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ABSTRACT
Critically ill patients have elevated plasma cortisol concentrations, in proportion to illness severity.
This was traditionally attributed exclusively to a central activation of the hypothalamus-pituitary
axis. However, low rather than high plasma ACTH concentrations have been reported in critically
ill patients, with loss of diurnal ACTH and cortisol rhythm. Low ACTH together with high cortisol is
referred to as “ACTH-cortisol dissociation.” Although cortisol production is somewhat increased
with inflammation, a reduced cortisol breakdown explains to a larger extent the hypercortisolism
during critical illness. Inflammation-driven decrease in cortisol binding proteins further increase the
active free cortisol fraction. Several drugs administered to ICU patients suppress plasma cortisol
in a dose-dependent manner.

Sustained low circulating ACTH might contribute to adrenal atrophy and dysfunction in the
prolonged phase of critical illness. In the acute phase of sepsis or septic shock, a condition re-
ferred to as “relative adrenal insufficiency” has been suggested to ensue from glucocorticoid
resistance and insufficiently elevated circulating cortisol to overcome such resistance, with patho-
logical changes possibly occurring at every level of the HPA axis. However, it remains highly
controversial whether tissue-specific glucocorticoid resistance is adaptive or maladaptive, how to
diagnose “relative” adrenal insufficiency, and how it should be treated. Large RCTs, investigating
the effect of 200 mg/d hydrocortisone treatment for sepsis or septic shock have shown conflicting,
mainly negative, results. Not taking into account the reduced cortisol breakdown, which increases
the risk of overdosing hydrocortisone, might have played a role. Further research on diagnostic,
therapeutic and dosing aspects is urgently warranted. © 2018 American Physiological Society.
Compr Physiol 8:283-298, 2018.

Didactic Synopsis
Major teaching points
� Unlike the hypothalamus-pituitary-adrenal axis response

to stress outside the context of intensive care, the stress
response to critical illness is hallmarked by low rather than
high plasma ACTH in the face of high plasma cortisol.

� During critical illness, the diurnal rhythm of ACTH and
cortisol secretion is absent.

� A normal or only slightly increased cortisol production and
a consistently reduced cortisol breakdown determine the
degree of hypercortisolism during critical illness.

� Sustained suppressed circulating ACTH can contribute to
risk of adrenal atrophy specifically in prolonged critically
ill patients.

� Drugs often given to critically ill patients such as etomidate,
opioids and propofol can suppress plasma cortisol. One
should consider omitting these before initiating treatment
with hydrocortisone for low plasma cortisol.

� It remains controversial whether “relative” adrenal insuf-
ficiency is a clinical entity ensuing from glucocorticoid
resistance with cortisol availability that is insufficiently
elevated to overcome such resistance.

Introduction
Critical illness represents any condition, evoked by major
surgery, severe medical illnesses, or multiple trauma, that
requires pharmacological and/or mechanical support of vital
organ functions without which death would ensue. As such,
critical illness is a condition of severe and sustained physical
stress for the human body for which an adequate activation
of several processes is required to provide necessary energy,
to modulate the immune response, and to ensure hemody-
namic homeostasis. The term ‘stress response’ indicates the
combination of these closely interrelated physiological reac-
tions to stress to maintain and restore homeostasis in the
human body (137). Both neuronal and endocrine systems are
involved, among which the activation of the sympathetic ner-
vous system, the release of catecholamines from the adrenal
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medulla, and the activation of the hypothalamus-pituitary-
adrenal (HPA) axis to increase the availability of the stress
hormone cortisol (32, 144).

Critically ill patients indeed typically present with ele-
vated plasma cortisol concentrations, in proportion to the
severity of illness (177). Whereas this elevation in cortisol
traditionally has been attributed to a central activation of the
HPA axis with an increased ACTH release from the pitu-
itary, low rather than high plasma ACTH concentrations have
been reported in critically ill patients (20, 169). Low ACTH
together with high cortisol is referred to as “ACTH-cortisol
dissociation.” ACTH-independent mechanisms, among which
direct inflammation-induced adrenocortical cortisol synthesis
and release, a reduced cortisol breakdown as well as iatro-
genic modulators are considered to explain this dissociation
(20, 115). Recent findings have shed new light on the HPA-
axis response to critical illness, with potentially important
diagnostic and therapeutic implications.

In this article, we will give an overview of the adrenocorti-
cal stress response to stress, with a point-by-point discussion
on the causes and consequences observed during critical ill-
ness. Next, we will discuss potential failure or dysfunction of
the HPA axis, and current diagnostic and therapeutic options.

Acute and Prolonged Critical Illness
Most patients admitted to the ICU only require a few days
of intensive care, but about 25% of ICU patients receive vital
organ support for a much longer period. This stage of pro-
longed critical illness is characterized by ongoing mechanical
and pharmacological vital organ support with increased risk
of organ failure and a higher risk of death. Indeed, a recent US
population-based cohort study indicated an in-hospital mor-
tality of 31% for patients with an ICU stay of at least 8 days
(80). The exact timing of the transition from acute to chronic
critical illness is however not clear, neither at the patient
level, nor at the population level. A recent study defined this
onset as the time at which severity of illness on admission
was no longer predictive of mortality, which was after about
10 days (77).

Most hypothalamus-pituitary-peripheral-hormonal axes
that play a key role in the metabolic and immunological alter-
ations accompanying critical illness typically follow a bipha-
sic response pattern (Fig. 1) (159-163, 166). For example, in
the acute phase of critical illness, plasma concentrations of
the anterior pituitary hormones growth hormone (GH) and
thyroid-stimulating hormone (TSH) are increased, whereas
plasma concentrations of their peripheral effector hormones
IGF-1 and T3 are decreased. However, when ICU-dependency
continues beyond the acute time window, these pituitary hor-
mones are typically suppressed, with a further decrease of
their peripheral hormones. Whereas the acute changes can be
interpreted as beneficial, bringing about the release of endoge-
nous fatty acids and glucose into the circulation and postpon-
ing energy consuming anabolism, the uniform suppression in
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Figure 1 Shown are the biphasic neuroendocrine responses of the
anterior pituitary hormones and their peripheral hormones to acute and
chronic critical illness. In the acute phase of illness the growth hormone
(GH) and thyrotrophin (TSH) secretory activity is amplified (red), and
adrenocorticotropic hormone (ACTH) secretory activity is increased
in some cases. Plasma concentrations of their anabolic peripheral
hormones (insulin-like growth factor-I, triiodothyronine) are decreased
(green), but cortisol levels are elevated (yellow). In prolonged critical ill-
ness, secretion of GH, TSH, and ACTH is consistently suppressed, with
a further decrease of their peripheral hormones. Plasma cortisol levels
remain high, but in some cases low plasma cortisol levels appear in the
chronic phase of critical illness. (Figure was reproduced from Van den
Berghe (160), with permission from The Journal of Clinical Endocrinol-
ogy and Metabolism.)

the prolonged phase of critical illness likely participates in the
general wasting syndrome, with persisting hypercatabolism,
causing weakness and delayed or non-recovery from intensive
care dependency (105, 149).

