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Abstract This manuscript sum-
marises the consensus on neuro-
monitoring in neuro-intensive care

promoted and organised by the
Neuro-Intensive Care and Emergency
Medicine (NICEM) Section of the
European Society of Intensive Care
Medicine (ESICM). It is expected
that continuous monitoring using
multi-modal techniques will help
to overcome the limitations of each
individual method and will provide
a better diagnosis. More specific treat-
ment can then be applied; however, it
remains to be determined which com-
bination of parameters is optimal. The
questions discussed and addressed in
this manuscript are: (1) Who should
have ICP monitoring and for how
long? (2) What ICP technologies are
available and what are their relative
advantages/disadvantages? (3) Should
CPP monitoring and autoregulation
testing be used? (4) When should
brain tissue oxygen tension (PbrO2)
be monitored? (5) Should struc-
turally normal or abnormal tissue be
monitored with PbrO2? (6) Should mi-
crodialysis be considered in complex
cases? It is hoped that this document
will prove useful to clinicians working
in NICU and also to those developing
specialist NICU services within their
hospital practice.

Keywords Intracranial pressure
monitoring · Cerebral perfusion
pressure · Brain tissue oxygenation ·
Microdialysis
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Introduction
The mission of the Neuro-Intensive Care and Emergency
Medicine section of the European Society of Intensive
Care Medicine (NICEM; http://www.esicm.org) is to
improve outcomes for patients with life-threatening
neurological illnesses. In particular, NICEM undertakes to
promote and develop standards for training and physician
competencies in the subspecialty of neurological intensive
care.

NICEM has successfully run two post-graduate courses
on neuro-intensive care, directed by P.J.D.A. and G.C., in
2005 and 2006. At the Barcelona congress in 2006 we used
high-fidelity simulation as a teaching aid and following
that session received many questions about neurological
monitoring equipment. It became clear that there was an
urgent need for some guidance on advanced neurological
monitoring.

We organised, as a satellite to the 2007 Annual ESICM
Congress, an academic workshop with the aim of produc-
ing a consensus on neurological monitors for the society.

The instructions to the discussants and speakers at the
meeting, were to present only level 1 evidence and tertiary
research, where this existed, and conclude with three to
four bullet points for review by the expert panellists. The
questions the experts were asked to address were:

1. Who should have ICP monitoring and for how long?
2. What ICP technologies are available and what are their

relative advantages/disadvantages?
3. Should CPP monitoring and autoregulation testing be

used?
4. When should brain tissue oxygen tension (PbrO2) be

monitored?
5. Should structurally normal or abnormal tissue be moni-

tored with PbrO2?
6. Should microdialysis be considered in complex cases?

There are no studies, to our knowledge, that have
shown benefit from any patient monitor. Thus, it ap-
pears that many studies support the need for specialist
care but several factors, including the use of advanced
neurological monitors, subspecialty-trained personnel
and the development of evidence-based medicine patient
care protocols, may explain the improvements in patient
outcomes, making it difficult to distinguish between the
effect of specialist personnel themselves, care pathways
they initiate and the relative importance of the specialised
monitors. There has, however, been a decrease in mortality
and an improvement in outcome associated with the
development of all these factors.

We will consider the specialised monitors in this mono-
graph.

Who should have ICP monitoring and for how long?
The fundamental principles of raised intracranial pressure
(ICP) are condensed in the doctrine credited to Monro
(1783) and Kellie (1824). Briefly, this doctrine states that,
once the fontanelles and sutures are closed, the brain
is enclosed in a non-expandable case of bone, the brain
parenchyma is nearly incompressible, the volume of the
blood in the cranial cavity is therefore nearly constant and
a continuous outflow of venous blood from the cranial
cavity is required to make room for incoming arterial
blood [1].

Raised ICP is an important “secondary insult” in
brain-injured patients and a predictor of poor outcome
after TBI [2]. ICP is also used to calculate cerebral
perfusion pressure (CPP), which represents the pressure
gradient across the cerebral vascular bed and is used as
a therapeutic target for brain-injured patients in many
intensive care units and is recommended by the Brain
Trauma Foundation’s (BTF) evidence-based guideline [3].

