, dosing interval; Px � extrarenal clearance
fraction (� Cl ANUR/ClN); Sc, sieving coefficient; UBF, unbound fraction; UFR, ultrafiltration rate.
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Table 5. Pharmacokinetic data for antibacterials commonly used in the intensive care unit in patients receiving CRRT

Drug (Reference)
Mode of CRRT
(No Patients) Residual Renal Function Volume of Distribution Non-CRRT Clearance (mL/min)

Membrane/Surface
Area

Penicillins
Ampicillin (no data)
Amoxicillin (77) CVVH (12) U/O �400 mL/12 hr NS NS CT/1.9 m2

Piperacillin (78) CVVH (6) Four anuric patients. Two patients
U/O �400 mL/24 hr

0.48  0.24 L/kg NS PS/0.5 m2

Piperacillin (78) CVVH (4) Three anuric patients. One patient
U/O � 220 mL/24 hr

0.14  0.07 L/kg NS PS/0.5 m2

Piperacillin (79) CAVHD (12) Clurea: 18.4  2.3 mL/min 25.8  3.8 L 34.9  21.2 AN69/0.43 m2

Piperacillin—Tazobactam
(80)

CVVH (4) Clcr: 8.67  2.31 mL/min Piperacillin: 21.0  11.7 L, Tazobactam:
18.9  7.1 L

Piperacillin: 38.55, Tazobactam:
29.5

AN69/0.9 m2

Piperacillin—Tazobactam
(80)

CVVH (5) Clcr: 25.20  7.73 mL/min Piperacillin: 26.8  19.8 L, Tazobactam:
21.6  3.0 L

Piperacillin: 78.4, Tazobactam:
46.3

AN69/0.9 m2

Piperacillin—Tazobactam
(81)

CVVHD (8) Anuric Piperacillin: 0.31 Clavulanate 0.07 L/kg,
Tazobactam: 0.24  0.09 L/kg

Piperacillin: 49.5  60.1 mL/min,
Tazobactam: 23.7  14.9 mL/
min

AN69/0.6 m2

Ticarcillin—clavulanate
(82)

CVVH (3) Two patients anuric. One patient
U/O �2 L/day

Ticarcillin: 0.26 L/kg (n � 2, with
ECMO), 0.25 L/kg (n � 1, without
ECMO), Clavulanate: 0.86 L/kg (n �

2, with ECMO), 0.33 L/kg (n � 1,
without ECMO)

Ticarcillin: 5.75 ml/min (n � 2,
with ECMO), 40.83 ml/min
(n � 1, without ECMO),
Clavulanate: 61.75 ml/min
(n � 2, with ECMO), 186.8
ml/min (n � 1, without
ECMO)

PS/0.25 m2

Flucloxacillin (77) CVVH (5) U/O �400 mL/12 hr NS NS CT/1.9 m2

Flucloxacillin (83) CVVH (10) Anuric 0.54  0.43 L/kg 106.9 ml/min PA/0.7 m2

Oxacillin (no data)
Nafcillin (no data)
Cloxacillin (no data)

Cephalosporins
Cefuroxime (84) CAVHD (12) NS 22.8  9.2 L 1.5 mL/min AN69/0.43 m2

Cefuroxime (85) CAVH (3) Clcr �1 mL/min 21  2.5 L 21  6.6 mL/min PS/0.6 m2

Cefotaxime (no data)
Ceftazidime (84) CAVHD (9) NS 31.1  14.6 L (5) 15.15 mL/min AN69/0.43 m2

Ceftazidime (86) CVVH (12) Anuric 0.41  0.16 L/kg 66.57  12.90 mL/min PS/0.7 m2

Ceftazidime (87) CVVH/CVVHD (8) Clcr �20 mL/min NS NS AN69/0.6 m2,
PMMA/2.1 m2,
PS/0.65 m2

Ceftazidime (88) CVVHDF (7) Clcr � 5 mL/min 0.25  0.09 L/kg 28.9  5.6 mL/min AN69/0.6 m2

Ceftazidime (47) CVVHDF (2) Clcr � 0 mL/min 0.46 L/kg 24.95 ml/min AN69/0.9 m2

Ceftazidime (77) CVVH (7) U/O �400 mL/12 hr NS NS CT/1.9 m2

Ceftriaxone (89) CVVH (6) Clcr �10 mL/min 0.42  0.21 L/kg 22.7  19.1 mL/min PA/1.4 m2