Such bi-phasic response also applies to the HPA axis, a
crucial axis in terms of acute survival. However, the anterior
pituitary hormone ACTH is only very transiently elevated,
and several studies have reported lower than normal plasma
ACTH from quite early after admission to the ICU throughout
the ICU stay. This suppression of plasma ACTH occurs while
high levels of plasma cortisol are consistently observed in
most ICU patients, both in the acute and the prolonged phase
of critical illness (Fig. 1). This phenomenon of low ACTH
together with high cortisol is referred to as ‘ACTH-cortisol
dissociation’. Whether or not this dissociation points to, or
can lead to a dysfunctional HPA axis, can only be interpreted
if one correctly understands the pathophysiology of the HPA
axis response during critical illness.

The Adrenocortical Stress Response
to Critical Illness
The normal stress response
When the human brain senses a stressful event, it signals
the paraventricular nucleus (PVN) of the hypothalamus to
release corticotropin-releasing hormone (CRH) and arginine
vasopressin, which both activate the anterior pituitary gland
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to release ACTH. In turn, ACTH release exerts important
dose-dependent functions on the cortex of the adrenal gland
to ensure immediate cortisol release into the bloodstream.
Together with this activation of the HPA axis, the sympathetic
nervous system is stimulated simultaneously, with a release
of predominantly norepinephrine from postganglionic sym-
pathetic nerve fibers and predominantly epinephrine from
the medulla of the adrenal gland. Because cortisol secre-
tion first requires de novo synthesis from cholesterol, cortisol
release consequently lags behind the catecholamine secretion
by several minutes during the onset of the stress response
(40). The first line response to stress is thus mediated by the
effects of (nor)epinephrine, facilitating immediate physical
reactions, such as an increase in heart rate and cardiac output,
an improvement of the respiratory function, and an increase
in blood glucose and fatty acids. Subsequently, the effects
of increased cortisol availability become apparent, via fluid
retention and increased vasopressor effects of catecholamines,
via further fostering energy provision by stimulating liver glu-
coneogenesis, and through dampening of inflammation. In
addition, studies have shown that stimulation of the sympa-
thetic nervous system and the HPA axis synergistically inter-
act with each other and are functionally interdependent (50).

ACTH-cortisol dissociation during critical illness
The hypothalamic CRH release is the first step in the HPA
stress response, but to our knowledge, no data on CRH levels
in critically ill patients have been reported. However, CRH is
rarely measured in peripheral blood, as these levels do not cor-
relate well with those in the hypothalamic-hypophyseal portal
circulation. Also published data on ACTH in the critically

ill are scarce, probably explained by the cumbersome way
in which blood samples should be collected (on ice) and pro-
cessed (spun cold prior to assay) (96). In burn patients, plasma
ACTH levels were found not to be elevated and did not show
a correlation with burn size (167). In patients undergoing
minor surgical interventions, plasma ACTH increased during
surgery and normalized rapidly afterward (99, 100, 158). In a
study on more extensive surgery, plasma ACTH was unaltered
(174). In patients undergoing elective major surgery, plasma
ACTH, together with plasma cortisol, rose following surgery
with a subsequent fall, whereas plasma cortisol remained high
during the following days in ICU (59,130). In patients suffer-
ing from severe trauma and sepsis, necessitating intensive care
for 8 days and more, plasma ACTH concentrations only tran-
siently increased, after which they fell to levels below those in
healthy individuals, while plasma cortisol was elevated during
the whole study period (169). Also in septic shock patients,
baseline plasma ACTH levels were low in comparison with
healthy volunteers, independent of the severity of illness (7).
In a recent study on a mixed population of 156 critically ill
patients, low plasma ACTH concentrations, in comparison
with healthy controls, were observed already upon admission
to the ICU, with a further lowering from the morning after
admission onward (Fig. 2A) (115).

In contrast with ACTH, an increase of its peripheral hor-
mone cortisol is a hallmark of critical illness. Indeed, the more
severely ill, and thus the higher the risk of dying, the higher
plasma cortisol concentrations rise (177). In burn patients,
plasma cortisol concentrations were shown to be elevated in
proportion to burn size (167). In patients undergoing surgery,
cortisol concentrations also reflect the degree of surgical
stress (31, 106, 108, 177). In addition, septic shock induces
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Figure 2 Mean values and standard errors for plasma ACTH (Panel A), total cortisol (Panel B), and free cortisol (Panel C) in ICU patients from
admission onward until day 3 of ICU stay. The blue shaded area represents the interquartile range of morning values in healthy control subjects.
∗P ≤ 0.05, ∗∗P < 0.001, for the comparison with controls. §P ≤ 0.05, §§P < 0.01, §§§P < 0.0001, for the comparison of paired values of
the consecutive days with the admission sample. For each day, the number of patients still in ICU is displayed below the figure. ICU denotes
intensive care unit, adm denotes admission. (Figure was reproduced from Peeters (115), with permission from Clinical Endocrinology.)
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elevated cortisol levels proportionally to disease severity
(9, 38, 104, 131).

The onset of this hypercortisolism is expected to happen
instantaneously, facilitating immediate effects. However, the
exact timing of the rise of plasma cortisol concentrations dur-
ing the course of illness is not that clear. In patients undergoing
minor or mild surgery, a cortisol increase was only observed
during or near the end of surgery, with a rapid normalization
during the following hours on the ward (99, 100, 158, 174).
Patients undergoing elective major surgery displayed a large
cortisol response that occurred hours after, not during, surgery
and remained high during the following days in ICU (59,130).
In a mixed population of severely ill medical and surgical
patients, directly coming from the emergency department,
the operating room or from the ward, normal cortisol plasma
concentrations upon admission to the ICU were observed,
which increased quickly thereafter (Fig. 2B) (115).

