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Simple triage scoring system predicting death and the need for
critical care resources for use during epidemics
Daniel Talmor, MD, MPH; Alan E. Jones, MD; Lewis Rubinson, MD, PhD; Michael D. Howell, MD;
Nathan I Shapiro, MD, MPH

Although H5N1 may well cause
the next human influenza pan-
demic, its attack rate, virulence,
and susceptibility to antivirals or

vaccines remain uncertain. However, there
is less uncertainty that—if the next influ-

enza pandemic is severe—the number of
critically ill victims will overwhelm most
communities’ traditional inpatient and
critical care capacity. To assist hospitals in
preparing and responding to such events
requiring large surges in critical care ca-

pacity, the Working Group on Emergency
Mass Critical Care (1) promulgated a set of
recommendations. One of the major rec-
ommendations was for healthcare organi-
zations to have a standardized method for
allocating scarce resources (e.g., mechani-
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Objectives: In the event of pandemic influenza, the number of
critically ill victims will likely overwhelm critical care capacity. To
date, no standardized method for allocating scarce resources
when the number of patients in need far exceeds capacity exists.
We sought to derive and validate such a triage scheme.

Design: Retrospective analysis of prospectively collected data.
Setting: Emergency departments of two urban tertiary care

hospitals.
Patients: Three separate cohorts of emergency department pa-

tients with suspected infection, comprising a total of 5,133 patients.
Interventions: None.
Measurements: A triage decision rule for use in an epidemic was

developed using only those vital signs and patient characteristics that
were readily available at initial presentation to the emergency depart-
ment. The triage schema was derived from a cohort at center 1, vali-
dated on a second cohort from center 1, and then validated on a third
cohort of patients from center 2. The primary outcome for the analysis
was in-hospital mortality. Secondary outcomes were intensive care unit
admission and use of mechanical ventilation.

Main Results: Multiple logistic regression demonstrated the fol-
lowing as independent predictors of death: a) age of >65 yrs, b)
altered mental status, c) respiratory rate of >30 breaths/min, d) low
oxygen saturation, and e) shock index of >1 (heart rate > blood
pressure). This model had an area under the receiver operating
characteristic curve of 0.80 in the derivation set and 0.74 and 0.76 in
the validation sets. When converted to a simple rule assigning 1 point
per covariate, the discrimination of the model remained essentially
unchanged. The model was equally effective at predicting need for
intensive care unit admission and mechanical ventilation.

Conclusions: If, as expected, patient demand far exceeds the
capability to provide critical care services in an epidemic, a fair
and just system to allocate limited resources will be essential.
The triage rule we have developed can serve as an initial guide for
such a process. (Crit Care Med 2007; 35:1251–1256)

KEY WORDS: triage; epidemic; avian influenza; mechanical ven-
tilation; intensive care
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cal ventilators) when the number of pa-
tients in need far exceeds available capacity.
The Working Group advocated for distribu-
tion of resources to be guided by patients’
likelihood to benefit. Subsequently, Rubin-
son and O’Toole (2) proposed development
of a simple, physiologic-based triage algo-
rithm. To date, no such validated algorithm
exists.

The concept of triage during medical
catastrophes is not new (3). Multiple tri-
age algorithms exist for mass-casualty
traumatic incidents (4). Unfortunately,
these algorithms may have little, if any,
utility during pandemic influenza be-
cause they were not designed to catego-
rize the likelihood of survival for patients
with medical critical illness. In addition,
an evidence-based triage algorithm de-
rived from previous pandemic influenza
outbreaks is unlikely to be developed.
Clinical data from severe pandemics are
limited or missing, and the provision of
critical care services has markedly
changed during the past decades, so out-
comes may be very different now. Indeed,
despite all of the pandemic influenza pre-
paredness activities, there is still insuffi-
cient guidance for clinicians to accurately
and fairly prioritize patients in the hope
of distributing scarce resources to opti-
mize survival for the largest number of
patients during a serious pandemic.

Several severity of illness scores have
been developed to predict intensive care
unit (ICU) or hospital mortality for med-
ical patients in ICUs (5–7). These scoring
systems are generally not used for every-
day ICU triage because they better stratify
the risk of death for populations rather
than individuals. They also have only
moderate discriminating ability at ICU
admission and even within the first day of
ICU care (8, 9). Furthermore, many ICU
scoring systems do not perform ade-
quately using emergency department
(ED) data, especially when a number of
required laboratory measurements are
not immediately available (10)—situa-
tions that will be even more relevant dur-
ing a pandemic. Clinicians who fre-
quently care for medical, critically ill
patients may perform better than scoring
systems at predicting mortality from data
gleaned within the first 24 hrs of ICU
admission, yet their accuracy is still lim-
ited (8). Hence, there remains an urgent
need for a novel method to triage medi-
cal, critically ill patients during a pan-
demic.