Ceftriaxone (87) CVVH (5) ESRD NS NS AN69/0.6 m2

Ceftriaxone (87) CVVH (5) ESRD NS NS PMMA/2.1 m2

Ceftriaxone (87) CVVH (5) ESRD NS NS PS/0.65 m2

Cefepime (77) CVVH (2) Clcr � 29 mL/min (1) 0.65 L/kg NI AN69/0.9 m2

Cefepime (90) CVVHDF (2) Clcr �10 mL/min, Clcr � 35
mL/min

0.6 L/kg NI AN69/0.9 m2, PS/
1.4 m2

Cefepime (91) CVVH (5) U/O �155 mL/24 hr 0.46  0.14 L/kg 23 ml/min AN69/0.6 m2

Cefepime (91) CVVHDF (7) U/O �67 mL/24 hr 0.34  0.1 L/kg 21 ml/min AN69/0.6 m2

Cefoperazone (no data)
Monobactams

Aztreonam (no data)
Carbapenems

Imipenem (37) CVVH (6) Two anuric patients. Four patients
U/O �43 mL/24 hr

0.36  0.10 L/kg 109  24 mL/min AN69/0.6 m2

Imipenem (37) CVVHDF (6) Two anuric patients. Four patients
U/O �135 mL/24 hr

0.37  0.13 L/kg 120  32 mL/min AN69/0.6 m2

Imipenem—Cilastatin
(92)

CAVH (6) Two anuric patients. Four patients
U/O �350 mL/24 hr

Imipenem: 0.29  0.03 L/kg Cilastatin:
0.27  0.07 L/kg

Imipenem: 108.5  29.6 ml/min,
Cilastatin: 20.6  30.3 ml/min

PS/NS

Imipenem—Cilastatin
(93)

CVVH (12) Ten anuric patients. Two patients
U/O � 200 mL/8 hr

Imipenem: 24.3  7.7 L, Cilastatin:
19.6  7.3 L

Imipenem: 90.8  26.3 ml/min,
Cilastatin: 13.2  13.9 ml/min

AN69/NS

Imipenem—Cilastatin
(94)

CVVHD (6) Anuric Imipenem: 0.37  0.16 L/kg, Cilastatin:
0.26  0.09 L/kg

Imipenem: 70.6  18.1 ml/min,
Cilastatin: 18.0  9.9 ml/min

PAN/0.5 m2

Imipenem—Cilastatin
(95)

CAVH or CAVHDF
(8)

NS NS NS AN69/0.6 m2

Imipenem (96) CVVH (7) NS 0.33  0.09 L/kg NI PS/0.25 m2

Meropenem (39) CVVH (9) Anuric 0.36  0.07 L/kg 94.0  26.9 mL/min PS/0.43 m2

Meropenem (40) CVVHDF (9) Anuric 0.26  0.09 L/kg 22.7 ml/min AN69/0.9 m2

Meropenem (97) CVVH (9) Clcr � 1.3 mL/min 12.4  1.8 L 29.9  5.4 mL/min AN69/NS
Meropenem (41) CVVH (5) NS 0.38  0.12 L/kg NI AN69/0.9 m2

Meropenem (41) CVVHDF (5) NS 0.31  0.08 L/kg NI AN69/0.9 m2

Meropenem (42) CVVH (8) U/O �500 mL/24 hr 0.28  0.07 L/kg 58.52  24.46 mL/min AN69/0.9 m2
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Table 5.—Continued

Sc (Pre) Sc (Post) Sd Dose Recommended by Authors
Total Effluent Rate (Range,
Unless Otherwise Specified) Remarks

0.71  0.16. Route of dilution NS NA NS Mean  SD 29  7 mL/kg/hr
NS NS NS 4 g 12 hourly 0.76  0.20–0.88  0.18 L/hr First-dose pharmacokinetics

NS NS NS 4 g 12 hourly 0.50  0.08–0.72  0.14 L/hr

NA NA 0.71  0.21 150% of dose for anuric patients Mean  SD 1.22  0.09 L/hr
Piperacillin: 0.42  0.25, Tazobactam:

0.76  0.26
NA NA NS Mean  SD 1.63  0.47 L/hr

Piperacillin: 0.38  0.37, Tazobactam:
0.73  0.32

NA NA NS Mean  SD 1.82  0.26 L/hr

NA NA Piperacillin: 0.87  0.21,
Tazobactam:
0.64  0.19

NS 1.58–1.70 L/hr

Ticarcillin: 0.72 (n � 2, with ECMO),
1.06 (n � 1, without ECMO),
Clavulanate: 1.81 (n � 2, with
ECOM), 1.44 (n � 1, without
ECMO), Route of dilution NS

NS NS 0.82–0.95 L/hr Children (2 patients receiving
concomitant ECMO, 1
patient without ECMO U/O
�2 L/day)

0.33  0.34 (0.2 in 4 patients and 0.94 in 1 patient).
Route of dilution NS

NA NS Mean  SD 23  7 ml/kg/hr

NA 0.21  0.09 NA 4 g 8 hourly Mean  SD 3.42  0.54 L/hr

NA NA 0.90  0.33 500–750 mg 12 hourly 1–2 L/hr
NA NA NA Initial 1.5 g, then 750 mg 20–24 hourly Mean  SD 0.85  0.11 L/hr Not critically ill

