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Objective: To assess the performance of published risk pre-
diction models in common use in adult critical care in the United
Kingdom and to recalibrate these models in a large representative
database of critical care admissions.

Design: Prospective cohort study.

Setting: A total of 163 adult general critical care units in
England, Wales, and Northern Ireland, during the period of De-
cember 1995 to August 2003.

Patients: A total of 231,930 admissions, of which 141,106 met
inclusion criteria and had sufficient data recorded for all risk
prediction models.

Interventions: None.

Measurements and Main Results: The published versions of
the Acute Physiology and Chronic Health Evaluation (APACHE) I,
APACHE Il UK, APACHE Ill, Simplified Acute Physiology Score
(SAPS) II, and Mortality Probability Models (MPM) Il were evalu-

ated for discrimination and calibration by means of a combination
of appropriate statistical measures recommended by an expert
steering committee. All models showed good discrimination (the
¢ index varied from 0.803 to 0.832) but imperfect calibration.
Recalibration of the models, which was performed by both the
Cox method and re-estimating coefficients, led to improved dis-
crimination and calibration, although all models still showed
significant departures from perfect calibration.

Conclusions: Risk prediction models developed in another
country require validation and recalibration before being used to
provide risk-adjusted outcomes within a new country setting.
Periodic reassessment is beneficial to ensure calibration is main-
tained. (Crit Care Med 2006; 34:1378-1388)
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ntensive care has developed over
the past 50 yrs with little rigorous
scientific evidence to guide those
involved in intensive care on which
patients benefit most, which treatments
and procedures are best, and the optimal
way to organize and deliver services. Ran-
domized controlled trials (RCTs) are con-
sidered the “gold standard” design for de-
tecting important effects of interventions
and for cost-benefit analyses; however,
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there are questions that preclude evalua-
tion by RCTs for ethical, logistic, or cost
reasons (1). Where randomization is im-
practical, the optimal research design is
prospective studies of outcome adjusting
for variations in risk factors between the
groups compared (2).

Current published risk prediction
models proposed for use in adult inten-
sive care are the Acute Physiology and
Chronic Health Evaluation (APACHE) II
(3, 4), APACHE III (5), Simplified Acute
Physiology Score (SAPS) II (6), and Mor-
tality Probability Models (MPM) II (7). All
are based on physiologic data obtained
after the patient has been admitted to
intensive care and employ logistic regres-
sion techniques to provide a probability
of hospital mortality.

The largest United Kingdom (UK)-
based studies assessing and comparing
these models to date have taken place in
22 critical care units in Scotland (8) and
17 critical care units in Southern En-
gland (9). Both studies showed that exist-
ing models were poorly calibrated, and
the investigators recommended recali-

bration. Other studies have been set in
single units or small numbers of units and
have also been limited by a lack of both
standardized data collection and standard-
ized application of the models (10). Evalu-
ation criteria are frequently based around
the area under the receiver operating char-
acteristic (ROC) curve (11) and the Hos-
mer-Lemeshow goodness-of-fit test (12),
which may not be sufficient to guide deci-
sions as to which model is optimal (13-15).

Consequently, there is a case for a
substantial, prospective study to evaluate
the established risk prediction models,
which we report here. The ultimate aim
was to identify a risk prediction model
that will form the basis of the Intensive
Care National Audit & Research Centre
(ICNARC) Case Mix Programme (CMP), a
national comparative audit of patient out-
come in UK critical care units (16). This
study sought to assess the proposed risk
prediction models applied to a standard-
ized database before and after recalibra-
tion, using robust measures of model
performance appropriate for use in a
large dataset.
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MATERIALS AND METHODS

Data

The CMP Database (CMPD) contains data
on the case mix, outcome, and activity for
consecutive admissions to participating adult
general critical care units. Data are collected
prospectively, are abstracted by trained data
collectors according to precise rules and defi-
nitions (17), and undergo extensive validation
for completeness, illogicalities, and inconsis-
tencies (18). The database contains sufficient
raw physiologic data to calculate the APACHE
II, APACHE III, SAPS II, and MPM 1II scores
and probabilities. Some units elected not to

Box 1. Measures of model performance

collect the data for APACHE III, SAPS II,
and/or MPM II. Scores and probabilities were
calculated centrally with use of standardized
algorithms based on the original publica-
tions and refined in consultation with the
developers of the original methods. Missing
physiologic data were assumed to take nor-
mal values.

Approval of the study by an institutional
review board was not required. The CMP has
received approval from the Patient Informa-
tion Advisory Group (PIAG) to hold patient-
identifiable information without consent (ap-
proval number PIAG 2-10(f)/2005).

Measures of Model Performance. An expert
statistical steering committee advised on the

best methods for assessing model performance
(see Acknowledgements). Both calibration and
discrimination were investigated for each
model. A poorly calibrated model will errone-
ously predict that mortality is higher or lower
than observed, and if the calibration differs
according to predicted risk, then attempts to
compare centers by ratios of observed to
expected deaths will be biased. Discrimina-
tion of a model describes its ability to pre-
dict events from nonevents. A model with
better discrimination will be a more power-
ful risk-adjustment tool. Model performance
was assessed with use of the ¢ index, Shapiro’s R,
Brier’s score, Hosmer-Lemeshow goodness-of-fit,
and Cox’s calibration regression (Box 1) (19-25).

¢ index

The ¢ index (19) provides an indication of how well the model can discriminate between patients who die and patients who survive:

® Perfect discrimination, ¢ = 1.
® Poor or no discrimination, ¢ = 0.5.

The ¢ index is the probability of concordance between outcomes and predictions. For binary outcomes (e.g., death), this is the probability that a
randomly chosen individual with the event (a nonsurvivor) will have a higher predicted probability than a randomly chosen individual without
the event (a survivor). This has been shown to be identical to the area under the receiver operating characteristics (ROC) curve (11, 20).

