
www.medscape.com

 

 

Abstract and Introduction

Abstract

Acute kidney injury (AKI) has emerged as a major public health problem that affects millions of patients worldwide and
leads to decreased survival and increased progression of underlying chronic kidney disease (CKD). Recent consensus
criteria for definition and classification of AKI have provided more consistent estimates of AKI epidemiology. Patients, in
particular those in the ICU, are dying of AKI and not just simply with AKI. Even small changes in serum creatinine
concentrations are associated with a substantial increase in the risk of death. AKI is not a single disease but rather a
syndrome comprising multiple clinical conditions. Outcomes from AKI depend on the underlying disease, the severity
and duration of renal impairment, and the patient's renal baseline condition. The development of AKI is the
consequence of complex interactions between the actual insult and subsequent activation of inflammation and
coagulation. Contrary to the conventional view, recent experimental and clinical data argue against renal ischemia–
reperfusion as a sine qua non condition for the development of AKI. Loss of renal function can occur without
histological signs of tubular damage or even necrosis. The detrimental effects of AKI are not limited to classical
well-known symptoms such as fluid overload and electrolyte abnormalities. AKI can also lead to problems that are not
readily appreciated at the bedside and can extend well beyond the ICU stay, including progression of CKD and
impaired innate immunity. Experimental and small observational studies provide evidence that AKI impairs (innate)
immunity and is associated with higher infection rates.

Introduction

Acute kidney injury (AKI) is now recognized as a major public health problem affecting millions of patients worldwide
and leading to decreased survival, increased progression of underlying chronic kidney disease (CKD), and sometimes
to new onset of CKD. Recent consensus criteria for definition and classification of AKI have allowed for more consistent
estimates of epidemiology and have now led to the first clinical practice guideline for AKI.[1] However, questions remain
in terms of which patients are at highest risk for AKI and for adverse outcomes. Furthermore, AKI is not a single
disease but rather a syndrome comprising multiple clinical conditions. Outcomes in AKI are influenced by the
underlying disease causing the condition, as well as by the severity and duration of renal impairment and by the
baseline condition of the patient. In whom does AKI result in these outcomes is also the subject of active research and
much speculation. This review will briefly outline the currently accepted definition and classification criteria for AKI, the
epidemiology of AKI based on these criteria, and the outcomes of AKI reported in the literature. We will then examine
what is known concerning the pathogenesis of AKI as relates to the clinical epidemiology and risk stratification and also
explore new concepts in the pathophysiology of AKI so as to better understand how AKI results in the outcomes for
which it is associated.

Definition, Classification, and Standardization of AKI

Research in acute renal failure has long been hampered by a lack of standardization in classification. At one time, more
than 35 different definitions of acute renal failure were being used in the literature.[2] Depending on the definition, acute
renal failure was said to affect anywhere from 1 to 25% of intensive care unit (ICU) patients and to carry a mortality rate
from 15 to 60%.[3–5] Such variation limits the ability to compare studies, to standardize study protocols, or even to
communicate effectively across research groups.

As a consequence of the confusion surrounding the definition of acute renal failure, demands for a consensus definition
and a classification system for acute renal failure have emerged.[6,7] Following long advocacy and persistent work,
such a system, the RIFLE system (Figure 1), was ultimately developed, involving a broad consensus of experts.[7] The
acronym RIFLE represents the increasing severity classes Risk, Injury, and Failure and the two outcome classes Loss
and End-Stage Kidney Disease. The severity grades R–F are defined on the basis of changes in serum creatinine or
urine output, wherein the worst of each criterion is used. The two outcome criteria, L and E, are defined by the duration
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of loss of kidney function.

Figure 1.   Direct comparison of RIFLE (Risk of renal dysfunction, Injury to the kidney, Failure or Loss of
kidney function, and End-stage kidney disease) and Acute Kidney Injury (AKI) Network criteria to classify
AKI according to Bellomo et al. 7 and Mehta et al.,8 respectively. Note that the original RIFLE criteria also
listed glomerular filtration rates as reference, but these do not precisely agree with the changes in serum
creatinine and were subsequently removed. For AKI Network criteria, the change in serum creatinine from
baseline follows RIFLE, but there is also the option to use a 0.3 mg/dl increase if it is observed to occur within a
48-h period. RRT, renal replacement therapy.