NA NA 0.86  0.08 500 mg 12 hourly 1–2 L/hr
NA 0.69  0.18 NA 2 g 8 hourly (MIC �4 mg/L); 3 g 8

hourly (MIC � 8 mg/L)
Mean  SD 2.82  0.42 L/hr

AN69: 0.97  0.11, PMMA: 0.80  0.19, Polysulfone:
0.97  0.13 (no replacement fluid given)

NS Initial 1 g, then 250–500 mg 12 hourly CVVH 0.5–1 L/hr CVVHD
0.5–2 L/hr

NA NA 0.81  0.11 Initial 2 g, then 3 g daily by continuous
infusion

2.5 L/hr Predilution

NA NA 0.9 NS 1.5–2 L/hr Predilution
0.87  0.46. Route of dilution NS NA NS Mean  SD 25  7 mL/kg/hr
NA 0.69  0.39 NA 2 g daily 1.2–1.8 L/hr Ceftriaxone not recommended

for patients given calcium
containing intravenous
solutions

0.48  0.13. No replacement fluid administered NA NS 0.5–1 L/hr
0.86  0.33. No replacement fluid administered NA NS 0.5–1 L/hr
0.82  0.22. No replacement fluid administered NA NS 0.5–1 L/hr
0.62 NA NA 2 g 8 hourly 1.0–2.1 L/hr
NA NA AN69 0.83, PS 0.97 2 g 8 hourly 2.14–2.5 L/hr Predilution

NA 0.86  0.04 NA 2–4 g daily 0.54–1.14 L/hr
NA NA 0.78  0.10 2–4 g daily 1.78–2.35 L/hr

NA 1.21  0.11 NA 1–1.5 g/day (MIC �2 mg/L); �2 g/day
(MIC 4–8 mg/l)

0.78–1.44 L/hr

NA NA 1.28  0.17 1–1.5 g/day (MIC �2 mg/L); �2 g/day
(MIC 4–8 mg/L)

2.0–2.4 L/hr

1.16/0.7 Route of dilution NS NA NS 0.24–7.9 L/hr

Imipenem: 1.2  0.1, Cilastatin: 0.8  0.2. Route of
dilution NS

NA 0.5 g daily 1.1–1.2 L/hr

NA NA NS 0.5 g each of imipenem and cilastatin
12 hourly

1.26–1.38 L/hr

Imipenem: 1.05  0.19, Cilastatin:
0.68  0.08

NA NS 0.5 g 12 hourly 1–3 L/hr

Route of dilution NS NA 0.5 g 6–8 hourly 1 L/hr
NA 1.09  0.10 NA 1 g 8 hourly Mean  SD 2.7  0.4 L/hr First-dose pharmacokinetics
NA NA NS 1 g 12 hourly 1.6–1.9 L/hr
1.17  0.11. Route of dilution NS NA 1 g daily 1.1–1.15 L/hr
NA 0.95  0.03 NA 1 g 12 hourly 1.0–2.0 L/hr
NA NA 0.92  0.08 1 g 12 hourly 2.0–3.0 L/hr
0.91  0.10 NA 500 mg 12 hourly 1.6 L/hr

(Continued)
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Table 5.—Continued

Drug (Reference)
Mode of CRRT
(No Patients) Residual Renal Function Volume of Distribution Non-CRRT Clearance (mL/min)

Membrane/Surface
Area

Meropenem (98) CVVHDF (7) Clcr � 1.14 mL/min 0.57  0.29 L/kg 123.26 ml/min AN69/1.4 m2 PS/
0.9 m2

Meropenem (98) CVVH (4) Clcr � 12.5  12.1 mL/min 0.38  0.07 L/kg 114.38  51.78 mL/min AN69/1.4 m2 PS/
0.9 m2

Meropenem (98) CVVHDF (3) Clcr � 24.8  18.1 mL/min 0.36  0.14 L/kg 85.92  75.83 mL/min AN69/1.4 m2 PS/
0.9 m2

Meropenem (99) CVVHDF (6) NS Median (IQR) 32.3 (28.9–40.7) L NS PS/1.4 m2

Meropenem (99) CVVHDF (6) NS NS NS PS/1.4 m2

Meropenem (44) CVVH (5) One patient anuric. Four patients
U/O �50 mL/24 hr

0.37  0.15 L/kg 59  17.7 mL/min PAN/0.6 m2

Meropenem (100) CVVHDF (12) Ten patients anuric. Two patients
U/O �180 mL/24 hr

0.49  0.16 L/kg 46.96  29.61 mL/min AN69/0.9 m2

Ertapenem (no data)
Quinolones

Moxifloxacin (101) CVVHDF (9) Anuric 270  133 L 291 mL/min AN69/0.9 m2

Levofloxacin (28) CVVH (12) Anuric 4.3  1.8 L/kg NS PA/0.7 m2

Levofloxacin (26) CVVH (4) One patient anuric. Three patients
U/O �40 mL/24 hr

1.05 L/kg 30.8 mL/min AN69/0.6 m2

Levofloxacin (26) CVVHDF (6) U/O �128 mL/24 hr 1.0 L/kg 29.5 mL/min AN69/0.6 m2

Levofloxacin (25) CVVHDF (6) Clcr �10 mL/min (6) 1.51  0.52 L/kg 28.0  33.7 mL/min AN69/0.9 m2