Shapiro’s R

Shapiro’s R, based on Shapiro’s Q (21), is an overall measure of the accuracy of the model, reflecting both calibration and discrimination:

® Perfect prediction, R = 1.

® Poor prediction, when a constant of 0.5 is assigned to every individual, R = 0.5.
R is the geometric mean of the probability assigned to the event that occurred.

Brier’s score

Brier’s score, B (22), was developed in relation to meteorological forecasts; it is an overall measure of the accuracy of predictions:

® Perfect prediction, B = 0.

® Poor prediction, when a constant of 0.5 is assigned to every individual, B = 0.25.
B is the mean square error between outcomes and predictions.

Spiegelhalter’s Z-statistic

Spiegelhalter’s Z-statistic, 2., is a normal test statistic derived from Brier’s score to test for perfect calibration (23). Values above 1.64 indicate
statistically significant departures from perfect calibration, with p < .05.

Accuracy of the average prediction

The accuracy of the average prediction, (Y — p)?, is the squared difference between the overall predicted mortality, 5, and the overall observed mortality, Y:

® Perfect accuracy, (Y — p)? =

Excess variance of predictions

The excess variance of predictions, V,,/V,,.,, represents the degree of unnecessary variation in the predictions:

® Perfect predictions, V,, /V,,,, =

The excess variance of predictions is calculated by decomposing the total variance of the predictions, V(p), as V,,;, + V..., where V, ., represents the
minimum variance possible for predictions that would be just as good as the actual predictions, and V. the excess variance of the predictions

above this minimum.
Covariance of outcome and prediction

The covariance of outcomes and predictions, Cov(Y, p), is a measure of how accurately the predictions correspond to the outcomes:

® Perfect predictions, Cov(Y, p) =

(Y), the variance of the observed outcome.

The accuracy of the average prediction, excess variance of predictions, and covariance of outcome and prediction, all derive from a decomposition of

Brier’s score (24) as:

B =V(Y) + (Y = §)* + Vypsy + Vexe = 2 Cov(Y, p).

Hosmer-Lemeshow goodness-of-fit

Hosmer and Lemeshow proposed two goodness-of-fit statistics for binary outcome data, Cg and ﬂg (12), representing chi-squared test statistics for
perfect calibration. Observations are grouped into g (typically 10) groups based on either quantiles of predicted probability (C‘g) or equally spaced
cut-points (f,), and the observed and expected outcomes are compared. The tests are highly sensitive to sample size and can be directly

compared only within the same sample.
Cox’s calibration regression

Cox’s calibration regression (25) provides a simple method to quantify the degree of miscalibration of a model. Cox suggested fitting the model

true log odds = a + B X predicted log odds
using logistic regression.

The value of « represents the calibration at a prediction of 0.5 when B # 1, or calibration more generally when B = 1. The value of B represents the
degree of variability in the predicted probabilities. If B > 1, the “probabilities show the right general pattern of variation but do not vary
enough.” If 0 < B < 1, the probabilities vary too much.

® Perfect prediction, « = 0 and B = 1 (i.e., true log odds = predicted log odds)
® Perfect calibration, « = 0 conditional on g = 1 (@ = 0| = 1)
® Correct degree of variation, B = 1 conditional on the observed value of « (3 = 1|a).
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Performance of Published Models. The risk
prediction models included in this evaluation
were the latest available published versions
of the APACHE, SAPS, and MPM models:

APACHE III, SAPS 1II, and MPM II. Widespread
adoption of APACHE III has been hindered by
its commercial nature, so APACHE 1I is still
widely used and was included in this evalua-

tion. The models are described in Box 2. Each
model has different exclusion criteria that de-
fine patients for whom predictions may be
made (26). We defined a common cohort of

Box 2. Risk prediction models

APACHE 1T

The Acute Physiology and Chronic Health Evaluation II (APACHE II) score (3) comprises an acute physiology score (APS) plus weights for age and a
history of severe chronic health conditions. The APS is made up of weightings for 12 physiological variables: temperature, mean arterial pressure,
heart rate, respiratory rate, oxygenation (Pao, or A-apo,), sodium, potassium, creatinine, hematocrit, and white blood cell count, and for admissions
neither sedated nor paralyzed for the entire first 24 hrs of intensive care, neurologic status assessed by the Glasgow Coma Score (GCS). The
physiological variables are weighted on the basis of the worst value (the measurement giving the highest weight) during the first 24 hours of
intensive care. A mortality prediction is calculated from the APACHE II score plus coefficients for post-emergency surgery and 53 diagnostic
categories. The APACHE II UK model (4) used the same underlying model, with no change to the APACHE II score, but estimated new coefficients.
The UK model has a total of 74 diagnostic categories, based on the classification by system and precipitating factor from the original United States
study. Admissions are excluded from the APACHE II model if they are aged <16 yrs, stay <8 hrs in the intensive care unit (ICU), or are admitted
with burns or following coronary artery bypass grafting (CABG).

APACHE IIT

The Acute Physiology, Age, and Chronic Health Evaluation III (APACHE III) model (5) is also based on an APS. The APACHE III APS is made up of
weightings for 17 physiological variables: heart rate, mean arterial pressure, temperature, respiratory rate, oxygenation (Pao, or A-apo,), hematocrit,
white blood cell count, creatinine, urine output, urea, sodium, albumin, bilirubin, and glucose, plus interactions between pH and Paco,, and
between the eye, motor, and verbal components of the GCS. Weightings were objectively derived and are based on the most extreme measurement
(furthest from a fixed value) during the first 24 hrs of intensive care. A mortality prediction is produced from the APS (modeled with restricted
cubic splines) plus coefficients for age, severe chronic conditions, source of admission to ICU, post-emergency surgery, length of stay in hospital
prior to ICU admission, and 94 diagnostic categories. Admissions are excluded from the APACHE III model if they are aged <16 yrs, stay <4 hrs in
the ICU, or are admitted with burns or following transplant surgery. A separate model exists for admissions following CABG, but the variables for
this model were not available in the Case Mix Programme Database (CMPD), so these admissions were also excluded.