However, it is important to realise that there has never
been a randomised controlled trial showing an outcome
benefit for patients with ICP monitoring and ICP-guided
treatment compared with patients without ICP monitoring.
To date only prospective cohort trials and observational
databases in patient groups at greatest risk of raised ICP
have shown trends toward better outcomes when ICP is
treated at a lower threshold [4]. These data are summarised
in the BTF guidelines stating that ICP should be monitored
in all salvageable patients with a severe traumatic brain in-
jury (TBI) and an abnormal computed tomography (CT)
scan [5].

Patients at risk of neurological deterioration or those
who have severe acute brain injury are best cared for in
specialist centres where there is a concentration of expert-
ise to address acute brain injury and its complications. Sep-
arating the impact of the availability of these specialists
on patient outcome from the effect of ICP monitoring and
ICP-guided treatments can be difficult [6].

The duration of monitoring will depend on normali-
sation of ICP and is highly dependent on individual pa-
tient characteristics. An option is to stop monitoring after
12–48 h with no pharmacological interventions and nor-
malisation of PaCO2.

In summary, ICP is a complex parameter which
contains information about cerebral compensatory mech-
anisms and mechanisms contributing to cerebral blood
flow (CBF) regulation. ICP control requires continuous
ICP monitoring and integration of the additional infor-
mation in the ICP waveforms [7] and their relationship to
MAP to help us understand the underlying pathophysi-
ology.
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Consensus statement:

• We recommend that all patients with severe TBI should
be managed in specialised centres.

• There are insufficient data to recommend ICP monitor-
ing and management as standard care in all brain-injury
patients. Nevertheless, the evidence is “good enough”
to recommend ICP monitoring of patients with severe
injuries who are at increased risk of intracranial hyper-
tension.

• Which patients are at “high risk” of ICP elevation is
a matter of controversy. We recommend ICP should be
monitored in all salvageable patients with a severe TBI
(i.e. Glasgow Coma Scale Score ≤ 8) and an abnormal
CT scan.

• We recommend that the management of raised ICP
should follow BTF guidelines with care to exclude
surgical lesions, including haematoma, contusion and
hydrocephalus. Local protocols should be developed
that conform to international guidelines and include
neurosurgical consultation.

What ICP technologies are available and what are
their relative advantages/disadvantages?
The optimal ICP monitoring device should be accu-
rate, reliable, cost effective, and cause minimal patient
morbidity, as stated by Lundberg [8]. Accuracy and
reliability are defined according to the Association for
the Advancement of Medical Instrumentation (AAMI)
standards (http://www.aami.org/standards/index.html).
An ICP device should have the following specifications:
pressure range 0–100 mmHg, accuracy ± 2 mmHg in the
0–20 mmHg range and maximum error of 10% in the
20–100 mmHg range, ANSI/AAMI NS28:1988/(R)2006 –
Intracranial pressure monitoring devices (ANSI: American
National Standards Institute).

Ventricular fluid pressure is the established reference
standard for measuring ICP. Currently, the ventricular
catheter (VC) connected to an external strain gauge trans-
ducer is the most accurate, low-cost, and reliable method
of monitoring ICP [2]. This method has been proven
to be reliable, permits periodic recalibration and allows
therapeutic CSF drainage. Nevertheless, obstruction of the
system and the requirement to consistently maintain the
external transducer at a fixed reference point, usually the
external auditory meatus, can lead to inaccuracy during
clinical use [9]. The incidence of such problems has not
been evaluated precisely. Furthermore, VC requires the
implementation of quality control mechanisms, includ-
ing accuracy and reliability. A major disadvantage is
that its performance is dependent on human interaction
(calibration, choice of reference level, etc.).

The potential risks of difficulty in placement, the
need for frequent recalibration and the risk of obstruction

and infection have led to the development of alternative
intracranial sites and technologies for ICP monitoring [2].
The most common alternative location for ICP monitoring
is the cerebral parenchyma. Intraparenchymal transducers
may be classified as solid-state, based on pressure-
sensitive resistors, or fiberoptic design (FOD). Although
both systems are very accurate at the time of placement,
they have been reported to drift over time. Published re-
search on this widely used technology (> 100,000 sensors
sold worldwide in 2006) and especially independent com-
parative tests are scarce [10, 11]. No standard evaluation
has been defined. For example, the use of correlation
coefficient to compare these monitoring devices against
the gold standard is inappropriate, and agreement should
be evaluated using the method described by Bland and
Altman [12]. Precision of parenchymal ICP monitors
has been assessed by comparing the measurement value
at the time of ICP monitor removal with atmospheric
pressure [13]. Better information about the measurement
inaccuracy and tolerance, i.e. the maximum expected
error expressed as a percentage of a clinically relevant
pressure range, is desirable, and data on this topic should
be collected prospectively and independently in large
series. The cost of these devices is higher than that of the
cheaper ventricular system and FOD devices suffer from
a higher intrinsic fragility.

