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Neuromuscular blocking agents are commonly used in critical care.
However, concern after observational reports of a causal relation-
ship with skeletal muscle dysfunction and intensive care–acquired
weakness (ICU-AW) has resulted in a cautionary and conservative
approach to their use. This integrative review, interpreted in the
context of our current understanding of the pathophysiology of
ICU-AW and integrated into our current conceptual framework of
clinical practice, challenges the established clinical view of an ad-
verse relationship between the use of neuromuscular blocking
agents and skeletalmuscle weakness. In addition to discussing data,
this review identifies potential confounders and alternative etiolog-
ical factors responsible for ICU-AW and provides evidence that neu-
romuscular blockingagentsmaynot be amajor causeofweakness in
a 21st century critical care setting.
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Neuromuscular blocking agents (NMBAs) are commonly admin-
istered to critically ill patients to inducemuscular paresis. Extended
administration of NMBAs is considered with caution due to the
reported causal relationship with skeletal muscle dysfunction
and the potential risk for development of intensive care–acquired
weakness (ICU-AW) (1–3), a condition that has recently received
significant clinical and research attention (4–8). This clinical inte-
grative review complements the previous systematic review detail-
ing the risk factors for ICU-AW (9) and evaluates the current
published data on the relationship between the use of NMBAs
and ICU-AW. Based on these current data, this review challenges
the causal relationship between the use of NMBAs and skeletal
muscle weakness. This integrative approach has distinct differen-
ces from that of a systemic review: the data have been interpreted

in the context of our current understanding of the pathophysiol-
ogy of ICU-AW and integrated into our current conceptual
framework of clinical practice. The goal was to challenge the
established clinical view and to inform clinicians that NMBA
use in 21st century critical care does not have a clear causal rela-
tionship with ICU-AW.

We used PubMed and MEDLINE search engines to obtain all
relevant abstracts and articles from January 1977 toDecember 2011.
The search terms used were “depolarizing agent,” “nondepolarizing
agent,” “neuromuscular blockade,” “muscle relaxant,” “intensive
care unit–acquired weakness,” “critical illness myopathy,” “critical
illness neuromyopathy,” and critical illness polyneuropathy” (10).
Only human studies were included in the search, and Boolean
searches were performed with all search terms used alone or in
combination.

NMBAS IN CLINICAL PRACTICE

Nondepolarizing agents (e.g., tubocurare, vecuronium, and atra-
curium) compete with acetylcholine (ACh) for binding at the nic-
otinic receptor level of the motor end plate. Depolarizing agents
(e.g., succinylcholine) act as fixed agonists causing sustained
opening of associated sodium channels, preventing further
ACh-driven excitation. Bolus use of both depolarizing and non-
depolarizing NMBAs facilitates endotracheal intubation, but
data supporting more prolonged use of the nondepolarizing
agents are limited. This is reflected by the recommendations of
both the Brain Trauma Foundation and the National Institute
of Clinical Excellence, which do not recommend the routine
use of NMBAs in management of traumatic brain injury (11,
12). Furthermore, the data to support the use of NMBAs in the
context of therapeutic hypothermia are similarly lacking (13).
With the exception of a recent clinical trial investigating the
effect of NMBAs on outcome in patients with adult respiratory
distress syndrome, there are few randomized controlled trials to
support the common indications for the use of NMBA (9, 14–
16). Despite this weak evidence base, prolonged administration
of nondepolarizing agents is frequent in clinical practice in the
management of raised intracranial pressure after head injury
and neurosurgery, patient-ventilator asynchrony, refractory re-
spiratory failure, and therapeutic hypothermia (17–19). More
recently, data detailing beneficial effects of NMBAs (14, 16)
have been reported.