SAPS 1T

The Simplified Acute Physiology Score II (SAPS II) (6) comprises weightings for age, heart rate, systolic blood pressure, temperature, oxygenation
(Pao,/F10, only if ventilated), urine output, urea, white blood cell count, potassium, sodium, bicarbonate, bilirubin, GCS (including presedation GCS
for sedated admissions), chronic diseases, and surgical status. Physiological weightings are based on the worst value during the first 24 hrs in the
ICU. The SAPS II is transformed directly to a mortality prediction without any additional variables in the model, with use of a shrinking power
transformation—log(SAPS II + 1)—to improve the fit. Admissions are excluded from the SAPS II model if they are aged <18 yrs; are admitted for
coronary care, with burns, or following cardiac surgery; have insufficient data for calculation of surgical status or
Pao0,/F10,; or are transferred to an ICU in another hospital.

MPM II

The Mortality Probability Models IT (MPM II) make two mortality predictions: one using data collected within 1 hr of admission to the unit (MPM II)
and an updated prediction at 24 hrs for patients staying 24 hrs or more (MPM IL,,) (7). To compare the performance of MPM II with the other risk
models, we have used the MPM II,, prediction for patients staying <24 hrs and the updated MPM II,, prediction otherwise. MPM II is not based on
a score but instead makes direct mortality predictions. The variables in MPM II, are age, cardiopulmonary resuscitation within 24 hrs prior to
admission, medical or unscheduled surgical admission, mechanical ventilation, coma or deep stupor not due to drug overdose, heart rate =150
beats min~?, systolic blood pressure =90 mm Hg, three chronic diagnoses, and five acute diagnoses. The variables in MPM II,, are age, medical or
unscheduled surgical admission, mechanical ventilation, coma or deep stupor, creatinine value >2 mg dL ™!, confirmed infection, Pao, <60 mm Hg,
prothrombin time >3 secs above reference, urine output <150 mL in 8 hrs, continuous intravenous vasoactive drug therapy for at least 1 hr, two
chronic diagnoses, and one acute diagnosis. Admissions are excluded from MPM II if they are aged <18 yrs; are admitted for coronary care, with
burns, or following cardiac surgery; or are transferred to an ICU in another hospital. Additionally, admissions staying <24 hrs in the unit are
excluded from MPM II,,.

Table 1. Exclusion criteria for the published models

Exclusion Criterion APACHE II APACHE III SAPS 11 MPM II Admissions (%) Hospital Mortality, %
Age <18 yrs X X 6,600 (2.8) 8.8
Age <16 yrs X X 4,676 (2.0) 8.0
ICU stay <8 hrs X 14,997 (6.5) 43.9
ICU stay <4 hrs X 7,545 (3.3) 48.3
Cardiac surgery X X 2,650 (1.1) 10.5
CABG X X 1,905 (0.8) 7.4
Burns X X X X 338 (0.1) 33.0
Transplant surgery X 43 (0.0) 20.9
Missing surgical status X 602 (0.3) 32.3
Missing ventilation status or Pao,/Fio, X 1,439 (0.6) 34.3
Transfer to an ICU in another hospital X X 8,104 (3.5) 0.0
Readmission within the same hospital stay X X X X 8,515 (3.7) 38.9
Any of the above 36,496 (15.7) 29.5

APACHE, Acute Physiology and Chronic Health Evaluation; SAPS, Simplified Acute Physiology Score; MPM, Mortality Probability Models; ICU, intensive
care unit; CABG, coronary artery bypass graft.
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Table 2. Comparison of the Case Mix Programme Database (CMPD) to the development databases for the published models

Database CMPD APACHE I1 APACHE II UK APACHE III SAPS 11 MPM II
Location UK USA UK USA Europe, North America Europe, North America
Time period 1995-2003 1982 1988-1990 1988-1989 1991-1992 1989-1992
No. of admissions 231,930 5815 10,806 17,440 13,152 19,124
No. of critical care units 163 19 26 42 137 143
Mean age, yrs 61 55 56 59 57 57
Sex, % female 42 N/R 40 45 40 N/R
Surgical status, %
Elective surgery 25 N/R 31 33 31 N/R
Emergency surgery 20 N/R 26 9 20 N/R
Nonsurgical 55 N/R 43 58 48 N/R
Mean APACHE II score 13 11 14 N/R N/R N/R
Mean APACHE II score 17 N/R 18 N/R N/R N/R
Mean APACHE III score 64 N/R N/R 50 N/R N/R
Mean SAPS 11 38 N/R N/R N/R N/R N/R
Hospital mortality, % 30.7 19.7 27.1 17.3 21.8 20.8

APACHE, Acute Physiology and Chronic Health Evaluation; UK, United Kingdom; SAPS, Simplified Acute Physiology Score; MPM, Mortality Probability
Models; USA, United States; N/R, not reported in original publication.