Hence, the dynamics of the HPA axis response to severe
and prolonged life-threatening stress and to less severe
stress appear to differ. Based on the general concept of
the stress response, high plasma cortisol levels are predomi-
nantly attributed to an increased cortisol production. However,
plasma hormone concentrations are the net result of hormone
secretion, distribution, binding to plasma proteins, and plasma
clearance.

Cortisol production and metabolism
In a set of clinical studies performed in 158 mixed medical
and surgical ICU patients, the rate of cortisol production and
plasma clearance has been quantified and compared with a
matched population of healthy control subjects (20). Cortisol

production rate, measured via a stable isotope technique, was
found to be only slightly elevated in critically ill patients
suffering from the systemic inflammatory response syndrome
(SIRS) and unchanged in critically ill patients without SIRS,
whereas plasma free and total cortisol concentrations were
several-fold higher in all patients. The pro-inflammatory
cytokines TNF-α and IL-6 correlated positively with cortisol
production, suggesting that these could play a role as a
driver of the moderately increased cortisol production during
critical illness. Surprisingly, the cortisol production rates
observed in these very ill patients on vital organ support were
in the same range as those reported in old studies for patients
with less severe stress, for example, patients suffering from
mild infections or during a COPD exacerbation (36, 37).
Strikingly, the stable isotope study indicated that the plasma
clearance of cortisol was suppressed to less than half in
all patients, regardless of the inflammation status. Also the
plasma clearance of 100 mg hydrocortisone, the pharma-
ceutical form of cortisol, administered as an intravenous
bolus, was found to be 60% lower than normal, with a
half-life of a median fivefold longer than in healthy subjects.
Hence, although cortisol production rate is not much (if
at all) elevated, the reduced breakdown better explains
the typically elevated plasma cortisol observed in the
critically ill.

Cortisol is normally mainly broken down in the liver
via A-ring reductases to the metabolites 5α- and 5β-
tetrahydrocortisol (Fig. 3). In the kidney, cortisol can be inac-
tivated to cortisone via 11β-hydroxysteroid dehydrogenase
type 2 (11β-HSD2), and further degraded to tetrahydrocorti-
sone by 5β-reductase. Indeed, Boonen and colleagues showed
that expression and activity of the hepatic A-ring reductases

Cortisol

5β-Tetrahydrocortisol

(THF)

5α-Tetrahydrocortisol

(allo-THF)

Cortisone

11β-HSD2

11β-HSD1

5β-Reductase5α-ReductaseLiver

Kidney

Tetrahydrocortisone

(THE)

5β-Reductase

Liver, Adipocytes

Figure 3 Cortisol metabolism in humans. Cortisol and cortisone are mainly broken down via A-ring
reductases, 5α-reductase and 5β-reductase, in the liver to generate 5α- and 5β-tetrahydrocortisol. In the
kidney, cortisol is metabolized by 11β-hydroxysteroid dehydrogenase (11β-HSD) type 2, generating
cortisone, which can further be broken down to tetra-hydrocortisone (THE) by 5β-reductase. 11β-HSD
type 1 can reconvert cortisone to cortisol.
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and the 11β-HSD2 activity in kidney were significantly dimin-
ished in critically ill patients (20).

As a side note, the suppression of cortisol breakdown
during critical illness can be interpreted as a smart adaptive
and energy-efficient mechanism to rapidly increase cortisol
availability in those vital organs and tissues that express these
enzymes, which could be required to deal with and overcome
life-threatening illnesses or trauma.

Non-ACTH-driven cortisol production?
A dissociation of ACTH and cortisol levels has also been
observed in other noncritically ill stress conditions such as
depression and anxiety (28, 132). Also in Alzheimer disease
patients, high plasma cortisol though normal plasma ACTH
levels have been shown (113). In mice, it has been shown that
adrenal responsiveness to plasma ACTH is increased with
endurance training, chronic stress, or hypoxia (48, 49, 124).
Other clinical conditions ranging from metabolic disease,
chronic pulmonary disease, and alcoholism, also show a dis-
sociation between plasma ACTH and cortisol (58,126,170). In
all these conditions, the dissociation between ACTH and cor-
tisol has been interpreted as the consequence of an increased
non-ACTH driven cortisol production. During critical ill-
ness, the observed moderately increased cortisol production
(20, 36, 37) could indeed theoretically be brought about by
alternative stimuli, such as cytokines, neuropeptides, or cer-
tain adipokines (23). Immune cells can release cytokines that
regulate cortisol secretion, but bacterial or viral pathogens can
also directly interact with the adrenocortical cells via toll-like
receptors (24). Toll-like-receptor-2-deficient mice had indeed
an impaired adrenal corticosterone release upon stimulation
with bacterial cell wall compounds, although the initial acti-
vation of cortisol production during early sepsis depended
primarily on the activation of immune cells and cytokine
release (81). Adipocytes situated in subcutaneous, visceral or
periadrenal fat release certain adipokines, which can induce
cortisol secretion but also sensitize adrenocortical cells for
ACTH (88). Tissue damage or inflammation can also induce
the release of vasoactive peptides, such as endothelin, which
has shown to cause a dose-dependent stimulation of cortisol
production in human and rat adrenal cells and potentiated the
effect of ACTH (73).

As mentioned above, the sympathetic nervous system and
the HPA axis synergistically interact with each other in the
complex microenvironment of the adrenal gland (50). The
addition of chromaffin cells to intact isolated perfused pig
adrenals with preserved nerve supply showed that the release
of corticosteroids could be stimulated through the sympathetic
nervous system (22).

Also an increased ACTH sensitivity, that is, an upregu-
lation of its melanocortin 2 receptor (MC2R), could play a
role (23). However, a human study that quantified pulsatile
and nonpulsatile secretion of cortisol and ACTH overnight
revealed that the amount of cortisol released in response to a
given ACTH level was found to be normal, arguing against

an increased ACTH sensitivity (168). This preserved dose
response between ACTH and cortisol suggested that the term
“ACTH-cortisol dissociation” (referring to total plasma con-
centrations) may not be entirely correct, as an association
between ACTH secretion and cortisol secretion was in fact
maintained, but both were lower than in healthy subjects. On
the contrary, the presence of more asynchrony and irregularity
in the patterns of cortisol and ACTH secretion suggested other
ACTH-independent mechanisms contributing to the cortisol
availability (168).