Levofloxacin (25) CVVH (6) Clcr �10 mL/min 1.42  0.42 L/kg 32.2  27.5 mL/min AN69/0.9 m2

Levofloxacin (27) CVVH (4) Anuric 1.02  0.66 L/kg 26.3  14.8 mL/min AN69/0.9 m2

Ciprofloxacin (26) CVVH (5) One patient anuric. Four patients
U/O �155 mL/24 hr

1.12 L/kg 72 mL/min AN69/0.6 m2

Ciprofloxacin (26) CVVHDF (5) Two patients anuric. Three
patients U/O �90 mL/24 hr

0.96 L/kg 125.2 mL/min AN69/0.6 m2

Ciprofloxacin (36) CVVHDF (6) NS 1.56  0.35 L/kg NI AN69/NS
Ciprofloxacin (77) CVVH (16) U/O �400 mL/12 hr NS NS CT/1.9 m2

Ciprofloxacin (102) CVVHDF (1) NS NS NS PA/0.6 m2

Glycopeptides
Vancomycin (78) CVVH (6) U/O�400 mL/12 hr NS NS CT/1.9 m2

Vancomycin (103) CVVH (5) End-stage renal failure NA NS AN69/0.6 m2,
PMMA/2.1 m2,
PS/0.65 m2

Vancomycin (104) CVVHDF (10) NS 49.7  29.1 L NI AN69/NS
Vancomycin (105) CVVH (10) Anuric 0.55  0.12 L/kg 16.2  7.0 mL/min (range, 3.8–

23.3)
PS/0.25 m2

Vancomycin (106) CVVH (2) U/O �46 mL/24 hr 41.7 L, 55.8 L 10 mL/min PAN/0.6 m2

Vancomycin (30) CVVH (7) NS NS NS AN69/1.6 m2

Teicoplanin (107) CVVHDF (3) Clcr � 2.41 mL/min 1.23  0.77 L/kg 7.84 ml/min NS
Teicoplanin (108) CVVH (1) Clcr � 35 mL/min NS NS AN69/0.9 m2

Teicoplanin (109) CVVHD (5) Clcr 5.8  2.7 mL/min 0.93  0.42 L/kg NS AN69/0.6 m2

Aminoglycosides
Gentamicin (110) CAVH (4) Three patients U/O �572 mL/24

hr. One patient U/O NS
0.36  0.09 L/kg 9.55  9.82 mL/min PS/0.25 m2

Gentamicin (111) CAVHDF (5) Clcr � 2.8 mL/min NS 15.26  7.09 mL/min PAN/0.43 m2

Netilmicin (112) CVVHDF (6) Clcr � 22.3  6.2 mL/min 24.92  5.96 L NS AN69/0.6 m2

Amikacin (113) CVVH (5) Anuric 35  7.5 L 22.6 mL/min PS/0.6 m2

Amikacin (114) CVVHDF (6) NS 0.47  0.08 L/kg NS AN69/NS
Tobramycin (110) CAVH (4) Two patients anuric. Two patients

U/O �32 mL/24 hr
0.28  0.08 L/kg 6.83  3.22 mL/min PS/0.25 m2

Miscellaneous
Colistin (115) CVVHDF (1) Multiple organ failure 10.9 L 37.5 mL/min AN69/NS

Linezolid (116) CVVH (2) U/O �200 mL/24 hr 0.485 L/kg NS AN69XT/1.65 m2

Linezolid (117) CVVH (2) Anuric 1.02 L/kg 36.8 mL/min PS/1.25 m2

Linezolid (118) CVVH (7) Anuric 0.69  0.11 L/kg 133.5  71.6 mL/min PS/1.2 m2

Linezolid (118) CVVH (13) Anuric 0.56  0.14 L/kg 118.6  49.5 mL/min PS/0.9 m2

Daptomycin (119) CVVH (10) In vitro study NA NA PS/1.5 m2, AN69/
0.9 m2
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Table 5.—Continued

Sc (Pre) Sc (Post) Sd Dose Recommended by Authors
Total Effluent Rate (Range,
Unless Otherwise Specified) Remarks

NA NA AN69 0.76  0.15, PS
0.76  0.08

NS 1.5–2.5 L/hr Predilution

AN69 0.80  0.15, PS 1.01 NA NA NS 2.0–2.5 L/hr

NA NA AN69 0.82  0.14, PS
0.9

NS 2.0–2.8 L/hr Predilution

NA NA Median (IQR) 0.97
(0.87–1.05)