Table 3. Performance of published models in common cohort (n = 141,106; observed mortality = 30.7%)

Model Ideal Value APACHE 11 APACHE II UK APACHE 111 SAPS 11 MPM 11
Average predicted mortality 0.307 0.256 0.267 0.225 0.279 0.276
probability, p
¢ index (95% CI) 1 0.804 (0.802-0.806) 0.803 (0.801-0.805) 0.832 (0.830-0.834) 0.822 (0.820-0.824) 0.815 (0.813-0.817)
Shapiro’s R (95% CI) 1 0.611 (0.609-0.613) 0.611 (0.609-0.613) 0.614 (0.611-0.616) 0.623 (0.620-0.625) 0.620 (0.618-0.622)
Brier’s score and derivatives
Brier’s score, B (95% CI) 0 0.162 (0.161-0.164) 0.162 (0.161-0.163) 0.157 (0.156-0.159) 0.155 (0.154-0.156) 0.157 (0.156-0.158)
Spiegelhalter’s Z-statistic, 2% 0 57.5 46.0 133.3 747 66.1
Accuracy of the average 0 0.0026 0.0016 0.0068 0.0008 0.0010
prediction, (Y — p)?
Excess variance of predictions, 0 3.02 3.06 2.42 2.59 2.76
Vexc/Vmin
Covariance of outcome and 0.213 0.052 0.052 0.062 0.065 0.058
prediction, Cov(Y, p)
Hosmer-Lemeshow goodness-of-fit
statistics
20 equal-sized groups, Czob 0 2947 2321 10883 2664 1598
20 equally spaced cut-points, 2957 1992 11256 2694 1585
Hy
Cox’s calibration regression
Intercept a (95% CI) 0 0.28 (0.26-0.30) 0.21 (0.20-0.23) 0.44 (0.43-0.46) 0.05 (0.04-0.07) 0.16 (0.14-0.17)
Slope B (95% CI) 1 0.93 (0.92-0.94) 0.94 (0.93-0.95) 0.83 (0.82-0.84) 0.81 (0.80-0.82) 0.93 (0.92-0.94)
Test hypothesis: a = 0, B = 1¢ 0 2664 1628 8820 2169 1135
Test hypothesis: « = 0 | g = 1¢ 0 2537 1539 TT47 820 972
Test hypothesis: B = 1| af 0 126 88 1073 1349 164

APACHE, Acute Physiology and Chronic Health Evaluation; UK, United Kingdom; SAPS, Simplified Acute Physiology Score; MPM, Mortality Probability

Models; CI, confidence interval.

Z-statistic (one-tailed): p < .05 for values >1.64; p < .01 for values >2.33; p < .001 for values >3.09; ®chi-square statistic on 20 degrees of
freedom (df): p < .05 for values >31.4; p < .01 for values >37.6; p < .001 for values >45.3; “chi-square statistic on 2 df: p < .05 for values >5.99;
p < .01 for values >9.21; p < .001 for values >13.8; “chi-square statistic on 1 df: p < .05 for values >3.84; p < .01 for values >6.63; p < .001

for values >10.8.

admissions who did not meet the exclusion
criteria for any of the models. This common
cohort was used in the primary comparisons
between models. Each model was also assessed
in its own cohort of all patients eligible for
that particular model.

Changes in performance over time were as-
sessed by evaluating the measures of model per-
formance in each year from 1996 to 2002. Mod-
els were additionally assessed in subgroups

Crit Care Med 2006 Vol. 34, No. 5

defined by age, sex, surgical status (elective,
emergency, or nonsurgical), and the five most
common primary reasons for admission to the
critical care unit, assessed by the ICNARC Cod-
ing Method (27) (pneumonia, bacterial, or no
organism isolated; aortic or iliac dissection or
aneurysm; large bowel tumor; septic shock; and
esophageal or gastroesophageal tumor).
Recalibration of Published Models. Two of
the major uses of risk prediction models in

critical care are to enable comparisons be-
tween units and to assess performance
within units over time. The models were
recalibrated and their performance assessed
for stability, both across critical care units
and over time.

The models were recalibrated in two ways.
First, models were recalibrated by a simple “tilt-
ing” and “shifting” of the regression line relating
observed log odds with predicted log odds, cor-
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responding to using the model from Cox’s cali-
bration regression (25) as the recalibrated mo-
del. This has been recommended as the best
approach for recalibrating logistic regression
models when only a relatively small sample is
available (28). Second, the model coefficients
were re-estimated. For the APACHE II and
SAPS II models, this re-estimation was per-
formed at two levels. For APACHE 1II, coeffi-
cients were re-estimated first for the APACHE
II score, diagnostic category for the primary
reason for admission, and an indicator for
emergency surgery, retaining the APACHE II
score intact. This corresponds to the method
used to establish the APACHE II UK model (4).
Next, the APACHE II score was replaced by its
components: Acute Physiology Score (APS),
age, and medical history. Weightings for vari-
ables within the APS were not re-estimated.
For SAPS II, coefficients were re-estimated,
first retaining the complete SAPS II score and
then for the individual components of the
SAPS II score. For APACHE III, the total
APACHE III score is not included in the risk
prediction model; the individual components
of APS, age, and medical history are. Weight-
ings for variables within the APS were not
re-estimated. The MPM II model consists of a
probability only.

Recalibration was carried out in the com-
mon cohort. The database was split into de-
velopment and validation samples in two ways.
First, critical care units were randomly allo-
cated to development or validation in a 2:1
ratio. To avoid chance differences in the char-
acteristics of units allocated to the develop-
ment and validation samples, the random
splitting was repeated 200 times and the aver-
age calibration and discrimination statistics
were obtained (median for skewed statistics;
mean, otherwise). The variation in these sta-
tistics between samples was examined for ev-
idence of models being more or less stable
over repeated samples (29). Second, all admis-
sions in 1999 or before were allocated to the
development sample, with admissions from
2000 onward serving as the validation sample,
split into three equal groups over time. This
allowed us to measure any deterioration in the
fit of models over time.

Final coefficients for recalibrated models
were estimated on the entire database.