It might also be possible that critical illness induces an
increase in other active splice forms of ACTH, undetected
by the classic immunoenzymometric ACTH assays. How-
ever, in an observational study of septic and nonseptic ICU
patients, where plasma cortisol was found to be increased
in all patients, plasma ACTH was not increased, both mea-
sured by the highly specific immunoenzymometric assay as
by a less specific single antibody competitive binding assay
which would have detected other fragments or precursors of
ACTH (121). These findings disproved the hypothesis that
such biologically active forms of ACTH could be responsible
for increased cortisol production during critical illness.

Cortisol transport
Once secreted into the bloodstream, the relatively insoluble
cortisol is transported predominantly bound to corticosteroid-
binding globulin (CBG, transcortin) (80%) and to a lesser
extent to albumin (10%-15%). Since only free (unbound) cor-
tisol can exert its biological and clinical effects, low CBG
levels increase cortisol availability at the tissue level (117).
Also CBG affinity can be modulated by pH and temperature,
and by elastases produced by neutrophils at sites of inflam-
mation, converting the high-affinity conformation of CBG
to a low-affinity conformation, as such increasing free corti-
sol levels (69). Thus in patients with systemic infection, free
rather than total cortisol correlate with the severity of disease
and better reflect biologically active cortisol availability (74).
In the clinical setting however, total plasma cortisol is usually
measured, because ultra-filtration and equilibrium dialysis are
rarely available and time-consuming. Alternatively, an esti-
mation of free cortisol can be made with use of the validated
Coolens formula, based on total plasma cortisol, CBG, and
albumin levels (34).

In patients in the early stage of septic shock and multiple
trauma, plasma CBG levels have shown to be immediately and
significantly lowered which reflected much higher free corti-
sol levels than indicated by total cortisol (14). Plasma CBG
levels were also transiently decreased following abdominal
surgery, with a normalization on postoperative day 2 (46).
Also in a mixed population of medical and surgical ICU
patients, plasma CBG and albumin were acutely downreg-
ulated already upon ICU admission, causing a several fold
increase in plasma free cortisol concentrations, in the face of
unaltered total plasma cortisol (Fig. 2C) (115). In this set of
patients, from the morning after ICU admission, free plasma
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concentrations increased further mainly due to the rise in
total cortisol levels, and remained high during the following
days. In an observational cohort study in patients with sepsis
and septic shock, total CBG levels decreased in proportion
to disease severity (109). This was explained by an increase
in cleaved low-affinity CBG, which was associated with the
plasma neutrophil concentration.

Elevated free plasma cortisol during severe stress is
mainly determined by the combined effect of a decrease in
high-affinity CBG due to elastase cleavage and reduced CBG
and albumin synthesis by the liver, and increased total cortisol
levels (109). In theory, cleavage of CBG can be interpreted
as a beneficial response that may target increased cortisol
bioavailability to sites of interest during critical illness (110).
However, a depletion of high-affinity CBG, possibly wors-
ened by reduced synthesis, can evoke a loss of the circulating
cortisol reservoir, resulting in a failure of cortisol supply to
the inflammatory sites and a loss of ability to dampen inflam-
mation (109).

Cortisol signaling
Local cortisol activity is also further regulated by tissue-
specific alterations of glucocorticoid signaling (29, 62). At
the levels of the target cells, free cortisol diffuses the cell
membrane where it can bind to the cytoplasmic glucocor-
ticoid receptor (GR), which form dimers that translocate to
the nucleus and act as a ligand-dependent transcription factor
to regulate target gene expression, to exert its effects (165).
Alternative splicing of the GR gene can generate different
isoforms of the receptor, of which GRα, the active positive
isoform, and GRβ, the negative isoform, are the most impor-
tant ones (62). Other common GR isoforms are GRγ and
GR-P. Expression of the GR receptor is normally downregu-
lated by cortisol to maintain homeostasis (43). Cortisol can
also bind to the mineralocorticoid receptor (MR) with a 10-
fold higher affinity (127). In contrast with the GR, which is
widely expressed in all tissues, the MR is expressed only in
certain tissues, such as the kidneys, where it mainly regulates
salt and water homeostasis. Although affinity to cortisol is
higher, cortisol signaling through the MR is limited by the
activity of 11β-HSD2 in cells in which MR is expressed (55).

Evidence from animal and human studies indicate that,
besides alternative splicing of the GR, also GR expression,
GR affinity and GR translocation are regulated and could be
tissue-specific during critical illness (15, 63, 116, 141). GRβ
expression was found to be transiently increased in white
blood cells of adult septic patients (63). White blood cell bind-
ing capacity of labeled dexamethasone was markedly reduced
in ventilated critically ill patients with the lowest GR receptor
levels in the more severely ill patients (141). In white blood
cells of critically ill children, suffering from trauma and sep-
sis, lower total and cytoplasmatic GR levels than in healthy
individuals have been reported (75). A suppression of GR
expression in white blood cells has also been reported in adult

septic patients (63). In contrast to liver GR expression, muscle
GR expression was not lower in patients receiving exogenous
glucocorticoids in tissue samples of patients who died in the
ICU, which might imply that muscle tissue is less sensitive to
down-regulating effects of glucocorticoids in critical illness
(116). In vitro and animal research indeed suggested increased
GR expression in muscle tissue, but decreased GR expression
in liver tissue during critical illness (4, 151).

A tissue-specific regulation of glucocorticoid signaling
may limit undue cortisol exposure in vulnerable vital organs
that would suffer from an excess of cortisol and increase
it in cells that might require more cortisol action. However,
further research regarding tissue-specific changes is needed to
unravel whether this phenomenon is adaptive or maladaptive.

The hypothalamic-pituitary feedback mechanism
The hypothalamic-pituitary feedback regulation is central in
the physiological response to maintain and restore homeosta-
sis during stress. Cortisol exerts fast (seconds to minutes),
intermediate (hours) and slow (days) feedback inhibition at
the level of the hypothalamus and the pituitary to fine-tune
its own release (84). Fast feedback exerts negative feedback
by inhibiting ACTH and CRH release, and does not influ-
ence gene expression or protein synthesis (133). Intermedi-
ate feedback inhibits both CRH and ACTH synthesis, and
slow feedback involves regulation of pro-opiomelanocortin
(POMC) mRNA levels in the pituitary (133). However, the
hypothalamic-pituitary feedback regulation appears much
more complex than the initially proposed simple closed loop
feedback system (176). For example, whereas TSH becomes
completely unresponsive to the hypothalamic thyrotropin-
releasing hormone when thyroid hormone levels are high (57),
CRH can overrule the feedback inhibition on ACTH exerted
by high cortisol levels (11, 157). Furthermore, suprahypotha-
lamic brain regions, which are also targeted by cortisol,
can influence CRH neuronal function in the hypothalamus,
thereby regulating the set-point of pituitary responsiveness to
cortisol (176).