Moreover, the term AKI is intended to encompass the entire spectrum of the syndrome, from minor impairment in renal
function to the need for renal replacement therapy.[8] AKI is more than just acute renal failure; it encompasses the
entire spectrum from severe to less severe conditions. Thereby, the focus is not exclusively on patients with renal
failure or on those who receive dialysis, but attention is also paid to the strong association of AKI with hospital mortality
even when only a minority of patients receive renal replacement therapy.[9]

The AKI Network, a somewhat larger, multidisciplinary, international group, subsequently proposed some small
modifications to the RIFLE criteria (Figure 1):[8] (1) broadening of the 'Risk' category of RIFLE to include an increase in
serum creatinine of at least 0.3 mg/dl, even if this does not reach the 50% threshold; (2) setting a 48-h window on the
first documentation of any criteria; and (3) categorizing patients as 'Failure' if they are treated with renal replacement
therapy regardless of what their serum creatinine or urine output is at the point of initiation (Figure 1). Broadening the
criteria for 'Risk' (Stage 1) has led to increased sensitivity (more individuals are classified as having AKI). This
difference, however, affects only 1–2% of patients. Studies validating RIFLE/AKI Network criteria have now included
more than 500,000 patients.

Epidemiology

Using RIFLE criteria, investigators from around the world have shown that AKI is common and results in a substantial
increase in hospital mortality. Uchino et al. [5] assessed the predictive ability of the RIFLE classification in a cohort of
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20,126 patients admitted to a teaching hospital for >24 h over a 3-year period. Approximately 10% of the patients
achieved a maximum RIFLE-R, 5% I and 3.5% F. The authors also found a nearly linear increase in hospital mortality
with increasing RIFLE class, with patients at R having more than three times the mortality rate of patients without AKI.
R carried an odds ratio of hospital mortality of 2.5, I of 5.4, and F of 10.1.

The occurrence of AKI in the ICU was studied in 120,123 patients admitted to one of 57 intensive care units across
Australia from January 2000 to December 2005.[10] Here, AKI occurred in 36.1%, with a maximum category R in
16.3%, I in 13.6%, and F in 6.3%. AKI was associated with an increase in hospital mortality (odds ratio 3.29; 95%
confidence interval 3.19–3.41; P<0.0001). The crude hospital mortality was 17.9% for R, 27.7% for I, and 33.2% for F.
After multivariable analysis, each RIFLE category was independently associated with hospital mortality (odds ratio: R
1.58, I 2.54, and F 3.22). However, this study was limited to AKI that occurred on or before the first day of ICU care and
therefore primarily represents community-acquired AKI. Hoste et al. [9] found that AKI occurred in two-thirds of ICU
patients, whereas RIFLE criteria were fulfilled at ICU admission in only 22% of patients. In multivariable analysis, AKI
(hazard ratio 1.7; 95% confidence interval 1.28–2.13; P<0.001) and maximum RIFLE classes 'Injury' (hazard ratio 1.4;
95% confidence interval 1.02–1.88; P=0.037) and 'Failure' (hazard ratio 2.7; 95% confidence interval 2.03–3.55;
P<0.001) were associated with hospital mortality after adjusting for multiple covariates.

Finally, Ali et al. [11] studied the incidence of AKI in the population of northern Scotland, a geographical population base
of 523,390. The incidence of AKI was 2147 per million population. Sepsis was a precipitating factor in 47% of patients.
RIFLE classification was useful for predicting recovery of renal function (P<0.001), requirement for renal replacement
therapy (P<0.001), length of hospital stay for survivors (P<0.001), and in-hospital mortality (P=0.035). Thus, AKI is
strongly associated with hospital mortality and resource use and remains so even after adjusting for baseline severity of
illness, case mix, race, gender, and age.