First reported in 1977, severe muscle weakness was described
in patients exposed to a combination of mechanical ventilation,
high-dose corticosteroids, and NMBAs (20–23). Based on the
mode of action of NMBAs, a series of case reports continued to
implicate them as causal (24–31), with more than 44 case reports
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published from 1977 to 1997 (32). Consequently, reviews and
guidelines have cautioned clinicians of the risks associated with
NMBA use (1, 3, 33–44). Indeed, there is biological plausibility
for the proposed adverse effect. In addition to data reporting
inhibition of myogenesis via the antagonism of trophic factors
such as neuregulins (45, 46), animal models of denervation have
demonstrated reduced sodium channel activity leading to mus-
cle hypoexcitability (47). Furthermore, pharmacological dener-
vation has been used repeatedly to model muscle atrophy
secondary to immobilization (48, 49).

But is there a causal relationship between the use of NMBAs
and skeletal muscle weakness? Weakness must be considered in
terms of both the electropathophysiological process (nerve, neu-
romuscular junction, and muscle) and impaired muscle mass reg-
ulation during critical illness.Weakness is common in critically ill
patients as a feature of (1) acute primary neuropathy (e.g.,
Guillain- Barré syndrome), (2) acute secondary myopathy (e.g.,
rhabdomyolysis [50]), (3) electrolyte imbalance (e.g., hypophos-
phatemia [51] and hypokalemia [52, 53]), (4) acute-on-chronic
myopathy (e.g., malignancy-related [54] and as part of a preex-
isting cardiorespiratory disease such as chronic heart failure [55]
and chronic obstructive pulmonary disease [56]). Acute primary
myopathy may result from the marked reduction in muscle mass
observed in the critically ill, with a 2 to 4% per day loss of fiber
cross-sectional area (57, 58).

ICU-AW is the result of complex pathophysiological pro-
cesses involving the nerves and muscles that determine the func-
tional property of skeletal muscle. It can be subclassified, based
on electrophysiological measurement, into critical illness myop-
athy, critical illness polyneuropathy, or critical illness neuromy-
opathy (10). Although the mechanism underlying this muscle
loss remains to be clearly elucidated, protein malnutrition, sys-
temic inflammation, and prolonged immobility are likely con-
tributory factors (59, 60). As a result, such muscle loss will be
most pronounced in the sickest patients—those most likely to
require neuromuscular blockade. Thus, it is rational to consider
that there is no, or at least only a weak, causal relationship
between NMBA use and ICU-AW.

STUDIES AND TRIALS EVALUATING NMBAS

Table 1 describes the observational studies performed in the last
20 years reporting associations between NMBA use and ICU-
AW. It must be highlighted that in addition to differences in
study design (e.g., retrospective and prospective observational
studies), the majority of studies included a heterogeneous crit-
ical care population and the detailed data collection across stud-
ies was variable. In particular, this is significantly notable for the
collection of the illness severity data. The frequency of cortico-
steroid use was high in these studies. Steroid-induced myopathy
is a well-described phenomenon whereby glucocorticoids in-
duce catabolism, inhibit anabolism, and potentially exacerbate
the effects of immobilization (61–63). Furthermore, the mean
age between the studies is wide. Sarcopenia, or age-related
skeletal muscle loss, is common in those individuals over the
age of 65 years. Finally, the methodology to confirm or exclude
ICU-AW varies among these studies. Current practice for diag-
nosing ICU-AW is to use standard electrophysiological tests
and manual muscle testing (10), although the use of electro-
physiological studies has limited value. Previous studies demon-
strated that electrophysiological abnormalities occur early in
critical illness and do not correlate with muscle function and
outcome (64, 65).