RESULTS

Data

Validated data on 231,930 admissions
to 163 critical care units between Decem-
ber 1995 and August 2003 were available
for analysis. Of these, 49,042 admissions
(21.1%) were from periods during which
the variables for APACHE III, SAPS II,
and/or MPM II were not collected in 44
units. Applying the exclusion criteria for
all four models simultaneously excluded
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Figure 1. Calibration plots of published models in common cohort (APACHE, Acute Physiology and
Chronic Health Evaluation; SAPS, Simplified Acute Physiology Score; MPM, Mortality Probability
Models). Observed mortality vs. predicted mortality from model in 20 equal-sized groups, based on
quantiles of predicted mortality. Diagonal line indicates perfect calibration. Axes drawn on a log odds

scale.

36,496 admissions (15.7%) (Table 1), and
further excluding 1,252 admissions (0.5%)
with missing hospital outcome and 4,034
(1.7%) for whom an APACHE II or III
probability could not be calculated
(mostly because of missing or incomplete
primary reason for admission) resulted in
a common cohort of 141,106 admissions
(60.8%) to 157 critical care units. Units
contributed a median of 675 admissions
(90% reference range, 142 to 2,365) to

the common cohort. Because of units
joining and leaving the CMP during the
course of the study, units contributed a
median of 997 days (90% reference range,
180 to 2,311) of data to the common
cohort. This corresponds to a median
rate of admissions per unit per year of
278 (90% reference range, 140 to 546).
Table 2 compares the CMPD to the de-
velopment databases for the published
models.
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Table 4. Model performance in 200 repeated validation samples (random 1/3 of units) of models recalibrated by re-estimating coefficients in the

corresponding development sample (mean sample size, n = 47,648)

Model Ideal Value APACHE 11 APACHE III SAPS 11 MPM II p Value?
Average predicted mortality 0.308 0.307 (0.008) 0.308 (0.009) 0.307 (0.008) 0.308 (0.008) .22
probability, p
¢ Index (area under the ROC curve) 1 0.832 (0.004) 0.845 (0.004) 0.840 (0.004) 0.824 (0.003) <.001
Shapiro’s R 1 0.633 (0.005) 0.644 (0.005) 0.640 (0.005) 0.629 (0.004) <.001
Brier’s score and derivatives
Brier’s score, B 0 0.150 (0.003) 0.143 (0.003) 0.145 (0.003) 0.152 (0.003) <.001
Spiegelhalter’s Z-statistic, 2.2, 0 1.89 1.59 0.47 1.23
median
Accuracy of the average 0 1L1X107%(1.6x107% 13Xx107%22%x107% 10xX10*(1.4x107% 7.7x107°(1.0 X 107% .001
prediction, (Y — p)?
Excess variance of predictions, 0 2.36 (0.07) 2.05 (0.06) 2.12 (0.06) 2.49 (0.07) <.001
Vexc/Vmin
Covariance of outcome & 0.213 0.064 (0.002) 0.071 (0.002) 0.069 (0.001) 0.062 (0.001) <.001
prediction, Cov(Y, p)
Hosmer-Lemeshow goodness-of-fit
statistics
20 equal-sized groups, C‘ZOC, 0 140.2 80.0 52.0 92.7
median
20 equally spaced cut-points, 0 146.9 85.2 46.7 91.3
H.,,°, median
Cox’s calibration regression
Intercept « 0 0.00 (0.08) 0.00 (0.07) 0.00 (0.07) 0.00 (0.06) 14
Slope B 1 0.99 (0.03) 0.99 (0.03) 1.00 (0.02) 1.00 (0.02) .015
Test hypothesis: a = 0, 0 23.7 23.5 20.0 18.6
B = 19, median
Test hypothesis: 0 19.1 159 13.8 135
a = 0B = 1% median
Test hypothesis: 0 3.10 3.24 2.15 2.00

B = 1|« median

APACHE, Acute Physiology and Chronic Health Evaluation; SAPS, Simplified Acute Physiology Score; MPM, Mortality Probability Models; ROC, receiver

operating characteristic.

P value for a difference between the models (repeated-measures analysis of variance); °Z-statistic (one-tailed): p < .05 for values >1.64; p <.01 for
values >2.33; p < .001 for values >3.09; “chi-square statistic on 20 degrees of freedom (df): p < .05 for values >31.4; p < .01 for values >37.6; p < .001
for values >45.3; “chi-squared statistic on 2 dfs p < .05 for values >5.99; p < .01 for values >9.21; p < .001 for values >13.8; ¢chi-square statistic on 1
df: p < .05 for values >3.84; p < .01 for values >6.63; p < .001 for values >10.8. Values are mean (sD), unless otherwise stated.

Performance of Published Models. On
average, all models estimated lower risk
of hospital death than observed in both
the common cohort (Table 3) and their
own cohorts. Inspection of calibration
plots (Fig. 1) confirms there is a tendency
for more deaths to occur than predicted
for lower-risk patients.

All models displayed moderate dis-
crimination, with a slight advantage by
APACHE III and SAPS II. The variation in
the ¢ index across models was statistically
significant (p < .001). Shapiro’s R, re-
flecting overall accuracy, was around 0.6
for all models, far from the ideal value of
1.0. The APACHE II models produced
marginally the most variable predictions
(Vo Vin = 3.02 and 3.06).

All measures of goodness-of-fit (z,,
Cao, Ha, X2 test statistic for « = 0, p =
1) confirmed highly significant depar-
tures of observed deaths from predictions
of risk, but these measures were smallest
for MPM II in the common cohort and for
APACHE II UK in its own cohort.

Crit Care Med 2006 Vol. 34, No. 5

APACHE III had by far the worst calibra-
tion of the models considered. All models
also failed tests of incorrect calibration
given appropriate refinement (o« = 0| = 1)
and refinement given correct calibration
(B = o).