Etiology and Risk Assessment

Given how common AKI is and how significant its impact on survival is, one might expect more detailed information to
be available on its cause. However, until recently, there have been two major obstacles to obtaining robust
assessments of etiology and therefore it has been difficult to properly characterize risk for AKI. First, the lack of
standard criteria for diagnosis of AKI has meant that observational studies cannot easily be compared to determine
what demographic variables are associated with a general risk of AKI as against those that are specific to the
underlying condition that leads to an exposure known to produce AKI. For example, risk factors for AKI in the setting of
cardiac surgery tend to confound risks of AKI with risks for cardiovascular disease. A related problem comes from the
observation that CKD puts patients at risk for AKI.[12,13] In most epidemiological studies it has not been possible to
separate susceptibility for AKI from risk factors for CKD. In a study of 5383 critically ill patients, gender and race were
not found to alter AKI susceptibility, whereas age was a consistent risk factor.[9] Interestingly, surgical admissions were
at greater risk than medical and ICU admissions for cardiovascular, neurological, and respiratory disease/infection,
whereas those for trauma, malignancy, and other causes were at decreased risk. Similarly, we reported recently on
1836 patients hospitalized for community-acquired pneumonia.[14] In this study, one-third (34%) of the patients
developed AKI. Baseline susceptibilities for AKI in this setting included age, white race, and baseline comorbidities
such as CKD, cardiac disease, and diabetes.

However, risk for disease represents the interaction between susceptibility (i.e., features intrinsic to the patient) and
exposure (i.e., the causative factor or factors). Exposures known to produce AKI in susceptible populations include
sepsis, ischemia, heart failure, liver disease, major surgery (especially vascular and cardiac), myonecrosis, urinary tract
obstruction, and various nephrotoxins.[5] In the critically ill, sepsis is the major cause of AKI, accounting for nearly 50%
of cases.[5,11,15] Several studies have reported that sepsis-induced AKI is associated with short- and long-term risk of
death.[10,14]

The second obstacle to establishing accurate information on causes of AKI and therefore on risk assessment is that we
continue to have an incomplete understanding of the pathogenesis of AKI in many of the circumstances in which it is
seen. Although there are many reasons for this, we and others have argued that the lack of suitable animal models is a
major factor.[16,17] Thus, for AKI occurring in many common settings (e.g., sepsis, cardiac surgery, radio contrast), a
better understanding of pathogenesis is needed.

Outcomes and Pathophysiology
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There is now substantial evidence from clinical studies that both short-term and long-term outcomes are adversely
affected by AKI (Figure 2). As discussed above, hospital mortality increases in association with AKI stage. Furthermore,
survival appears to be affected for at least 1 year and maybe longer.[14] In addition to survival, the development of
sepsis appears to be common in patients with AKI and is associated with high mortality and increased hospital
duration.[18]

Figure 2.   Acute kidney injury (AKI) can have both immediately recognizable consequences as well as
less noticeable or delayed consequences. Fluid overload and electrolyte/acid–base abnormalities represent
well known, easily recognized consequences of AKI. Contrary, impaired innate immunity and chronic kidney
disease do not manifest themselves immediately.

Recovery of renal function is also a problem, with many patients failing to recover renal function. Chertow et al. [19]

demonstrated in a cohort of critically ill patients with AKI who required renal replacement therapy that 33% of the
survivors were still on renal replacement therapy after 12 months. The Acute Renal Failure Trials Network study
enrolled 1124 patients with severe AKI, and nearly 25% of the survivors were dependent on renal replacement therapy
on day 60.[20] However, an Australian study of 1508 patients with severe AKI found that only 5.4% of survivors still
required renal replacement therapy by day 90.[21] Finally, there is emerging evidence showing that less severe AKI may
be associated with important long-term outcomes including progression of CKD and cardiovascular disease.[22]
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Unfortunately, very little is known about why AKI is associated with short- and long-term adverse affects. Although
some manifestations of AKI are directly linked to impaired glomerular/tubular function and easily recognized at the
bedside in the form of hyperkalemia, pulmonary edema, pericarditis, or encephalopathy, other effects are less obvious
or might not become apparent until sometime after the patient has left the hospital. Here, the modulatory effects of AKI
on the (innate) immune system and the progression from AKI to CKD have recently emerged as very critical and highly
important factors.