Subdural and epidural monitors and externally placed
anterior fontanelle monitors are less accurate than the
above-mentioned devices. The overall safety of ICP
monitoring devices is good, with clinically significant
complications (e.g. infection and haematoma) occurring
infrequently in centres with enough expertise [2]. Further
improvement in ICP monitoring technology should focus
on developing systems incorporating derived information,
for example software for estimating autoregulation, and/or
multi-parametric devices that could also monitor parame-
ters such as PbrO2, temperature, CBF and other metabolic
parameters in addition to ICP. Several techniques for
non-invasive (indirect) assessment of ICP have been
proposed over the years; at this stage none of them has
reached sufficient maturity for clinical use.

Consensus statement:

• There is a need for standardisation and independent
testing of ICP devices that verify the AAMI’s standards
in real life. These tests should be conducted both in
the laboratory and in the clinical environments. Larger
studies than have so far been published are required.

• Despite the limitations described above, according to
the BTF guidelines the VC should be considered as
the “gold standard” for ICP monitoring. Errors may be
more common in routine clinical practice than in la-
boratory tests, and the human factor should also be con-
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sidered a potential source of error. Alternatively, intra-
parenchymal devices are an adequate choice for ICP
monitoring.

• New multi-parametric devices and non-invasive sys-
tems are expected to reach the market in the near
future. They require further validation and identifica-
tion of clinical situations in which they could be used
instead of invasive monitoring.

Should CPP monitoring and autoregulation testing be
used?

The indications and thresholds for monitoring of CPP
i.e. the difference between mean arterial pressure (MAP)
and ICP, remain controversial. According to BTF guide-
lines, the general recommendation for target CPP values
lies within the range of 50–70 mmHg [4]. CPP values
below 50 mmHg carry a 2–3 times higher risk of cere-
bral ischaemia and cerebral hypo-perfusion, while CPP
values beyond 70 mmHg may be associated with an
increased incidence of systemic complications such as
cardio-respiratory failure [14, 15].

Recently, it has become clear that these broad recom-
mendations are non-physiological. In fact, the risk/benefit
ratio of CPP-directed therapy aiming at CPP target value of
70 mmHg versus an ICP-directed therapy tolerating lower
CPP values depends on the state of the individual’s cere-
brovascular autoregulation.

In the recent BTF guidelines, autoregulation has been
mentioned for the first time and the caveat has been raised
that in individual cases the traditional CPP limits may not
be appropriate. Some evidence as to whether ICP-guided
or CPP-guided therapy is better may depend on the state
of autoregulation: if the autoregulation is intact a CPP-
directed therapy could be used, with a higher probability
of favourable outcome, whereas if autoregulation is absent
ICP-guided therapy may yield better results [16].

Because of these findings, a continuous assessment
of both static and dynamic cerebral autoregulation has
become an interesting adjunct to current neuromonitoring
strategies. Cerebrovascular autoregulation may be deter-
mined by various approaches. One of the two most used
bedside techniques is the online correlation between ICP
and MAP (pressure reactivity index, PRx) and between
middle cerebral artery (MCA) blood flow velocities and
MABP (Mx) [17, 18]. Both strategies provide immediate
and dynamic information on autoregulation at the bedside.

Using these techniques cerebral autoregulation can
be monitored continuously and the decision between
ICP-directed and CPP-directed therapies could be based
on the autoregulatory state. It is noteworthy that the
autoregulatory state is not a static but rather a dynamic
variable, suggesting that the individualised treatment
strategy should be re-evaluated regularly over the time
course of the acute phase following brain injury.

In the future, ICP and CPP may not be the sole tar-
get parameters for managing brain-injured patients. Ad-
ditional parameters, such as cerebral perfusion, cerebral
oxygenation and cerebral metabolism, are currently being
evaluated for their ability to guide treatments in acute brain
injury. For example, manipulation of individual CPP tar-
gets based on monitoring of cerebral oxygenation (PbrO2)
and/or cerebral blood flow (rCBF), has been used success-
fully to decrease episodes of brain hypoxia [19].