Despite the current clinical concern of a causal relationship
between NMBA use and skeletal muscle weakness, only 31%
of the 16 studies (3 prospective and 2 retrospective) implicate

NMBA use to be associated with ICU-AW. Segredo and col-
leagues studied 16 patients who received vecuronium infusions
(longest duration of paralysis was 168 h) and demonstrated ex-
tended neuromuscular blockade after NMBA cessation (66),
which is a completely different diagnosis from that of ICU-
AW based on the current definitions (10). Three of the studies
were performed in patients with severe life-threatening asthma,
all of whom received very high dose corticosteroids (31, 67, 68).
Adnet and colleagues performed a retrospective cohort study of
ventilated patients with asthma in five centers (68). Despite the
authors’ conclusion that the use of NMBAs was the only inde-
pendent predictor of ICU-AW, in a multiple regression analysis
those receiving NMBAS had a greater severity of illness, dem-
onstrated by the increased use of volatile gas ventilation to
manage bronchospasm, adding a significant confounder to the
appropriateness of the comparison. Douglass and colleagues
reported 25 consecutive cases of acute asthma requiring me-
chanical ventilation (31). Twenty-one patients received vecuro-
nium and all received corticosteroids. In this study, the use of
vecuronium per se was not associated with myopathy. Behbe-
hani and colleagues performed a multivariate analysis in a ret-
rospective cohort study of patients with asthma receiving
mechanical ventilation in two centers over a 10-year period
(67). All 86 patients received intravenous corticosteroids and
30 patients received NMBAs for a mean of 3 days. Although
30% of patients receiving NMBAs developed ICU-AW, more
than 10% of those who did not receive NMBAs also developed
ICU-AW. The universal use of high dose corticosteroids was
again a significant confounding factor. Although this would
not wholly explain the between-group differences in prevalence
of ICU-AW, review of the study design showed other important
differences. Different total doses of NMBAs were used between
the two recruiting centers, likely accompanied by a difference
in total sedative dose, although these data were unavailable.
These confounders could significantly influence the incidence
of ICU-AW.

Garnacho-Montero and colleagues studied 73 critically ill
patients with an electrophysiological diagnosis of ICU-AW. After
multivariate analysis it was concluded that NMBA use was an in-
dependent risk factor for electrophysiological abnormality (69). In
addition to the diagnostic limitations of such electrophysiological
testing in critically ill patients unable to follow simple commands
(5, 64, 70), in a subsequent study of 68 heterogeneous critically ill
patients, undertaken by the same research group using the same
diagnostic protocol, NMBA use was demonstrated not to be
a cause of ICU-AW (71). In addition, and of major relevance
to this discussion, was that excess sedative use was observed in
those who developed ICU-AW (71).

More recently, Papazian and colleagues reported a study in-
vestigating use of cisatracurium on the outcome of patients with
acute respiratory distress syndrome (14). Three hundred forty
patients were randomized to receive 48 hours of cisatracurium
or placebo. Although the primary outcome was 90-day survival,
manual muscle testing was performed on the day of ICU dis-
charge and on Day 28. No difference was observed between
groups in the incidence of ICU-AW (29 vs. 32%, P ¼ 0.49).
Interestingly, in the subgroup that received corticosteroids there
was no difference in the frequency of ICU-AW observed (37 vs.
30%, P ¼ 0.32) (72). The other relevant randomized controlled
trial involving NMBAs was performed by Forel and colleagues,
albeit without an a priori decision to test for ICU-AW (16). In
36 patients randomized to receive 48 hours of neuromuscular
blockade or placebo, there was no increased rate of ICU-AW
observed. These more recent data support the view that short-
term use of NMBA is not associated with in an increased inci-
dence of ICU-AW (14, 16).
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SEDATION AS A POTENTIAL RISK FACTOR FOR ICU-AW