There was a small reduction in overall
mortality ratio from all models except
MPM II over the period 1996 to 2002
(APACHE 1I, 1.27 to 1.17; APACHE II UK,
1.25 to 1.13; APACHE III, 1.57 to 1.31;
SAPS 1II, 1.17 to 1.09; MPM 1I, 1.14 to
1.13); however, there was little correspond-
ing change in discrimination or accuracy.
Model performance varied markedly by pa-
tient age, with better discrimination and
calibration for younger patients than older
patients (Brier’s score for age <45 yrs, 0.09
to 0.10 across models; for age 85+ yrs, 0.20
to 0.23). This suggests the relationship be-
tween age and risk is stronger in the CMPD
than in the databases used to develop these
models.

There was no difference between men
and women in model performance but

considerable variation in both discrimi-
nation and accuracy by surgical status
and primary reason for admission. Risk
was underestimated for nonsurgical ad-
missions, particularly by APACHE II
(mortality ratio, 1.29) and APACHE III
(mortality ratio, 1.38). APACHE III also
underestimated the risk of death follow-
ing emergency surgery (mortality ratio,
1.50). Discrimination tended to be worse
for surgical admissions than for nonsur-
gical admissions (c index for surgical ad-
missions, 0.73 to 0.79; for nonsurgical
admissions, 0.79 to 0.82).

Recalibration of Published Models.
Ninety-seven of the 157 critical care units
in the common cohort were randomly
assigned to development sample I, with
the remaining 60 units assigned to vali-
dation sample I (repeated 200 times). De-
velopment sample II included all admis-
sions from December 1995 to December
1999, with validation samples II-1, II-2,
and II-3 consisting of admissions from
January 2000 to January 2001, February
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Figure 2. Calibration plots in validation sample I of models recalibrated by re-estimating coefficients
in development sample 1. Observed mortality vs. predicted mortality from model in 20 equal-sized
groups, based on quantiles of predicted mortality. Diagonal line indicates perfect calibration. Axes
drawn on a log odds scale. APACHE, Acute Physiology and Chronic Health Evaluation; SAPS,
Simplified Acute Physiology Score; MPM, Mortality Probability Models.

2001 to January 2002, and February 2002
to August 2003, respectively.

Calibration of all models was markedly
improved by simple Cox recalibration. Al-
though goodness-of-fit statistics indicated
statistically significant (if reduced) lack of
fit, qualitative predictions from the recali-
brated models were remarkably good (indi-
cated by values of a and 8 from Cox’s cal-
ibration regression close to 0 and 1,
respectively, and by inspection of calibra-
tion plots). Under repeated random selec-
tion of the development and validation
samples, APACHE II demonstrated superior
calibration, with the lowest C,, statistic in
73% of validation samples. However, MPM
IT tended to make the least-biased predic-
tions in the validation samples: in 50% of
samples, the test statistic fora« = 0, 3 = 1
was lower than that of other models.

Table 4 and Figure 2 present the re-
sults of the most detailed level of recali-
bration by re-estimation of model coeffi-
cients. Fit of the APACHE II model
seemed to benefit little from further reca-
libration beyond the Cox recalibration,
whereas the re-estimated APACHE III was
superior and SAPS II had progressively
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better calibration when coefficients were
re-estimated and when the score was re-
estimated. Re-estimating MPM II reduced
the Hosmer-Lemeshow statistics but
moved o further from its ideal value of
zero. Discrimination improved for all
models following re-estimation of coeffi-
cients and further improved for APACHE
IT and SAPS II by re-estimation of the
components of the scores. However, im-
provements were modest. Under repeated
random selection of the development and
validation samples, SAPS II had the best
calibration, with the lowest Cs, statistic
in 62% of validation samples. APACHE III
consistently had the best discrimination,
with the highest ¢ index in 199 of the 200
samples.

In validation samples II-1, II-2, and
I1-3, discrimination slightly improved
over time for all models fitted in develop-
ment sample II (Table 5). This may reflect
the increased frequency over time of non-
surgical admissions, for whom better dis-
crimination was noted. There was some
deterioration in calibration over the 3.5
yrs covering validation samples II-1, II-2,
and II-3 after model development in de-

velopment sample II (Table 5), suggest-
ing recalibration of models every 2 to 3
yrs would be beneficial.

DISCUSSION

This study showed that all published
risk prediction models required recalibra-
tion for use with current UK data. All the
models were miscalibrated: not only
those fitted entirely in other countries
(APACHE II, APACHE III) or in multina-
tional cohorts including UK centers
(SAPS II, MPM II), but also the previous
recalibration of APACHE II to earlier UK
data. Recalibrated models showed greatly
improved calibration and slight improve-
ments to discrimination when assessed in
validation samples independent from the
development samples used to fit the mod-
els. There was little difference in perfor-
mance between the recalibrated models;
no model consistently outperformed the
others across the different methods of
assessing model performance. This sug-
gests that the choice of risk prediction
model in a particular situation could rea-
sonably be based on pragmatic consider-
ations such as a requirement for compa-
rability with other studies or over time,
consistency with what is already collected
locally, or the time and cost burden as-
sociated with data collection. Further in-
vestigation of model performance within
a specific patient group or setting may
enable a more evidence-based choice of
model for that particular situation.

The relative importance of different
aspects of model performance may also
depend on the use for which the model is
being employed. In many situations, good
discrimination may be the most desirable
property; however, if comparisons are to
be made between different groups of pa-
tients, good calibration is also essential.