The sustained high circulating cortisol levels during criti-
cal illness could potentially exert negative feedback inhibition
at the hypothalamic (CRH) and pituitary (ACTH) level, as
such explaining the low plasma ACTH concentrations. This
would be similar to the inhibition of ACTH and CRH synthe-
sis and secretion in response to a prolonged exposure (24 h or
more) to high doses of exogenous corticosteroids (84, 121).
However, such a negative feedback inhibition exerted by high
levels of cortisol, normally induces much lower plasma ACTH
concentrations than those observed in critically ill patients,
which suggests that increased central stress inputs might
maintain some degree of ACTH secretion and partially over-
come the feedback inhibition (176).

Whether CRH and/or ACTH synthesis and release is
suppressed during the various phases of critical illness is
however currently unclear. One could speculate that the longer
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the feedback inhibition persists, the more CRH and/or ACTH
synthesis and secretion would be suppressed. However, a pos-
sible progressive loss of responsiveness of the HPA axis to
negative feedback regulation, probably due to degenerative
changes in the hippocampus, could also play a role (136). On
the other hand, long-term administration of exogenous gluco-
corticoids or endogenously elevated plasma cortisol concen-
trations in patients with Cushing syndrome have been shown
to cause tertiary, and not secondary, adrenal insufficiency
by prolonged suppression of the hypothalamic CRH neurons
and/or its higher regulatory inputs (61). Alternatively, hypoxia
or inflammation might also directly damage the pituitary and
thereby lower ACTH in the critically ill (21,120). Additional
well-controlled studies on central HPA axis changes over time
will be highly informative to understand illness evolution.

Iatrogenic modulation of the stress response
During surgery, at the emergency ward and during stay in
the ICU, patients receive a broad variety of drugs. Impor-
tantly, many of these drugs can theoretically affect the HPA
axis activity, either directly at the level of the hypothala-
mus, pituitary, and/or adrenal gland, or indirectly via a mod-
ulation of the activity of the sympathetic nervous system,
thereby explaining at least part of the acute “ACTH-cortisol
dissociation”, as observed already upon admission to the ICU
(25,94,119). A well-known suppressor of adrenocortical cor-
tisol production, by inhibiting 11-beta-hydroxylase, is etomi-
date (72). Prolonged etomidate infusion has been shown to be
associated with an increased mortality and was therefore aban-
doned as a sedative from all ICUs (175). A single induction
dose of etomidate, however, was not related with an increase
in mortality, but still lowered plasma cortisol concentrations
(26). Also opioids, frequently used as strong painkillers that
act on the opioid receptor to produce morphine-like effects,
have shown to result in suppressed plasma ACTH and/or cor-
tisol concentrations when administered to healthy individ-
uals, to patients suffering from chronic pain, and to surgical
patients (1,5,123,129,140,153,154,174). Furthermore, many
other frequently used drugs such as anesthetics and sedatives
may have HPA suppressive properties as suggested by animal
experiments (47,86,112), small interventional studies in sur-
gical and ICU patients (2,123,140,174), and by observational
studies in surgical patients (105, 143).

It has been generally assumed that anesthetic drugs may
predominantly suppress the stress response via a central
inhibition of the HPA axis and of the sympathetic nervous
system (25). In a recent study of a mixed population of
critically ill patients, however, it was shown that opioids,
etomidate, and propofol had a suppressive effect on plasma
cortisol, and dobutamine had a stimulatory effect, but none of
these drugs independently affected plasma ACTH (115). The
associations between these drugs and cortisol levels were
independent of the medical or surgical nature of ICU admis-
sion, severity of illness, occurrence of sepsis, or other patient

characteristics. Other, yet unknown, mechanisms might have
suppressed plasma ACTH, which may have hidden any addi-
tional central pharmacological suppression on ACTH release,
such as negative feedback inhibition exerted by the elevated
plasma free cortisol, or inflammation and ischemia at the level
of the pituitary or the hypothalamus (23, 44).

From the current available literature, it cannot be con-
cluded whether the suppressive effect of drugs such as opi-
oids, propofol or a single dose of etomidate on plasma
cortisol is beneficial or harmful. However, when a patient
displays low plasma cortisol during critical illness and treat-
ment with hydrocortisone is considered, it should also be
considered if suppressive drugs can be stopped or replaced,
in which case plasma cortisol should be reassessed.

Loss of circadian and ultradian rhythm during
critical illness
During health, ACTH and cortisol follow a circadian rhythm,
with the highest levels of ACTH and cortisol secretion
observed in the morning in anticipation of wakening, and the
lowest levels during sleep (68). The tightly coupled release
of ACTH and cortisol also follows an ultradian rhythm, with
rapid secretory pulses superimposed on a continuous non-
pulsatile release. Mainly the pulse amplitude, not the pulse
frequency, determines the circadian rhythm. Evidence grows
stronger that, instead of a continuous exposure, pulsatile
release is necessary for normal transcriptional and behavioral
responses, and plays a role in health and disease (149).

Circadian rhythms in physiological processes are ubiq-
uitous in living organisms and rely on a complex system of
self-sustained clocks with approximately 24 h periods (111).
To maintain daily homeostasis, the PVN receives information
from the suprachiasmatic nucleus (SCN), which is needed
to bring about the circadian pattern of HPA axis activity
(173). Moreover, the SCN directly signals the adrenal cor-
tex by a multisynaptic neural pathway (27). The SCN was
typically regarded as the only self-sustained clock to act as a
master pacemaker for the entire organism, influenced by the
light-dark cycle, physical activity, and food intake and fasting
(3). Remarkably, many peripheral tissues, including endocrine
glands such as the adrenal gland, are capable of generating
self-sustained oscillations independently of the master SCN
clock (56). Indeed, there is evidence that an intrinsic adreno-
cortical circadian oscillator drives the adrenal response to
ACTH, defining a time window in which the cortisol response
to ACTH is the highest (145). This sensitivity is also increased
by the SCN, especially during the rising part of the diurnal
rhythm, mediated through autonomic pathways (135). In addi-
tion, the sensitivity of the pituitary to negative feedback from
cortisol appears to be modulated in a diurnal fashion, with a
higher effect during the nadir of the diurnal rhythm (60).