NMBA use, and subsequent immobilization, must always be ac-
companied by appropriate levels of sedation, which also sustain
immobilization. Indeed, inadequate use of sedation in conjunc-
tion with NMBAs may exacerbate psychosocial morbidity in
ICU survivors, although this is beyond the remit of this review.
Prolonged immobilization results in electrophysiological dys-
function, decreased muscle protein synthesis, loss of muscle
mass, and microvascular dysfunction (73–76). Although bed
rest, antigravity, and hind limb suspension models simulate im-
mobility, sedation should also be considered as an independent
risk factor above the effects on immobilization. Propofol and
benzodiazepines positively modulate the inhibitory function of
the neurotransmitter g-amino-butyric acid (GABA) (77, 78).
GABA facilitates the opening of the voltage-gated chloride
channels in skeletal muscle, which decreases muscle excitability
(78, 79). Barbiturates and ketamine attenuate the response of
excitatory neurotransmitters such as glutamate, decreasing mus-
cle tone by acting on motor-associated neurons in the spinal
cord via N-methyl-D-aspartate (NMDA) receptors (78, 80, 81).
Thus, continued sedation could be expected to have a greater
effect on muscle atrophy and muscle weakness than the conven-
tional awake human and animal immobility models. This could
explain the results of previous studies that have shown that
ICU-AW was greater in those patients exposed to a higher sed-
ative load (71). It is therefore reasonable to postulate the bene-
ficial physical effects observed in studies using sedation protocols

with sedation holds and reduced sedation load (82–85) are poten-
tially the direct result of decreased frequency and severity of ICU-
AW. There are no published data investigating the association of
sedation level with ICU-AW or patient arousal and activity and
ICU-AW.With current prevailing clinical practice favoring amore
minimalistic approach to sedation and a proactive approach to
mobilization (82–84, 86), clinicians may focus further on reducing
the use of sedatives.

APPLICATION OF HISTORIC NMBA DATA IN THE 21ST
CENTURY CRITICAL CARE SETTING

To interpret previous studies objectively, we need to consider the
patient groups investigated and their clinical management. It
must be acknowledged that the majority of data from previous
uncontrolled studies indicating a causal relationship between
NMBAs and ICU-AW were observations made during the last
century (Table 1). Clinical practice has changed significantly
over the last 20 years. The majority of patients included in these
studies had primary ventilatory failure, and strategies of me-
chanical ventilation were markedly different from those cur-
rently practiced. In the 1980s and early 1990s, the most
common ventilators used lacked the ability to support sponta-
neous ventilation through pressure-support (PS) modes,
whereas others lacked a synchronized intermittent mandatory
mode of ventilation. The commonest weaning mode used in the
United States in the late 1980s was the use of mandatory breaths
from intermittent mandatory ventilation, supplemented by

TABLE 1. OBSERVATIONAL STUDIES INVESTIGATING THE RELATIONSHIP BETWEEN NEUROMUSCULAR BLOCKING AGENTS USE AND
INTENSIVE CARE–ACQUIRED WEAKNESS

Author

Year of

Study

Mean

Age (yr) Diagnosis

Mean APACHE

Score (SD) Design

Frequency

of ICU-AW Steroid Use

Neuromuscular

1Blocking

Agent Used

Mean Length

of Use of

Neuromuscular

Blocking Agent

(d )

Days Ventilated

Prediagnosis

of ICU-AW

Diagnostic

Method

for ICU-AW

Association with

Neuromuscular

Blocking Agent

Leijten et al.

(117)

1995 ,75 Heterogeneous Not reported Prospective

observational

29/50 Not

recorded

Vecuronium Not reported Not standardized EP Testing N (U)

Latronico

et al. (70)

1996 50.2 Heterogeneous Not reported Prospective

observational

24/24 4/24 Pancuronium or

atracurium

For procedures

only

Not standardized Clinical

examination

N (U)

Kesler

et al. (98)

2009 39 Asthma Not reported Retrospective

observational

10/74 All Vecuronium or

atracurium

2 patients Not standardized Clinical

examination

N (U)

Leatherman

et al. (97)

1996 38 Asthma Not reported Retrospective

observational

20/96 All Vecuronium or

atracurium

1 Not standardized Clinical

examination

N (U)

Behbehani

et al. (67)

1999 47 Asthma 14.3 (6.2) Retrospective

observational

9/86 All Vecuronium or

pancuronium

3.1 Not standardized Clinical

examination

Y (M)

Segredo

et al. (66)

1992 45 Respiratory

failure

Not reported Prospective

observational

7/16 None Vecuronium 7 Not standardized EP testing* Y (U)

Witt et al.