The study used a panel of expert statis-
ticians to review current statistical meth-
odology for the assessment of risk predic-
tion models. The panel recommended that
current statistical methods must be supple-
mented with the more robust and appro-
priate methods used in this study, in par-
ticular, the use of the Cox’s calibration
regression in addition to the Hosmer-
Lemeshow goodness-of-fit test. The addi-
tional methods help in interpreting the
fit of the models by providing quantita-
tive measures of the degree of miscalibra-
tion of the models (o and B from Cox’s
calibration regression, Shapiro’s R, Brier’s
score). They also allow a more detailed
analysis of the nature of the miscalibra-
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Table 5. Model performance over time in validation samples II-1, II-2, and II-3 of models recalibrated
in development sample II by re-estimation of coefficients

Validation Period 1

Validation Period 2 Validation Period 3

Variable Jan 2000—Jan 2001 Feb 2001-Jan 2002 Feb 2002-Aug 2003
Number of 23,772 25,063 26,844
admissions, n
Observed mortality, YV 0.316 0.311 0.297
APACHE 1I
Predicted mortality, p 0.326 0.328 0.314
¢ Index 0.829 0.834 0.837
Shapiro’s R 0.629 0.633 0.641
Brier’s score, B 0.152 0.150 0.145
Hosmer-Lemeshow 61.1 111.4 124.7
C2o
Hosmer-Lemeshow 64.6 119.8 123.6
Hy
Cox’s calibration: —0.07, 0.99 —0.11, 1.00 —0.10, 1.03
o B
xifora=0p=1 15.7 44.1 60.6
APACHE III
Predicted mortality, p 0.335 0.341 0.324
¢ Index 0.840 0.849 0.852
Shapiro’s R 0.637 0.644 0.651
Brier’s score, B 0.147 0.143 0.139
Hosmer-Lemeshow 105.9 183.8 172.1
620
Hosmer-Lemeshow 102.2 189.0 169.3
HZO
Cox’s calibration: —0.14, 0.96 —0.21, 1.00 —0.18, 1.02
o B
xifora=0,B=1 64.9 152.1 144.3
SAPS 11
Predicted mortality, p 0.324 0.326 0.309
¢ Index 0.833 0.842 0.845
Shapiro’s R 0.633 0.641 0.648
Brier’s score, B 0.149 0.145 0.141
Hosmer-Lemeshow 40.5 60.2 48.8
C2o
Hosmer-Lemeshow 38.8 62.0 58.8
Hy
Cox’s calibration: —0.06, 0.97 —0.10, 1.01 —0.08, 1.02
o B
xifora=0p=1 12.7 39.3 32.3
MPM 11
Predicted mortality, p 0.321 0.314 0.300
¢ Index 0.823 0.826 0.824
Shapiro’s R 0.626 0.631 0.633
Brier’s score, B 0.154 0.151 0.150
Hosmer-Lemeshow 28.2 46.1 57.6
CZO
Hosmer-Lemeshow 32.1 51.2 55.2
HZO
Cox’s calibration: —0.03, 1.00 —0.00, 1.03 0.00, 1.03
o B
xifora=0,B=1 3.86 498 5.12

APACHE, Acute Physiology and Chronic Health Evaluation; SAPS, Simplified Acute Physiology

Score; MPM, Mortality Probability Models.

tion (tests of « = 0|3 = 1 and B = 1|,
decomposition of Brier’s score).

This study used data from 231,930 ad-
missions to 163 critical care units within
a single healthcare system, making it the
largest and most powerful dataset ever
used to assess these models. The finding
that models require recalibration for use
in the UK is consistent with the two

Crit Care Med 2006 Vol. 34, No. 5

smaller, regional multicenter UK-based
studies (8, 9). However, only one of these
databases has been used to recalibrate a
risk prediction model (30), and the reca-
libration was performed only for SAPS 1II.
In addition, the current study uses data
from a representative sample of critical
care units in three countries of the UK,
improving the scope for generalizing the

results to the entire UK vs. results from
smaller geographical regions.

A number of large (=1,000 admissions)
multicenter (=5 critical care units) studies
have validated one or more of these models
in independent populations (Table 6). In-
vestigators in the EURICUS-I study, involv-
ing 89 critical care units in 13 European
areas, reported poor calibration for both
SAPS II and MPM II,, (31). An analysis in
Portugal (32) showed that SAPS II outper-
formed APACHE II, but both models had
poor calibration. Further validation studies
of SAPS II have been carried out in Italy
(33, 34) and Austria (35), revealing good
discrimination but poor calibration. SAPS
IT was recalibrated in all three datasets,
reporting acceptable calibration.

The original authors of the APACHE
III model performed a validation in an
independent sample of 37,668 admissions
to 285 critical care units in the United
States (36). Discrimination in this sample
was excellent (¢ index, 0.89). They con-
cluded that “APACHE III accurately pre-
dicted aggregate hospital mortality,” but
there were highly significant depar-
tures from perfect calibration (Hosmer-
Lemeshow test, p < .0001). Good dis-
crimination of APACHE III was also
found in Brazil (37) and Spain (38), but
the model showed a significant lack of
calibration in both populations. APACHE
I1I was recalibrated in the same cohort of
Spanish patients, leading to improved
discrimination and calibration (39).

These international studies consis-
tently show that the published risk pre-
diction models provide good discrimina-
tion when applied in new populations,
but that they should not be used without
appropriate recalibration. Interpretation
of these studies is limited by the overre-
liance on the Hosmer-Lemeshow statistic
for measuring calibration. Differing re-
ports of “poor,” “acceptable,” or “good”
calibration of the models may be the re-
sult of differences in sample size rather
than true differences in performance.
This reinforces the need to use measures
that provide a quantitative indication of
miscalibration.