Initial 0.5 g, then 2 g over 24 h by
continuous infusion

1.4–2.4 L/hr First-dose pharmacokinetics

NA NA Median (IQR) 0.89
(0.79–0.93)

Initial 0.5 g, then 2 g over 24 h by
continuous infusion

1.4–2.4 L/hr

0.63  0.25. Route of dilution NS NA 0.5 g 12 hourly 1.5–1.8 L/hr

NA NA 0.65  0.25 750 mg 8 hourly or 1.5 g 12 hourly 1.11–2.55 L/hr Predilution

NA NA 0.84  0.16 400 mg daily 2 L/hr Predilution
0.47  0.27. Route of dilution NS NA NS Mean  SD 3.2  0.9 L/hr
NA 0.62 NA 250 mg 24 hourly or 500 mg 48 hourly 0.8–1.3 L/hr

NA NA 0.61 250 mg 24 hourly 500 mg 48 hourly 2–2.4 L/hr Postdilution
NA NA 0.73  0.14 250 mg daily Mean 2.2 L/hr Predilution
0.79  0.14 NA NA 200 mg daily Mean 1.2 L/hr
NA 0.98  0.06 NA Initial 500 mg, then 250 mg daily 1.3 L/hr
NA NA 0.67 400 mg daily 0.54–1.26 L/hr

NA NA 0.63 400 mg daily 1.84–2.24 L/hr

NA NA 0.70  0.13 300 mg12 hourly 3 L/hr Predilution
0.89  0.35.Route of dilution NS NA NS Mean  SD 27  5 ml/kg/hr
NA NA Mean SEM 0.5  0.067 NS Mean 1.91 L/hr

0.71  0.19 NA NA NS Mean  SD 32  9 ml/kg/hr
AN69: 0.70  0.15, PMMA:

0.86  0.16,
PS: 0.68  0.19

NA Initial 15–20 mg/kg then 0.55–1.25 g
daily (Clcr �20 ml/min)

0.5–1 L/hr

NA NA 0.70  0.10 450 mg 12 hourly 3 L/hr Predilution
NS NS NA NS 0.5–1.0 L/hr

NA 0.88  0.03,
0.89  0.03

NA Initial 15–20 mg/kg, followed after 24 h
by 250–500 mg 12 hourly

1.5 L/hr

0.76  0.11 0.57  0.15 NA 500 mg 6 hourly or 1 g 12 hourly 6 L/hr High- volume CVVH
NA NA NS NS NS
0.13–0.17 NA NA NS 1–2 L/hr
NA NA NS 800 mg on day 1; 400 mg on days 2

and 3 then 400 mg 48–72 hourly
0.96 L/hr

NA NA NA NS NS

NA NA NS NS NS Postdilution
NA NA NS 150 mg 12 hourly does not provide

effective peak levels
0.6–2.2 L/hr Postdilution

NS NS NA NI Mean 1.2 L/hr
NS NS 0.62  0.2 10 mg/kg 48 hourly 2 L/hr
NA NA NA NS NS

NA NA NS Colistin methanesulfonate: 2–3 mg/kg
12 hourly

3 L/hr Postdilution Data from a
single patient

0.57 NA NA NS 2–2.5 L/hr
0.84 NA NA NS 2 L/hr
NA 0.77  0.09 NA 600 mg at least 12 hourly 1.5–3.0 L/hr
NA 0.69  0.12 NA 600 mg at Least 12 hourly 1.5–3.0 L/hr
PS: 0.16–0.20; AN69: 0.14–0.16 NA 1–6 L/hr In vitro data

(Continued)
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efficiency. As a result, simple addition of
each component will lead to an overesti-
mation of total clearance but the clinical
relevance is unclear (32). Nevertheless,
CVVHDF has been shown to provide
greater clearance than predilution CVVH
with equivalent effluent (ultrafiltrate plus
dialysate) flow (33).

Pharmacokinetic Factors
Influencing Initial Doses of
Antibacterials

Volume of distribution should be the
primary pharmacokinetic consideration
when determining initial dose. Although
both critical illness and acute renal fail-
ure may affect volume of distribution,
CRRT itself generally has no effect. Al-
though antibacterial volume of distribu-
tion would be expected to increase in the
critically ill (34) and those with acute
renal failure, this is only the case for
certain agents. For example, available
data suggest that the volume of distribu-
tion of ciprofloxacin and meropenem is
not increased in critically ill patients,
with or without acute renal failure, com-
pared with healthy volunteers (26, 35–
44). Although the volume of distribution
of ceftriaxone appears to be increased by
both critical illness and renal failure (45),
in general, the volume of distribution of
ceftazidime is predominantly affected by
renal failure (46, 47). The volume of dis-
tribution of netilmicin is considerably
higher in critically ill patients with renal
failure than in healthy volunteers, and the
volume of distribution of amikacin is
higher in critically ill patients without re-
nal failure than in healthy volunteers (48).