(118)

1991 43 Heterogeneous Not reported Prospective

observational

30/43 Not

recorded

Not recorded Not reported Not standardized EP testing N (M)

Douglass

et al. (31)

1992 N/A Asthma Not reported Prospective

observational

9/25 All Vecuronium Not available Not standardized Clinical

examination

Y (U)

Adnet

et al. (68)

1995–1999 40 Asthma Not reported Retrospective

observational

10/55 All Pancuronium or

vecuronium

4.2 Not standardized Clinical

examination

Y (M)

Nanas et al.

(119)

2005–2006 55 Heterogeneous 15 (7) Prospective

observational

50/474 38/474 Not recorded 61 patients Not standardized Clinical

examination

N (M)

De Jonghe

et al. (5)

1999–2000 62 Heterogeneous SAPS II 48.7 Prospective

observational

23/95 26/95 Vecuronium 3.3 .7 Clinical

examination

N (U, M)

Garnacho-

Montero

et al. (69)

1996–1999 62 Heterogeneous 17.5 (6.9) Prospective

observational

46/73 11/73 Vecuronium or

atracurium

10/73 .10 EP testing Y (M)

Campellone

et al.

(120)

1995–1995 53 Liver

transplantation

24.4 Prospective

observational

8/77 All Pancuronium or

vecuronium

Not reported .7 Clinical

examination

N (U,M)

de Letter

et al.

(121)

1994–1996 70 Heterogeneous Not reported Prospective

observational

32/98 34/98 Vecuronium Not reported .15 Clinical

examination

N (M)

Garnacho-

Montero

et al. (71)

1999–2002 61 Severe/sepsis 22.2 Prospective

observational

34/64 Not

reported

Vecuronium or

atracurium

13/64 Not standardized EP testing N (M)

Bednarik

et al.

(122)

2000–2002 59 Multiorgan

failure

SOFA 7 Prospective

observational

17/61 None Pipecuronium Not reported Not standardized Clinical

examination

N (M)

Definition of abbreviations: EP testing ¼ electrophysiological testing; ICU-AW ¼ intensive care unit–acquired weakness; M ¼ multivariate; N ¼ no; U ¼ univariate; Y ¼ yes.
*Limited to ulnar nerve stimulation.
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spontaneous breaths from a reservoir bag (87). In the early
1990s the use of synchronized intermittent mandatory mode
of ventilation, PS, and bilevel positive airway pressure modes
increased (88, 89), with PS mode finding an increasing role in
weaning patients from mechanical ventilation (90, 91, 92), al-
though individual practice differed between countries (93).
With the limited technology and understanding of patients
weaning from mechanical ventilation in the 1980s, critically ill
patients received more prolonged periods of invasive mechani-
cal ventilation with greater risk of ventilator-associated pneu-
monia and other infections combined with greater exposure to
sedative agents. These risk factors, rather than a short period of
NMBA per se, could potentially have resulted in an increase in
the incidence of ICU-AW in these patients. Indeed, the use of
neuromuscular blockade has decreased over time. In 1981, a sur-
vey of 34 intensive care units observed that 90% of patients
were routinely administered NMBAs (94), which 12 years later
had fallen to 9% (95, 96). If a causal relationship exists between
NMBAs and ICU-AW, a corresponding decrease in ICU-AW
should be evident. Leatherman and colleagues published a ret-
rospective series of 96 patients with asthma requiring invasive
ventilation admitted between 1983 and 1995, which found no
association between NMBA use and ICU-AW (97). More im-
portantly, the same research group, after a change in clinical
practice with a goal to avoid muscle paralysis, compared the
records of 74 patients with asthma admitted between 1995 and
2004. Again, there was no difference found in the incidence of
ICU-AW despite this clear reduction in the use of NMBAs
(20 vs. 14%, P ¼ 0.23) (98). These data add support to the
argument for a lack of causal relationship between NMBA
use and ICU-AW.