AKI and the (Innate) Immune System

Current concepts about the effects of AKI on the innate immune system largely stem from experimental studies and
mostly focus on interactions between the kidneys and remote organs, such as the lungs and heart. Experimental AKI
has some striking effects on the heart.[23] Bilateral renal ischemia significantly increases the myocardial transcription of
tumor necrosis factor-α and interleukin (IL)-1. These transcriptional changes are associated with an increase in
myocardial neutrophil recruitment, as evidenced by elevated myeloperoxidase activity, and myocardial apoptosis.
Blockade of tumor necrosis factor-α inhibited apoptosis. Moreover, renal ischemia–reperfusion also led to increases in
left ventricular end-diastolic diameter and left ventricular end-systolic diameter, while decreasing fractional shortening.

Several studies have shown that bilateral ischemic AKI induces proinflammatory changes in the uninjured lung. In
particular, post-ischemic AKI downregulates the pulmonary expression of epithelial sodium channels, Na/K–ATPase,
and aquaporin-5.[24] The observed parallel increase in lung permeability is presumably a consequence of these
changes, as all of these proteins have important roles in transepithelial salt and water transport and consequently in
alveolar permeability.[25–27] In various experimental models, AKI also leads to altered pulmonary cytokine expression
and to changes in serum cytokine concentrations. This includes changes in IL-1, IL-6, IL-12, granulocyte-macrophage
colony-stimulating factor, and IL-10, as well as in some neutrophil-specific chemokines.[28] However, not all mediators
are upregulated in all animal models at the same time. Different models of AKI or acute loss of renal function reveal a
similar, but unique, cytokine/chemokine profile.[29] For example, only mild increases in plasma IL-6 occurred in a mouse
model of folic acid-induced AKI.[30] Prophylactic administration of anti-inflammatory agents, such as IL-10 or antibodies
against IL-6, can attenuate the inflammatory response and subsequent lung damage after bilateral nephrectomy or
renal ischemia.[28,31]

Although the effects of AKI on the healthy lung appear to be largely pro-inflammatory, there is sound experimental
evidence that AKI exerts anti-inflammatory effects on the injured lung. In a neutrophil-dependent model of HCl-induced
acute lung injury, AKI impaired neutrophil recruitment into the lungs and thereby improved oxygenation.[32] The
anti-inflammatory effects of AKI seemed to largely rest with neutrophils, as only circulating uremic neutrophils but not
normal neutrophils circulating in uremic plasma provided protection from acute lung injury. Moreover, the
anti-inflammatory effects of AKI appeared to outweigh the potential effects of impaired fluid balance, as the wet–dry
ratios of HCl-injured lungs were not affected, at least early on, by AKI. These findings are supported by a recent study
combining AKI with the ventilator-induced lung injury.[33] Here, the authors found that post-ischemic AKI in the context
of ventilator-induced acute lung injury decreased protein concentrations and neutrophil counts in bronchoalveolar
lavage fluid. Although the anti-inflammatory effects of AKI appear to be beneficial in the setting of sterile lung injury,
these findings certainly raise concerns for the combined occurrence of AKI and bacterial infections, such as
pneumonia. We have shown in animal studies combining two different models of AKI with Pseudomonas aeruginosa
pneumonia that AKI significantly impairs pulmonary recruitment of neutrophils, in particular neutrophil
transmigration.[30] Consequently, oxygenation and bacterial load following inhalation of P. aeruginosa were worse in
mice with AKI than in mice without it.