Pharmacokinetic Factors
Influencing Maintenance Doses

Maintenance doses are determined by
antibacterial clearance. This can be di-
vided into non-CRRT clearance (renal
clearance due to residual renal function
plus nonrenal clearance) and CRRT clear-
ance. Nonrenal clearance may be affected
by critical illness, for example, because of
hepatic dysfunction. It may also be in-
creased in the presence of acute renal
failure (49, 50). CRRT clearance is af-
fected by PB, adsorption, and Gibbs-
Donnan effect (51). The Gibbs-Donnan
effect refers to the effect of retained an-
ionic protein (such as albumin) on the
blood side of the filter membrane. This
leads to the retention of cationic drugs
such as aminoglycosides and levofloxa-
cin. The opposite is true for anionic drugs
such as ceftazidime and cefotaxime (51).
However, the clinical relevance of this
effect is unclear (23, 29, 52).

Disease states, such as uremia, cirrho-
sis, nephrotic syndrome, epilepsy, hepati-
tis, pregnancy, and severe burns—which
in the critically ill may occur concomi-
tantly—have been shown to decrease PB
of drugs. In addition, systemic pH, hepa-
rin, free fatty acids, and drugs such as
salicylate and sulfonamide may act as
competitive displacers for drug binding
(51). An increase in unbound drug will
increase Sc and Sd and hence elimination
by CRRT. For example, the unbound frac-
tion of ceftriaxone is increased in patients
with critical illness and further increased
by renal failure (45). As a result, clear-
ance by CRRT is likely to be higher than
would be expected from PB in healthy
volunteers and this is confirmed by ex-
perimental data (53, 54).

In general, drugs with a large volume
of distribution are poorly eliminated by
CRRT because the plasma concentration
of drug is low relative to the amount of
drug in the body. This has led to the
recommendation that supplemental dos-
ing of these drugs is unnecessary (7).
However, similar considerations apply to
elimination by the kidneys in patients
with normal renal function. Both cipro-
floxacin and levofloxacin have Vd �1.5
L/kg yet renal clearance accounts for
�70% of total clearance (55, 56). The
elimination half-life of both drugs ap-
proaches that of normal healthy volun-
teers with increasing ultrafiltration
and/or dialysate flow rate necessitating
higher daily doses than previously recom-
mended (25). If, however, the reason for
increased volume of distribution is a fall
in PB, elimination by CRRT (and kidneys)
will be affected by an increase in free
fraction of the drug. In general, drugs
with a high volume of distribution (�1
L/kg) and high PB (�80%) are poorly
eliminated by CRRT (57).

Besides convection and diffusion, a
third potential mechanism for solute
removal during CRRT is adsorption.
This has been poorly studied to date.
Limited in vitro data suggest that ad-
sorption is both membrane and drug
dependent (29, 52, 58). At clinically rel-
evant concentrations, adsorption of
levofloxacin and vancomycin is unlikely
to be clinically significant (29, 58);
however, a significant amount of ami-
kacin binds irreversibly to sulfonated
polyacrylonitrile membranes in vitro
(52). The clinical importance of adsorp-
tion of antibacterials is currently un-
known but worthy of investigation.

Table 5.—Continued

Drug (Reference)
Mode of CRRT
(No Patients) Residual Renal Function Volume of Distribution Non-CRRT Clearance (mL/min)

Membrane/Surface
Area

Daptomycin (119) CVVHD (10) In vitro study NA NA PS/1.5 m2, AN69/
0.9 m2

Clindamycin (no data)
Rifampicin (no data)
Azithromycin (no data)
Clarithromycin (no data)
Tigecycline (no data)

AN69, acrylonitrile; CAVH, continuous arteriovenous hemofiltration; CAVHD, continuous arteriovenous hemodialysis; CAVHDF, continuous arteriovenous hemodiafiltration; Clcr,

creatinine clearance; Clurea, urea clearance; CRRT, continuous renal replacement therapy; CT, cellulose triacetate; CVVH, continuous venovenous hemofiltration; CVVHD, continuous

venovenous hemodialysis; CVVHDF, continuous venovenous hemodiafiltration; ECMO, extracorporeal membrane oxygenation; ESRD, end-stage renal disease; NA, not available; NI, not

interpretable; NS, not specified; PA, polyamide; PAN, polyacrylonitrile; PMMA, polymethylmethacrylate; post, postdilution; pre, predilution; PS, polysulfone; pts, patients; Sc, sieving coefficient;

Sd, saturation coefficient; U/O, urine output.

Values in parentheses indicate the No patients. Pharmacokinetic data are steady-state data unless otherwise stated.