Although plasma ACTH levels are low in all ICU patients,
ACTH secretion is not completely suppressed. The dynamics
and interaction of cortisol and ACTH during critical illness
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have been assessed with use of repeated sampling time series
of plasma levels in a mixed set of 40 surgical and medical ICU
patients as compared with 8 healthy matched volunteers (19).
Hormonal secretory profiles were created by deconvolution
analysis, which took into account the substantially prolonged
cortisol half-life, and which allowed to quantify pulsatile and
non-pulsatile secretion rates of cortisol and ACTH (168). This
study indicated that nocturnal ACTH as well as cortisol pul-
satile secretion rates were reduced in patients, attributed to
reduction of pulse masses rather than a reduction of number
of pulses. No diurnal rhythm was present for ACTH, nor for
cortisol, and plasma (total and free) cortisol concentrations
were constantly high and ACTH levels constantly low.

Failure of the Adrenocortical Stress
Response
Critical illness-associated acquired adrenal
insufficiency
When cortisol availability is insufficient, this has immedi-
ate potentially lethal consequences, as demonstrated by the
phenotype of patients with Addison’s crisis and Addison’s
disease (155). Also in adrenalectomized mice, it was shown
that mortality strongly increased when sepsis was induced by
bacterial endotoxin administration (16).

ACTH is responsible for both the short- and long-term
regulation of cortisol synthesis from the adrenal gland. In
the normal stress response, when ACTH binds to its receptor
on the membrane of the adrenocortical cells, it activates its
receptor. This activates adenylyl cyclase, increases cAMP,
and stimulates protein kinase A (PKA) (Fig. 4) (142).
PKA activates cholesterol esterase through phosphorylation,
which leads to the release of cholesterol from the lipid
droplets (intracellular vesicles) into the cytoplasm of the
adrenocortical cell (156). Furthermore, ACTH rapidly
increases the expression of the steroidogenic acute regulatory
protein (STAR), which is responsible for the transport of
cholesterol from the cytoplasm to the inner membrane of the
mitochondria where steroidogenesis takes place (142). STAR
is indispensable for cortisol production (93). Next, choles-
terol is converted into different steroid hormones by their
respective catalyzing enzymes, in which the final step of the
synthesis of cortisol is the hydroxylation of 11-deoxycortisol
by 11β-hydroxylase (150). This process, which in total takes
only a few minutes, does not depend on new mRNA synthesis,
but on the activation of several proteins, primarily caused by
phosphorylation through PKA (150). The long-term impact
of sustained ACTH activity on its receptor involves increased
transcription of genes important for cholesterol uptake,
cholesterol synthesis, and steroidogenesis as such enhancing
the synthetic capacity of the cells (91, 92, 95, 142, 150). In
addition, increased availability of ACTH affects adrenal gland
structure and growth, by first inducing hypertrophy and hyper-
plasia later on, and by increasing blood flow to the adrenal

glands through stimulation of vascular endothelial growth
(53, 139). Finally, ACTH has a direct stimulatory effect on
the expression of its own receptor (MC2R) which amplifies
the responsiveness to ACTH (89). The extensive acute
and chronic impact of ACTH on the adrenal cortex ensures
normal adrenal gland structure and functioning. As such, ICU
acquired adrenal failure could be the consequence of continu-
ously low plasma ACTH, which negatively affects the adrenal
cortex. Indeed, continuously low plasma ACTH negatively
affects the adrenal cortex, as evidenced by POMC knockout
mice, which suffer from adrenal atrophy and hypofunction
(33, 82). Also in human patients with POMC deficiency, a
loss of adrenocortical zonational structure, lipid depletion,
reduced ACTH signaling and adrenal atrophy is observed
(87). In adrenal glands, harvested postmortem from critically
ill patients with an ICU stay of more than 7 days in ICU, the
adrenal cortex revealed a distorted architecture, lipid droplet
depletion, and suppressed ACTH-regulated gene expression
as compared with patients dying after short illness or indi-
viduals dying suddenly out of hospital (Fig. 5) (18). Normal
pulsatile release of ACTH is necessary for transcriptional and
behavioral responses (149). Given the fact that during critical
illness pulse masses of ACTH were reduced, this—with
time—could also lead to loss of trophic effects of ACTH on
the adrenal gland (149). Of note, these observations argue
against an increased ACTH sensitivity during critical illness.
However, the causal relationship between sustained ACTH
deprivation, critical illness-associated acquired loss of adrenal
function and low plasma cortisol still has to be established.

Insufficient cortisol availability during critical illness
could also be the result of failure at any level of the HPA
axis, from low CBG or altered CBG binding capacity with
a loss of the circulating cortisol reservoir, to an inadequate
cortisol production (102). Pro-inflammatory cytokines, such
as TNF-α and IL-1, may reduce cortisol synthesis during
sepsis by inhibiting stimulatory actions of ACTH (146). Fur-
thermore, ischemia or hemorrhage within the adrenal cortex
during severe stress or sepsis can cause changes that impair
cortisol production. Also, a decreased blood supply to the pitu-
itary can evoke ischemia, followed by accumulation of nitric
oxide and impaired ACTH secretion (30). Decreased cortisol
production during acute illness may theoretically also be due
to substrate deficiency, since HDL cholesterol has been shown
to be substantially reduced during sepsis (164). Other possible
causes of ICU acquired adrenal failure, are the administration
of drugs that interfere with steroidogenesis, such as etomidate
and the antifungal agent ketoconazole, and chronic exogenous
corticosteroid therapy (35).