Consensus statement:

• In general, ICP and CPP target values should
be ≤ 20 mmHg and ≥ 50 to ≤ 70 mmHg, respectively.

• CPP values > 70 mmHg should only be targeted if
cerebrovascular autoregulation is intact.

• If cerebrovascular autoregulation is lost, ICP-directed
therapeutic strategies should be considered.

When should PbrO2 be monitored?
The goal of monitoring the injured brain is to enable the
detection of harmful physiological events, collectively
defined as “secondary insults”, before they can cause
irreversible damage to the brain. The cause of secondary
insults can be generalised, i.e. affecting the entire brain
– for example, episodes of hypotension/decreased CPP,
global hypoxaemia or increased ICP – or local, i.e.
occurring only in the injured area of the brain. The
latter category is more difficult to detect than the former.
Whether or not secondary insults lead to permanent
brain injury depends on the intensity and duration of the
harmful physiological event and on the susceptibility of
the brain [20].

In theory, the detection of tissue hypoxia is of even
greater importance in the area of neurocritical care,
because the brain and spinal cord have a poorer tolerance
for ischaemia than most other tissues, and because hyp-
oxia/ischaemia are central mechanisms underlying brain
damage in various types of acute neurological injury, e.g.
TBI, subarachnoid haemorrhage (SAH), stroke and global
anoxia. The only currently available device uses a minia-
turised Clark electrode to measure PO2 and the device
also measures temperature, so that the oxygen tension
can be adjusted. The physiological idea behind cerebral
oxygen monitoring is that the PbrO2 value accurately rep-
resents the balance between oxygen delivery and oxygen
consumption in brain cells, and that changes in PbrO2
will therefore reflect pathophysiological alterations. These
changes could then be used to guide treatments to prevent
or mitigate hypoxic injury. In addition, PbrO2 probes can
also be used to directly measure brain temperature in
injured and non-injured areas of the brain. There is mount-
ing evidence suggesting that high brain temperatures can
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Meta-analyses None
Prospective randomised clinical trials with hard endpoints None
Prospective clinical trials with outcome assessment None
Observational clinical studies linking low PbrO2 to adverse Five small to medium-sized studies;
outcome total of 216 patients [24–28]
Clinical studies using PbrO2 to guide interventions using hard One study with historical controls
endpoints to compare efficacy providing outcome data [31]
Clinical studies using PbrO2 to guide interventions using One study [29]
secondary parameters to compare efficacy
Animal studies Limited number of studies in

cats and pigs [48–50]

Table 1 Summary of the
evidence from clinical and in
vitro studies assessing the
usefulness of PbrO2 in critically
ill patients with brain injury

aggravate brain injury, and that brain temperature often
exceeds core temperature measured at other sites [21];
thus, direct measurements of brain temperature could be
helpful in treating brain-injured patients.

As is the case with many other monitoring tools, there
is a lack of data from clinical studies in critically ill pa-
tients. The available evidence is summarised in Table 1.

PbrO2 appears to correlate well with regional
CBF [22], and PET scan studies have suggested that
PbrO2 correlates with changes in regional SjO2 (jugular
venous oxyhaemoglobin saturation) in brain-injured
patients in the clinical setting [23]. This supports the
physiological notions underlying the usage of PbrO2 to
monitor brain injury, but provides no direct evidence that
this can be used to guide treatments and improve outcome.

The two major conditions in which PbrO2 monitoring
has been applied are TBI and SAH.

Use of PbrO2 monitoring in TBI

Five observational studies have reported that low
PbrO2 values in patients with TBI predict adverse
outcome [24–27]. The largest study was performed by van
den Brink et al. [28], who reported higher mortality and
worse neurological outcome in a series of 101 patients
with an initial PbrO2 < 10 mmHg for ≥ 30 min and in
those with PbrO2 < 15 mmHg lasting ≥ 4 h. In addition,
both the level and duration of low PbrO2 correlated with
mortality.

Longhi et al. [29] observed multiple episodes of brain
hypoxia in the days following severe TBI both in peri-
contusional tissue and in normal-appearing tissue. Mod-
erate hypoxia was detected in over half of the patients, and
severe hypoxic episodes in 23% in normal appearing tis-
sue and 34% in peri-contusional areas, even when ICP and
CPP were normal.