Reproduced with permission from ICU web (www.aic.cuhk.edu.hk/web8).
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Critique of Currently Available
Dosage Regimes

From the above, it can be seen that
there are many factors that need to be
taken into account when determining ap-
propriate doses of antibacterials for crit-
ically ill patients receiving CRRT (Table
3). Although there are multiple sources
of recommendations for antibacterial
dosing in this group of patients, none of
the patients take all of these factors into
account. If those dose recommendations

based on estimated glomerular filtration
rate are used, the average daily effluent
rate can be substituted for the glomerular
filtration rate. Dosages based on the find-
ings of individual studies may also not be
appropriate unless the mode and dose of
CRRT are identical to those in the study.
Furthermore, it is difficult to follow dose
recommendations from individual stud-
ies when the dose of CRRT within a study
is variable (Table 5). Dosage recommen-
dations for patients with chronic renal

failure undergoing intermittent renal re-
placement therapy are not appropriate
because of differences in dose and mode
of renal replacement therapy as well as
pharmacokinetic differences (59). Some
currently proposed dosage regimes and
their associated assumptions are listed in
Table 4. Unfortunately, these assump-
tions may not be valid. For many antibac-
terials, assays are not widely available for
clinical use, Sc is not invariably the same
as the unbound fraction, and “normal”
doses or doses recommended for anuric
patients may not achieve pharmacoki-
netic targets associated with improved
outcome. For example, based on pharma-
cokinetic data in critically ill patients (60)
and the MIC for Streptococcus pneu-
moniae (61), the recommended dose of
moxifloxacin may not achieve an optimal
AUC:MIC �33.7 (62) in some countries,
where the MIC is high but still below
accepted break points. Furthermore,
method 4 consistently overestimates
daily dosing needs for drugs with low
nonrenal clearance (63).

Although other recommendations on
antibacterial dosing during CRRT are
available (7, 59, 64), these recommenda-
tions are based on either continuous ar-
teriovenous hemofiltration data or sub-
optimal ultrafiltration/dialysate flow rates
(65–67).

Given the variability in mode and dos-
ing of CRRT and in MIC in different in-
tensive care units, we believe the most
appropriate way to dose antibacterials
may be to calculate an appropriate indi-
vidualized dose from first principles. The
initial dose is dependent on the volume of
distribution. Maintenance doses are de-
pendent on clearance. Both need to be
adjusted according to the pharmacoki-
netic target associated with optimal kill-

Figure 3. Calculation of intravenous antibacterial doses based on first principles. Noncontinuous renal
replacement therapy (CRRT) clearance is the sum of nonrenal clearance plus residual renal clearance.
Cltot, total clearance; Cmax, maximum postdistribution plasma concentration; MIC, minimum inhib-
itory concentration; AUC24, area under concentration-time curve over 24 hours; Vd, volume of
distribution; Cp, target plasma concentration.

Table 5.—Continued

Sc (Pre) Sc (Post) Sd Dose Recommended by Authors
Total Effluent Rate (Range,
Unless Otherwise Specified) Remarks

NA NA PS: 0.15 AN69: 0.05–
0.13

1–6 L/hr In vitro data
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ing. Thus, appropriate dose calculation
requires knowledge of pharmacokinetic
target (Table 2) and the usual MIC of the
suspected organism in your locality (if
unavailable, the break point for the or-
ganism may be appropriate), published
pharmacokinetic data (volume of distri-
bution, non-CRRT clearance) on criti-
cally ill patients receiving CRRT (Table
5), the Sc or Sd of the relevant drug (Table
5), and the dose and mode of CRRT being
used (Figs. 3 and 4). Several aspects of
this recommendation require elabora-
tion. First, for the sake of simplicity, the
formula recommended for calculation of
half-life is based on a single compartment
and is therefore not strictly accurate. Sec-
ond, intravenous infusion of antibacterials

with time-dependent killing characteristics
is recommended because dose estimation is
much simpler and not because of any con-
firmed effect of continuous infusions on
outcome. If intermittent bolus doses are
used, the appropriate maintenance dose
can be calculated from:

Maintenance dose �
Vd(1�e�kT) � Cth

e�kT

and

Loading dose �
Maintenance dose

1�e�kT

where k �
CL
Vd

, T � dosing interval

(mins) and Cth� target threshold con-
centration.

Third, for patients with residual renal
function, total clearance needs to be ad-
justed for renal clearance. In this context,
it is important to understand that adjust-
ment for renal clearance based on creat-
inine clearance assumes that drugs un-
dergo glomerular filtration only and
therefore will result in underdosing for
drugs with important tubular secretion
or overdosing for drugs with tubular re-
sorption (8). Dosing should also take into
account the effect of other organ failure
(e.g., hepatic) on non-CRRT clearance.
Fourth, when drug concentration assays
are available it is preferable to calculate
Sc and Sd in the individual patient from
measured blood and effluent concentra-
tions rather than rely on published val-