Moreover, we were able to show in another recent study that patients with septic AKI have impaired leukocyte rolling
when compared with septic patients without AKI.[34] The findings that AKI affects neutrophil recruitment and
subsequently causes higher bacterial load and worse outcome are further supported by clinical observations.
Compared with patients without AKI, patients with AKI more frequently demonstrate bacteremia and poor outcome in
various clinical settings, including peritonitis, after cardiac surgery and during hematological malignancies.[35–37]

AKI and CKD

Several recent clinical studies have provided evidence for a link between AKI, CKD, and ultimately progression to
end-stage renal disease.[22,38–48] Under normal circumstances, the regeneration of the tubular epithelium after AKI
occurs in a cascade-like manner, including initial de-differentiation, migration, proliferation of surviving cells,
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re-differentiation, and, in a last step, the full restoration of the tubular epithelium. Incomplete repair after AKI, by
contrast, is characterized by persistent tubulointerstitial fibrosis and inflammation, even in the absence of prior kidney
disease.[49,50] Persistent tubular interstitial fibrosis is the pathological correlate of loss of kidney function. The severity
of AKI significantly determines the extent of recovery.[50,51]

It is well accepted that preexisting kidney disease increases a patient's risk of developing AKI; the risk for AKI is
proportional to the respective CKD stage.[40,42,43,45] On the other hand, any episode of AKI in a patient with underlying
CKD inflicts additional damage on already compromised kidneys and thereby substantially increases the rate of
transition to end-stage renal disease.[39,42,43,45] Progressive kidney disease is more likely after an episode of acute-
on-chronic kidney injury than after simple AKI alone.[43]

As much as inflammation is crucial for the development of AKI, it also has a crucial role in the development of interstitial
fibrosis after AKI. Experimental studies have shown a delayed mononuclear cell infiltration after AKI, which is a central
factor in kidney repair, regeneration, and tissue remodeling.[52,53] Although monocytes aggravate tissue injury after
ischemia–reperfusion, they also contribute to fibroblast proliferation and tubular interstitial fibrosis. Capillary rarefaction
represents another hallmark of tubular interstitial fibrosis.[54,55] Regeneration after AKI includes rapid and intense
activation of different signaling pathways in tubular epithelial cells, giving rise to the production and secretion of growth
factors, cytokines, and other mediators. Among the receptors and their respective pathways involved are Toll-like
receptors, receptor tyrosine kinases, G-protein-coupled receptors, and peroxisome proliferator-activated receptor. They
are thought to participate through the nuclear factor-κB-, phosphatidylinositol 3-kinase-, mitogen-activated protein
kinase-, and Smad-dependent pathways.[56–64] Activation of these pathways in turn leads to enhanced production of
numerous mediators that are involved in repair, regeneration, and remodeling of the kidney, such as platelet-derived
growth factor, transforming growth factor, colony-stimulating factor, and epidermal growth factor.[65,66] Many of the
secreted molecules have both autocrine and paracrine functions. They recruit and mobilize leukocytes and also
stimulate endothelial cells and fibroblasts. All injured and regenerating tubular cells, endothelial cells, interstitial cells,
and recruited inflammatory cells can produce and release these substances.[65,66]

Conclusion

Over the past few years, both experimental and clinical research has made important changes to the way AKI and its
impact on morbidity/mortality are perceived. The development of AKI is the consequence of complex interactions
between the actual insult and subsequent activation of inflammation and coagulation. Contrary to the conventional view,
recent experimental and clinical data argue against renal ischemia (and reperfusion) as a sine qua non condition for the
development of AKI. Moreover, loss of renal function can occur without histological signs of tubular damage or even
necrosis.

It has become very clear that patients, especially patients in the ICU, are dying of AKI and not just simply with AKI.
Even small changes in serum creatinine concentrations are associated with a substantial increase in the risk of death.
Moreover, the detrimental effects of AKI are not limited to classical well-known symptoms such as fluid overload and
electrolyte abnormalities. AKI can also cause problems that are not readily appreciated at the bedside and can extend
well beyond ICU stay. Experimental and small observational studies provide evidence that AKI negatively affects
(innate) immunity and is associated with higher rates of infection. Furthermore, AKI can also serve as a springboard for
the development of CKD, in particular in patients with underlying renal insufficiency.
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