The question whether these measurements can be used
to improve outcome has not been well studied. Tolias
et al. [30] studied the effect of normobaric hyperoxia
treatment (FiO2 of 1.0 beginning within 6 h of admission)
on a number of secondary parameters, including PbrO2.
The authors reported improvements in PbrO2 as well as in

other secondary parameters (lactate/pyruvate ratio, brain
glucose, glutamate, lactate levels etc.) in patients treated
with a FiO2 of 1.0 compared to baseline and compared to
historical controls.

Only one study has specifically used PbrO2 to guide
treatment. Stiefel [31] enrolled 28 patients with severe TBI
in a protocol combining “traditional” ICP and CPP targets
(ICP < 20 mmHg, CPP > 60 mmHg) with PbrO2 monitor-
ing (target PbrO2 > 25 mmHg). Outcomes were compared
to 25 historical controls that had been monitored with ICP
and CPP targets only. Mortality rates were lower (25% vs.
44%, p < 0.05) in the group with the combined monitor-
ing. However, it should be noted that mortality in the con-
trol group was high by current standards and that no neuro-
logical outcome assessment was reported.

Use of PbrO2 monitoring in SAH

SAH is a condition that carries a high risk for delayed focal
ischaemia [32]. The causes are:

1. Vascular compression (by intraparenchymal haem-
atoma or a retractor during surgery).

2. Thromboembolic complications during aneurysm coil-
ing procedures.

3. Temporary/permanent vascular occlusion during surgi-
cal clipping.

4. Development of vasospasm.

PbrO2 monitoring has been used in the following situ-
ations:

1. Intraoperative monitoring for diagnosis of vascular oc-
clusion [33].

2. Monitoring of the compressed peri-haematoma
tissue [34].

3. Diagnosis of vasospasm-associated delayed ischaemia
and evaluation of the efficacy of treatment for this con-
dition [35, 36].

Suggested thresholds for brain hypoxia are in the range
of 10–20 mmHg [37]; however, more preclinical investiga-
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tion needs to be performed to determine the threshold and
duration of brain hypoxia associated with irreversible his-
tological brain damage and to establish which is the best
therapeutic strategy to increase PbrO2.

Consensus statement:

PbrO2 measurement has not been tested in a prospective
randomised controlled trial, but there is a physiologically
plausible basis to suggest that PbrO2 is a useful monitoring
tool in patients following TBI and SAH.

• PbrO2 monitoring can detect changes in regional brain
oxygenation that may be missed by global monitoring
such as SjO2/AjDO2, and can provide data continu-
ously over long periods.

• Low PbrO2 is associated with raised ICP, low CBF
(global/regional) and with adverse clinical outcomes.

• Large prospective clinical trials are necessary to better
evaluate this device and associated interventions.

• Relevant issues associated with PbrO2 monitoring are
costs, fragility and invasiveness of the technology.
Costs and risk to the patients need to be justified.
Coagulation parameters (especially platelet number
and function) should be normal before insertion of
a monitoring probe.

Should structurally normal or abnormal tissue be
monitored with PbrO2?

PbrO2 value is highly dependent on O2 diffusion from vas-
culature to a small amount of tissue [38]. Therefore, it is
a regional monitoring, whose values are highly dependent
on the location of the probe. The target area for PbrO2
monitoring is a subject of debate.

TBI (normal tissue)

Most centres have measured PbrO2 in the right “normal
appearing” frontal subcortical white matter [37]. The most
relevant data derived from PbrO2 measured in normal tis-
sue are:

• During the acute phase following TBI, PbrO2 might be
pathologic, despite a normal ICP/CPP, suggesting that
PbrO2 might become a novel target for resuscitation
following TBI [39].

• There is an association between low PbrO2 values and
poor outcome [25, 40].

• PbrO2-pressure reactivity might be used to assess cere-
brovascular pressure reactivity and might help indi-
vidualise CPP [41].

• In the presence of normal CPP, several episodes of
regional brain hypoxia (not disclosed by parameters
of global oxygenation) occur up to 5 days post-
injury, suggesting that PbrO2 is complementary to
SjO2/AjDO2 ( arterio-jugular venous oxygen content
difference) when monitored in normal appearing
tissue [29].

• Because there is an association between brain hypoxia
and outcome, a strategy of detection and correction of
brain hypoxia is advisable [19].