Figure 4. A, Calculation of amikacin dose for empirical non-enterobacteriaceae nosocomial sepsis for a 70-kg patient with anuric acute renal failure on
continuous venovenous hemodiafiltration using an AN69 filter and with targeted total effluent of 35 mL�kg�hr. Note that figures are included for illustrative
purposes. Dose prescribed should also take into account the risk of toxicity and may need to be reduced to comply with dose range approved by regulatory
authorities. B, Calculation of dose of meropenem for empirical non-enterobacteriaceae/enterobacteriaceae/Staphylococcus nosocomial sepsis for a 70-kg
patient with anuric acute renal failure on continuous venovenous hemofiltration (postdilution) using AN69 0.9 m2 filter with a targeted ultrafiltration rate
of 35 mL�kg�hr. Note that figures are included for illustrative purposes. A formula for dose calculation for bolus dosing is given in the text. The dose
prescribed should also take into account the risk of toxicity and may need to be reduced to comply with dose range approved by regulatory authorities.
Cltot, total clearance; Cmax, maximum postdistribution plasma concentration; MIC, minimum inhibitory concentration; AUC24, area under concentration–
time curve over 24 hours; CRRT, continuous renal replacement therapy; Qf, ultrafiltrate flow rate; Qd, dialysate flow rate; Sd, saturation coefficient; ClCVVH,
clearance by continuous venovenous hemofiltration; Vd, volume of distribution; ClCVVHDF, clearance by continuous venovenous hemodiafiltration.
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ues. Fifth, antibacterial doses will need to
be adjusted when CRRT doses are altered
and if the delivered dose of CRRT differs
substantially from the prescribed dose
due to interruptions in CRRT.

We believe that our approach to dos-
ing has a number of theoretical advan-
tages. It is, however, important to under-
stand that this method of dosing, like
other recommended methods, has not
been appropriately validated and like all
other methods, it does not take into ac-
count inter- and intrapatient pharmaco-
kinetic variability. Furthermore, dosing
to achieve the pharmacokinetic targets
may result in administration of very large
doses, depending on the exact pharmaco-
kinetic target chosen (e.g., time above
MIC or time above five times MIC) and
the MIC. It is important that these doses
are not prescribed unthinkingly, but that
the benefits of optimal killing are bal-
anced against the risks of toxicity and
that the possibility of using another agent
with a more favorable risk:benefit ratio is
considered. When no suitable alternative
exists, it may be prudent to restrict doses
to the doses approved by regulatory au-
thorities. However, when considering the
risk of toxicity it is important to under-
stand that, although toxicity is associated
with drug concentrations, the relation-
ship is not simple and is dependent on a
large number of factors that vary from
agent to agent (68 –72). Furthermore,
underdosing is an important factor in de-
velopment of antibacterial resistance (4).

It is also important to understand that
all the dosing recommendations pro-
vided, both old and new, provide only
estimated doses and when possible doses
should be further adjusted according to
measured blood concentrations. How-
ever, blood concentrations alone are un-
likely to be sufficient in guiding dosing.
First, they cannot provide guidance on
initial doses and second, there is often a
significant delay between blood sampling
and delivery of results.

In theory, when suitable assays are
available, it is possible to calculate drug
clearance by CRRT from blood concentra-
tions and from the volume and drug con-
centration in a timed effluent collection.
This requires either frequent blood sam-
pling or selection of a period during
which drug concentrations in blood are
unlikely to be changing rapidly and care-
ful timing of the effluent collection. Fur-
thermore, as with all methods based on
drug assays, there may be a significant
delay in obtaining results unless the ap-

propriate laboratory provides a rapid ser-
vice at all hours.

Although for some classes of antibiot-
ics, appropriate pharmacokinetic targets
have been established, this is not the case
for all agents (Table 2) and for some
drugs that are concentrated in tissues
(e.g., macrolides, ketolides, and azalides);
blood concentrations may not be a useful
guide (73). In these cases, our proposed
method of calculating an appropriate
dose is not useful.

Summary and Conclusions

Optimal bacterial killing by antibacte-
rials is dependent on achieving pharma-
codynamic targets associated with maxi-
mal killing of bacteria. To achieve these
targets, it is important to be aware of the
changes in PB, volume of distribution,
and nonrenal clearance associated with
the combination of critical illness and
renal failure as well as the determinants
of clearance by CRRT. When considering
clearance by CRRT, it is also vital to under-
stand that not only are mode (pre- or post-
dilution and CVVH, CVVHDF, or CVVHD)
and dose of CRRT major determinants of
clearance, but they may also vary consid-
erably between intensive care units and
patients and within patients from day to
day. Furthermore, there may be a differ-
ence between prescribed and adminis-
tered doses of CRRT due to interruptions
in treatment. Thus, the situation is very
different from the more homogeneous
situation of chronic renal failure and in-
termittent dialysis and necessitates a dif-
ferent approach to dosing. We believe
that the most appropriate method of dos-
ing is to individualize dosing taking into
account the above factors and balancing
the benefits of optimal killing against the
risk of drug toxicity.
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