Some acute inflammatory conditions, such as sepsis,
may become refractory to endogenous hypercortisolemia and
exogenous treatment with glucocorticoids, for reasons which
are poorly understood (43). It has been suggested that adrenal
failure in ICU patients ensues from glucocorticoid resistance
and insufficiently elevated circulating cortisol to overcome
such resistance (102). Glucocorticoid resistance in periph-
eral cells could be caused by an increase of the expression
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Figure 4 Adrenocorticotropic hormone (ACTH) binds to its receptor, the melanocortin 2 receptor (MC2R), on the membrane
of the adrenocortical cells, which increases cyclic AMP (cAMP) and stimulates protein kinase A (PKA). PKA causes the release
of cholesterol from the lipid droplets into the cytoplasm and de novo production from acetyl coenzyme A (acetyl CoA). ACTH
increases the expression of the steroidogenic acute regulatory protein (STAR) to transport cholesterol from the cytoplasm to the inner
membrane of the mitochondria where steroidogenesis takes place. Cholesterol is converted into different steroid hormones. The
long-term impact of ACTH involves increased transcription of genes important for cholesterol uptake [scavenger-receptor class B,
member 1 (SCARB1), LDL receptor (LDLR)] and cholesterol synthesis [3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)], and for
steroidogenesis (STAR and CYP11A1). ACTH has a direct stimulatory effect on the expression of its own receptor (MC2R). Blue lines
represent ACTH effects. (Figure was reproduced from Boonen (17), with permission from The Lancet Diabetes & Endocrinology.)

of GRβ, and/or by downregulation of GRα, which could be
mediated by micro RNA124 (75, 90). Furthermore, reduced
translocation to the nucleus or the presence of less functional
GR polymorphisms may also play a role. Rodents with a gen-
eral dimerization-deficient GR are indeed highly susceptible
to adverse outcome when sepsis is induced (85). However, it
remains unclear whether the changes documented in periph-
eral blood cells are adaptive, to safeguard the function of
immune cells, or, instead, maladaptive and a sign of general-
ized insufficient GR signaling.

In the past, experts have suggested the presence of a phe-
nomenon that comprises a “relative exhaustion” or “insuffi-
ciently activated” adrenal cortex, insufficient to cope with
the level of stress of septic shock in particular (138). In
patients suffering from such presumed “relative” adrenal fail-
ure, plasma (free) cortisol concentrations are still much higher
than normal, but it is assumed that this is not enough to cope

with the level of stress and inflammation, and therefore to
negatively affect outcome (9). However, the term “relative”
adrenal insufficiency is currently quite controversial and many
experts now challenge its existence (97).

Diagnosis of adrenal failure during critical illness
Diagnosis of adrenal failure is complex and prevalence among
ICU patients varies widely from 0% to 77% depending on the
definition and criteria used (103). Diagnosis of adrenal fail-
ure starts with a clinical suspicion such as hypotension that
is resistant to vasopressors, unexplained coma, hyponatremia
and hyperkalemia. Outside the ICU, this clinical suspicion can
be confirmed by the presence of a low total morning plasma
cortisol (<3 μg/dL or <80 nmol/L), although this can be
highly variable (45, 65). Therefore, plasma cortisol concen-
trations <18 μg/dL or <500 nmol/L upon stimulation with
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Figure 5 mRNA expression of ACTH-regulated proteins in adrenal glands, harvested from individuals dying suddenly out of hospital
(control subjects), from patients dying after short critical illness and from patients after prolonged critical illness. The mRNA data are
expressed, normalized to RNA18S as a fold difference from the mean of the controls. Boxes represent medians and interquartile ranges
and whiskers represent firstquartile-1.5∗IQR and thirdquartile+1.5∗IQR. (Figure was reproduced from Boonen (18), with permission from
The Journal of Clinical Endocrinology and Metabolism.)

250 μg of synthetic ACTH(1-24) (short ACTH stimulation
test, Synacthen), are more indicative of adrenal failure (125).

Using the same cut-off levels for cortisol as used in healthy
individuals has potential pitfalls, since basal cortisol levels
are much higher in ICU patients. Furthermore, low CBG
and albumin levels might further increase free cortisol levels,
which makes total cortisol levels less relevant for this diag-
nostic question (66). Indeed, a study in 66 critically ill patients
reported that hypoproteinemia results in low total plasma cor-
tisol levels with a low total cortisol response to Synacthen,
indicating adrenal insufficiency, while free plasma cortisol
levels were consistently elevated and several times higher
than in healthy volunteers (67). Therefore, the free cortisol
response to Synacthen in critically ill patients might be a
more valuable clinical determination than the total cortisol
response, to avoid treatment of patients with a normal adrenal
function (98). Some authors even doubt that an increase in
total cortisol would be essential to survive acute stress, given
that the free fraction is so much higher (97). Studies of criti-
cally ill patients, investigating the association between plasma
cortisol and mortality, failed to show a minimum level of
plasma cortisol concentration below which mortality clearly
increased (78,79,147). Hence, there is currently no consensus

on a cut-off for plasma cortisol to diagnose adrenal failure in
ICU patients and even less to indicate the need for treatment
with hydrocortisone.

Salivary cortisol levels might be a surrogate for free
plasma cortisol in the diagnosis of adrenal failure in critically
ill patients, but has not been validated extensively. Salivary
cortisol is in close equilibrium with free cortisol and might
offer an accurate measure of the biologically active cortisol
availability (10, 171). However, local conversion to cortisone
through 11β-HSD2 presence in the salivary gland, and
reduced salivary flow due to stress, hypovolemia, and opioids
effects might limit the use of this technique (13, 42, 118).
Also potential blood contamination, by presence of mucositis
and/or pathogenic microorganisms, constitutes a major chal-
lenge during sampling of pure saliva in critically ill patients
(13, 42). Nevertheless, several studies in both adult and
pediatric critically ill patients found excellent correlations of
salivary and free plasma cortisol, strengthening its potential
clinical use (10, 52, 64, 121). In the diagnosis of adrenal
failure, in accordance with morning plasma cortisol, morning
salivary cortisol levels vary widely and are not advised to be
used (101). But ACTH-stimulated free plasma and salivary
cortisol concentrations increased in parallel in both adult and
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pediatric critically ill patients (10, 12). However, also oppos-
ing results between free and salivary cortisol were measured
in patients with severe sepsis (12,51) Interestingly, in a study
of 28 acutely ill patients with a clinical suspicion of adrenal
insufficiency, 13 patients had a similar response to ACTH in
peak serum total and salivary cortisol, whereas 15 patients
displayed a subnormal serum total cortisol response, but a
normal salivary cortisol response (122). Salivary cortisol
measurements can thus potentially identify patients with
a normal adrenal function but an abnormal total cortisol
response. As such, salivary cortisol might be a clinically use-
ful and easily obtainable parameter to exclude adrenal failure
in ICU patients and thus avoid unnecessary treatment. This
possibility should be further investigated.