TBI (peri-contusional tissue)

In patients with focal lesions such as cerebral con-
tusions/subdural haematomas there is a considerable
amount of cerebral tissue at risk of ischaemia [42]. In the
hypodense peri-contusional tissue, PbrO2 is lower than
measured in the normal appearing tissue, despite a greater
CPP, and regional hypoxia lasts longer than in normal
appearing tissue. Normalisation of low PbrO2 around
cerebral contusions occurs over a period of days [29]. This
vulnerable tissue could be an appropriate target for focal
invasive monitoring of brain oxygenation. However, more
preclinical work is needed to test whether interventions
aimed at correcting peri-contusional brain hypoxia are
associated with histological and functional improvements
in models of focal injury.

SAH

PbrO2 has been used for early detection of cerebral is-
chaemia by placing probes in vulnerable areas of the brain,
for example near the area of the aneurysm and in the area
perfused by the artery where the aneurysm has been coiled
or clipped.

Consensus statement:

The preferred location for PbrO2 monitoring depends on
what information is sought.

• TBI: The choice should be individualised for each pa-
tient.

• The target should be the vulnerable and potentially
salvageable tissue: peri-contusional tissue (not the
core of the lesion) and tissue underneath a subdural
haematoma.

• Eloquent locations should be avoided (i.e. left tem-
poral lobe, motor cortex etc.).

• Where structurally normal tissue is monitored,
PbrO2 should be monitored in the sub-cortical
white matter of the more injured hemisphere.
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• SAH

• The target should be the cortex within the ex-
pected distribution area of the parent artery of the
aneurysm, which is at highest risk for developing
vasospasm and delayed ischaemia.

Should microdialysis be considered
in complex cases?
Although we do not have robust evidence as to when
or how to use this technique, a consensus conference
published in 2004 recommended that microdialysis (MD;
see ESM) could be used in patients with TBI who require
ICP monitoring [43]. Regarding catheter placement, this
conference recommended placing a single catheter in the
right frontal region in patients with diffuse injuries, and
two catheters (one in normal tissue and one in the peri-
contusional tissue) in patients with focal injuries (brain
contusions, non-evacuated haematomas etc.) [44]. Con-
cerning the biochemical markers to monitor, it was stated
that the lactate/pyruvate ratio was currently the best
marker of the brain redox state and an early biomarker
of secondary ischaemic injury glucose; glycerol and
glutamate are additional markers of developing brain
tissue hypoxia [45]. Regarding ischaemic damage, it is
important to remember that ischaemic hypoxia is just one
of the many types of hypoxia that can be detected in the
injured brain [46].

The use of new high cut-off membranes may make the
future of MD look bright, with the potential to study all the
neuro-inflammatory cascades elicited by TBI [47]. High-
resolution MD also opens potential avenues in translational
research, allowing in the near future the solution to the puz-
zle of the physiopathology of TBI and the development of
potential therapeutic targets.

Another avenue that can be explored with MD is
the profiling of new potentially neuroprotective drugs.
Although the presence of the drug in the extracellular fluid
does not guarantee a neuroprotective effect, if the drug
does not cross the blood–brain barrier it would plausibly
indicate an inability of this drug to target the brain.
A better understanding of the true concentrations of any
drug found in the brain tissue should be the first step in
selecting good candidates for neuroprotection. The system
cost varies depending on the number of channels meas-

ured, and consumables cost approximately 570 euros per
patient.

Consensus statement:

• Despite the increased use of MD in the management of
severe TBI, there is no class I evidence for its routine
use at the bedside.

• Microdialysis is the only tool that allows continuous
measurement of tissue chemistry in the brain extra-
cellular space. This information, when adequately
integrated into the clinical management of severe TBI,
is potentially more useful than the analysis of any
biomarker in the peripheral blood.

• There is an increasing body of evidence stressing the
relevance of non-ischaemic forms of brain tissue hyp-
oxia. MD is an essential tool for a better understanding
of these forms.

• High-resolution MD using membranes with a high cut-
off will enable the recovery of cytokines, interleukins
and other inflammatory mediators, which may increase
the usefulness of MD.

• MD is also an excellent tool in evaluating the ability of
potentially neuroprotective drugs to cross the blood–
brain barrier

Conclusion
It is hoped that continuous monitoring using multi-modal
techniques will help to overcome the limitations of each
individual method and will provide a better diagnosis.
More specific treatment can then be applied; however, it
remains to be determined which parameters are optimal.
The use of these techniques requires highly trained per-
sonnel to avoid the potential of generating artefacts and
possible misinterpretation. We strongly recommend that
all patients with acute life-threatening illness be managed
in specialist units.
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