There is considerable debate about
how to interpret the lack of calibration
when a scoring system derived from pa-
tients in one country or healthcare sys-
tem in a given time period is applied to
patients admitted for care in other set-
tings or in other time periods. For exam-
ple, the current study could be inter-
preted as showing that the odds of
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Table 6. Comparison of the Case Mix Programme Database (CMPD) with other independent multicenter validation studies

Variable CMPD Beck (9,29) Livinston (8) Moreno (30) Moreno (31) Apolone (32)

Location UK Southern England Scotland Europe Portugal Italy
Time period 1995-2003 1993-1996 1995-1996 1994-1995 1994-1995 1994
No. of admissions 231,930 17,210 13,291 16,060 1094 2202
No. of critical care units 163 17 22 89 19 99
Mean age, yrs 61 61 59 59 55 60
Sex, % female 42 41 45 N/R 32 38
Surgical status, %

Elective surgery 25 25 21 24 12 16

Emergency surgery 20 16 27 20 20 12

Nonsurgical 55 59 51 56 68 71
Hospital mortality, % 30.7 26.5 29.4 20.0 32.0 34.1
APACHE 1I

Mean (Sp) score 17 (7) 15 (7) N/R N/R 20 (10) N/R

Predicted hospital mortality, % 25.6 22.4 30.0 N/R 33.5 N/R

¢ index (recalibrated) 0.804 (0.832) 0.835 0.805 N/R 0.787 N/R
APACHE II UK

Predicted hospital mortality, % 26.7 N/R 35.9 N/R N/R N/R

¢ index 0.803 N/R 0.809 N/R N/R N/R
APACHE III

Mean (SD) score 64 (29) 57 (25) N/R N/R N/R N/R

Predicted hospital mortality, % 22.5 21.5 24.0 N/R N/R N/R

¢ index (recalibrated) 0.832 (0.845) 0.867 0.845 N/R N/R N/R
SAPS 11

Mean (Sp) score 38 (18) 34 (17) N/R 34 41 (21) 39

Predicted hospital mortality, % 27.9 22.7 30.4 22.3 32.6 29.9

¢ index (recalibrated) 0.822 (0.840) 0.852 (0.845) 0.843 0.822 0.817 0.80
MPM II

Predicted hospital mortality, % 27.6 N/R 29.3/30.1¢ 23.6° N/R N/R

¢ index (recalibrated) 0.815 (0.824) N/R 0.741/0.791¢ 0.785° N/R N/R

survival for a patient admitted for inten-
sive care have worsened in comparison
with the United States in 1985, when the
APACHE 1I system was developed. Other
than being of limited use for guiding cur-
rent and future improvements in inten-
sive care, this is also a conclusion that
should be approached with caution. For a
tool to calibrate well in a new setting, all
factors that influence outcome (including
patient factors and quality of care) must
either be included in the model or have
the same distribution in the new setting
as in the sample used to develop the
model.

Differences between countries and
over time make this second condition un-
likely. Critical care units vary consider-
ably in their provision, structure, organi-
zation and staffing across countries.
Furthermore, differences in critical care
admission policies will change not only
the populations that are included in the
models but also the relationships be-
tween prognostic variables and outcome.
For this reason, it is likely that any model
seeking to compare risk-adjusted out-
comes for critical care between different
health care systems would need to be
derived in a larger, more objectively de-
fined population than only those patients
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admitted to a critical care unit. Because
of differences in management after dis-
charge from critical care, it would also be
advisable for such a model to evaluate
mortality at a fixed time point (e.g., 90
days) rather than at discharge from hos-
pital.

We have shown that significant gains
in discrimination and calibration can be
made by recalibrating these models for
the population in which they are to be
used. This does not, however, tell us
whether any of the models represent the
best possible model for making risk-
adjusted outcome comparisons in this
population. Further work should investi-
gate whether additional improvements
can be made by selecting the best features
from the different models. Some authors
have proposed modifications to the pub-
lished models, such as the use of prese-
dation Glasgow Coma Score (40), and any
new model should investigate these mod-
ifications. The exclusion criteria have
been shown to exclude large numbers of
admissions, and they are applied incon-
sistently (26); a new model should seek to
minimize exclusion criteria.

Because it is impossible to account for
all variability among patients with these
models, there is likely to be some limit

beyond which the models cannot be im-
proved further; perfect calibration and
discrimination will never be achievable.

CONCLUSIONS

This study confirms that adult inten-
sive care risk prediction models primarily
developed in other countries require
validation and recalibration before being
used to provide risk-adjusted outcomes
for units within a new country setting. It
is beneficial to assess the performance of
these tools periodically in order to ensure
calibration is maintained. We recom-
mend that this periodic assessment be
carried out with use of the methodology
presented here, in particular the use of
Cox’s calibration regression to provide a
quantitative measure of model calibra-
tion. We would also recommend that in-
vestigators use this methodology when
undertaking evaluations of risk predic-
tion models in other countries, by other
healthcare providers, or in other settings
(41, 42).

ACKNOWLEDGMENTS

The authors acknowledge the Steer-
ing Committee: Doug Altman, James

Crit Care Med 2006 Vol. 34, No. 5

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



Table 6.—(Continued)

Sicignano (33)

Metnitz (34)

Zimmerman (35)

Bastos (36)

Vazquez Mata (37)/
Rivera-Fernandez (38)

Italy Austria
1995-1996 1997
9185 1733
24 9
62 59
N/R N/R
32 39
25 22
44 40
31.1 19.5
N/R N/R
N/R N/R
N/R N/R
N/R N/R
N/R N/R
N/R N/R
N/R N/R
N/R N/R
36 N/R
30.7 23.0
0.87 (0.87) 0.81
N/R N/R
N/R N/R

USA
1993-1996
37,668

22

72
12.4

N/R
N/R
N/R

N/R
N/R

45 (27)
12.3
0.89

N/R
N/R
N/R

N/R
N/R

Brazil Spain
1990-1991 1992-1995

1856 12,174
10 86
52 58
38 32
N/R 14
N/R 10
N/R 76

34.3 21.2
N/R N/R
N/R N/R
0.79 N/R
N/R N/R
N/R N/R
55 54

20.6 19.8

0.82 0.808

N/R N/R
N/R N/R
N/R N/R
N/R N/R
N/R N/R

N/R, not reported; APACHE, Acute Physiology and Chronic Health Evaluation; SAPS, Simplified Acute Physiology Score; MPM, Mortality Probability
Models.

“MPM II/MPM Il,,; *MPM II,.
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