Experts have advised to diagnose “relative” adrenal fail-
ure in ICU patients by the incremental cortisol response to
an ACTH stimulation test, irrespective of the baseline plasma
cortisol. A cortisol increase of less than 9 μg/dL or 240 nmol/L
after stimulation with 250 μg of synthetic ACTH(1-24), irre-
spective of the baseline plasma cortisol, or a high baseline
plasma cortisol levels >34 μg/dL or 907 nmol/L, have been
proposed, as these were most discriminative for increased risk
of death (9). A low cortisol response to exogenous ACTH was
also associated with a higher baseline cortisol and ACTH and
with more severe disease and presence of sepsis and septic
shock (39, 54). However, in critically ill patients, a low rise
in plasma cortisol in response to an ACTH stimulation test
was associated both with a low cortisol production rate (but
still equal to healthy individuals), and, more importantly, with
low clearance of plasma cortisol (20). This suggested that a
suppression of cortisol breakdown may explain a reduced cor-
tisol response to ACTH, and actually may reflect the degree
of negative feedback inhibition exerted by supranormal corti-
sol availability. This mechanism is also observed in patients
treated with exogenous glucocorticoids, with a lower response
to an ACTH stimulation test (134). Therefore, in the pres-
ence of increased plasma cortisol and suppressed cortisol
metabolism, a reduced cortisol response to ACTH may not
necessarily point to an insufficient cortisol availability. Most
recent practice guidelines therefore do not advise to use the
ACTH stimulation test to guide treatment, in line with the lack
of consensus on how to diagnose “relative” adrenal failure in
the ICU (128). Clearly, more research on this topic is needed.

Treatment
Evidently, ICU patients suffering from adrenal failure should
receive coverage to cope with the stress (41). Currently, it is
recommended to treat adrenal failure during critical illness
with a bolus of 100 mg hydrocortisone, followed by 50 mg
every 6 hours on the first and second day, followed by 25 mg
every 6 h on day 3, tapering to a maintenance dose by days 4
to 5. As such, this dose is the equivalent of a several-fold
increased daily cortisol production, which is normally around
25 to 30 mg per day.

Patients with presumed “relative” adrenal failure during
critical illness with signs of shock should not be treated with
hydrocortisone, if adequate fluid resuscitation and vasopres-
sor therapy are able to restore hemodynamic stability during
shock (128). However, there is a weak recommendation, with
low quality of evidence, that if this is not achievable, this con-
dition can be treated with hydrocortisone at a dose of 200 mg
per day. Indeed, a rise in blood pressure following treatment
with hydrocortisone has been used as a proof for underlying
adrenal failure (66). However, this might be related to a
pharmacological effect of these doses of hydrocortisone on
the vasculature rather than indicating a successful treatment
of any form of suspected adrenal failure (97, 148). Empiric
treatment with hydrocortisone, which results in hemody-
namic improvement in some patients, does not assume a
previous diagnosis of “relative” adrenal failure. A large
French randomized controlled trial (RCT) investigated the
impact of 200 mg hydrocortisone (in combination with 50 μg
fludrocortisone) in patients with septic shock (8). This pioneer
study showed reduction in mortality with this treatment only
in patients who did not have an incremental cortisol response
to synacthen above 9 μg/dl (8). In contrast, a subsequent large
European RCT failed to show any mortality benefit with use
of hydrocortisone (148). Other smaller RCTs and systematic
reviews also generated conflicting results (6, 76, 83, 172).
Subgroups of ICU patients, more specifically patients with
acute respiratory distress syndrome (ARDS) and patients
with severe community acquired pneumonia appear to benefit
from treatment with corticosteroids (107,152). A speculative
explanation for the conflicting results of these studies might
be that, given the reduced breakdown and prolonged cortisol
half-life during critical illness (20), doses of 200 mg hydro-
cortisone could be too high, and induce side effects such as
myopathy, muscle wasting, whereby extending the intensive
care dependency (70,71). It is reasonable to assume that lower
doses of hydrocortisone, for any indication during critical ill-
ness, might actually be sufficient (114). It was demonstrated
that cortisol production during critical illness is only moder-
ately increased, more or less doubled but only in patients with
excessive inflammation, whereas in other critically ill patients,
cortisol production is not different from that in healthy sub-
jects (20). Hence, during critical illness, cortisol production
rates range from about 30 to 60 mg per day. It is thus possible
that 60 mg hydrocortisone per day could suffice as a substitu-
tion dose during critical illness, but further research is needed
to determine the optimal therapeutic dose and potential
benefits.

Conclusion
During critical illness, normal to slightly increased cortisol
production and a substantially reduced cortisol breakdown
appear to be the main drivers of hypercortisolemia during
critical illness (Fig. 6). Besides total plasma cortisol levels,
the dynamics of increased biologically active free plasma
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Hypothalamus (PVN)

CRH (?)

Anterior pituitary

Adrenal (cortex)

ACTH (↓↓)

Cortisol (↑↑)

+

+

Cortisol production (= / ↑)

Cortisol metabolism (↓)

Liver Kidney

–

–

Free cortisol (↑↑↑) CBG ↓

Physiological / Psychological
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Figure 6 Overview of the regulation of hypercortisolism during critical illness. ↑, elevated plasma concentrations;
↓, decreased plasma concentrations; ?, no univocal data available; +, stimulates; −, inhibits; PVN, paraventricular
nucleus; ACTH, adrenocorticotropic hormone; CBG, corticosteroid-binding globulin.

cortisol, and tissue-specific alterations of glucocorticoid sig-
naling, further characterize these changes. Clinicians should
be aware that several drugs that are often administered to
ICU patients, such as opioids, etomidate, and propofol, sup-
press cortisol in a dose-dependent manner. While plasma
cortisol levels are increased, plasma ACTH levels, however,
are decreased, which implies that critical illness is not hall-
marked by a full central activation of the HPA-axis, but by an
“ACTH cortisol dissociation,” with loss of the diurnal rhythm
of ACTH and cortisol. These findings have revived the ongo-
ing debate about which level of cortisol availability is suf-
ficient in the struggle for survival of the critically ill, about
the concept of “relative” adrenal failure, and about how to
correctly interpret diagnostic laboratory tests. The ongoing
controversy clearly indicates the need for further research on
this important clinical problem.
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