TRANSLATIONAL PITFALLS WITH CRITICAL CARE
ANIMAL MODELS

Basic mechanistic studies investigating the effect of NMBAs on
peripheral skeletal muscle structure and function have been
performed using critically ill rodent models. Although these an-
imal models are necessary to provide insight in mechanistic pro-
cess, the clinical usefulness of extrapolating animal work to
humans is limited in some areas. Muscle physiology studies
highlight the dissociation between animal models and humans
(99–102). For example, total protein turnover in adult rats is
three to four times greater than in humans, with approximately
a 2.5-fold greater protein synthetic rate (99, 103). A recent
review details animal studies in which very short periods of
muscle unloading (5 h) initiate a proteolytic response in ani-
mals, whereas humans regularly unload their muscles for pro-
tracted periods (e.g., during sleep) with no such effect (104).
Despite these limitations, animal studies are instructive in the
mechanisms and intracellular pathways governing muscle
wasting. Larsson and colleagues have led this field of animal
work, building on the model developed by Dworkin (105, 106).
These critical care models demonstrated loss of muscle mass,
decreased myosin heavy chain to actin ratio (107), altered
ubiquitin proteasome pathway signaling, and glucocorticoid
receptor expression (108). Their most recent work demon-
strated loss of myosin, down-regulation of transcription factors
for protein synthesis, and significant muscle atrophy (109).
However, their model differs significantly from current clinical
management of critically ill patients, as the animal model incor-
porates isoflurane anesthetic and a-cobratoxin as an NMBA,
which is used continuously for 6 to 14 days. Although this must
be considered a major criticism of this model, this model has sim-
ilarities to the observational studies in patients with asthma, which
also used volatile gas anesthesia in the management of severe

bronchospasm. More interestingly, a porcine model has been de-
veloped that will allow for longitudinal studies of greater time
periods yielding further insights (110–114). As in human studies,
it must be highlighted that these animal studies are unable to
separate the effect of NMBA use from the effect of sedation use
for obvious ethical reasons.

FUTURE CLINICAL AND RESEARCH PRACTICE

In 21st century critical care clinical practice, short-term use of
NMBAs does not appear to be a risk factor for ICU-AW. Indeed,
independent causality of ICU-AW by NMBAs has yet to be
clearly demonstrated. In those clinical scenarios in which the
use of NMBA may decrease mortality, the recommendation is
that NMBA should be used for short periods without caution.
The concerns that NMBAs cause ICU-AW need to be modified,
and further evidence from observational cohort studies and ran-
domized controlled trials is required. Meanwhile, such is the im-
portance of muscle weakness that we consider that the
assessment of peripheral skeletal muscle function an essential
feature of all future critical care clinical trials. This could be
as either a primary or secondary outcome measure similar to
other usual measured parameters, such as illness severity score,
days of mechanical ventilation, and length of stay (115).

Finally, separating neuromuscular blockade from immobili-
zation and sedation as causative factors in the pathogenesis of
ICU-AW is likely to be difficult through prospective randomized
trials. However, research tools do exist that can provide greater
insights. Physical activity, as measured using vector unit tri-
accelerometry, can quantify passive and active physical move-
ment in patients when accompanied by detailed diary carding.
It is therefore feasible to incorporate activity monitoring into
clinical trials during early, recovery, and rehabilitative stages
of critical illness to investigate the relationship between muscle
wasting, physical activity, NMBA use, and sedative use. This
would facilitate differentiating the effects of NMBAs, sedatives,
immobility, and bed rest per se. In addition, as clinical weakness
assessment requires patients to have sufficient cognitive func-
tion and motivation, we need objective measures of muscle
wasting to act as biomarkers of muscle weakness. Rectus fem-
oris cross-sectional area measured using B-mode ultrasound is
a future potential tool for this (116).

Author disclosures are available with the text of this article at www.atsjournals.org.
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