Hick and O’Laughlin (11) recently
published a tiered approach to allocation

of mechanical ventilators during a medi-
cal catastrophe. These strategies, al-
though an excellent initial attempt to
tackle this difficult topic, were theoreti-
cally derived and promulgated without
validation of their rationing scheme. A
similar, tiered approach, using a combi-
nation of patient history and the estab-
lished Sequential Organ Failure Assess-
ment (SOFA) score, has been proposed by
the Ontario Health Plan for an Influenza
Pandemic Working Group (12). As an al-
ternative approach, we derived a triage
scoring system from cohorts of patients
with suspected infection presenting to
the ED during nonpandemic situations.
Clearly, not all clinical features of com-
mon infections are similar to H5N1 in-
fluenza, and treatment may differ. How-
ever, most severe infections result in
similar organ dysfunctions (e.g., acute re-
spiratory distress syndrome and severe
sepsis) as those described with the cur-
rent human cases of H5N1 influenza (13).
Thus, the objective of this study is to
derive and both internally and externally
validate a simple triage risk-stratification
tool that predicts the primary outcome of
mortality, in addition to the need for me-
chanical ventilation and treatment in an
ICU, in patients presenting to the ED
with infection.

METHODS

This is a secondary analysis of three sepa-
rate prospectively identified and collected co-
horts of ED patients with suspected infection.
To develop the triage decision rule, only those
vital signs and additional patient characteris-
tics that were readily available at initial patient
presentation to the ED were evaluated. The
triage schema was derived from a cohort at
center 1 (Beth Israel Deaconess Medical Cen-
ter), validated on a second cohort from center
1, and then externally validated on a third
cohort of patients from center 2 (Carolinas’
Medical Center). Institutional review board
approval was obtained for data collection from
both institutions.

Assembly of Patients

Cohort 1: Derivation Set. The methods for
assembly of cohort 1 have been described pre-
viously (14). In brief, this cohort included all
consecutive adult patients (�18 yrs old) pre-
senting with suspected infection between Feb-
ruary 1, 2000, and February 1, 2001, to the ED
of Beth Israel Deaconess Medical Center, an
urban academic medical center with approxi-
mately 50,000 annual ED visits. Patients were
classified as “suspected infection” by the sur-
rogate marker of the clinical decision to ob-

tain a blood culture. Both patients admitted to
the hospital and those discharged from the ED
were included in this cohort. To exclude pa-
tients with possible surgical pathogeneses that
would not be pertinent to this investigation,
patients were excluded if their suspected
source of infection was intra-abdominal.

Cohort 2: Internal Validation Set. This co-
hort included all consecutive adult patients
(�18 yrs old) presenting to the ED of Beth
Israel Deaconess Medical Center with sus-
pected infection between December 10, 2003,
and September 30, 2004. Patients were iden-
tified by a daily screening of the ED admission
log. Any patient with a complaint of suspected
infection (e.g., pneumonia) or possible infec-
tion (e.g., shortness of breath) was identified
for a confirmatory chart review. If the diag-
nostic testing in the ED or the medical deci-
sion making section of the patient chart indi-
cated a suspected infection, then that patient
was included in the study. Chart review in-
cluded only the ED experience and occurred
without knowledge of subsequent hospital
course. Exclusion criteria included patients
with a suspected intra-abdominal infection
and those sent home from the ED; thus, this
cohort consists of patients admitted to the
hospital only.

Cohort 3: External Validation Set. The ex-
ternal validation cohort was enrolled from the
ED at Carolinas’ Medical Center, an 800-bed
teaching and tertiary referral hospital with
�100,000 patient visits per year. Included
were adult patients (�18 yrs old) admitted to
the hospital from the ED. Patients were en-
rolled between July 2004 and June 2005 and
divided into four blocks. Enrollment took
place during 24-hr periods, chosen from a
standard random sample of 24-hr periods (12
am to 12 am), comprising one half of the
number of days in each block. Patient diag-
noses were reviewed post hoc, and patients
were included in this cohort if they had a
principle diagnosis of an infectious pathogen-
esis as the reason for the index hospitalization.
Similar to the Beth Israel Deaconess Medical
Center cohorts, patients with a suspected
intra-abdominal infectious pathogenesis that
required surgical intervention were excluded.

Data Collection and Eligible
Covariates

Pertinent demographics, triage vital signs,
and components of the history and physical
exam were collected. Only covariates that
could be easily assessed at triage were eligible
for inclusion in the triage score. Vital signs
included heart rate, systolic blood pressure,
respiratory rate, and oxygen saturation. Al-
tered mental status was considered present if
evidence of altered mentation was docu-
mented in the physician note or if the patient
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had a documented Glasgow Coma Score of
�15. For inclusion as a covariate in the score,
the vital signs were dichotomized at logical
cut points. Heart rate was assessed at the
thresholds of 90, 100, and 120 beats/min; sys-
tolic blood pressure at 90 and 100 mm Hg; and
respiratory rate at 20, 30, and 40 breaths/min.
The presence of hypoxemia was defined as an
initial oxygen saturation of �90%, patient re-
quirement for endotracheal intubation, or the
presence of an oxygen saturation of �93%
while receiving supplemental oxygen. Shock
index (shock index � heart rate/systolic blood
pressure) was assessed at 1.0 and 0.9. Age was
examined at the thresholds of 65, 75, and 85
yrs of age.

Definition of Outcomes

The primary outcome for the analysis was
in-hospital mortality. Any patient surviving to
hospital discharge was considered “alive” for
this analysis. Secondary outcomes were inten-
sive care admission at any point during hos-
pitalization and use of mechanical ventilation.
These outcomes were selected to represent
resources likely to be limited during an influ-
enza pandemic or other large-scale epidemic.

Statistical Methods

Covariates were first assessed in univar-
iate analyses using death as the dependent
variable. Covariates that achieved a univar-

iate significance at a threshold of p � .1
were subsequently eligible for inclusion in a
multivariable logistic-regression model,
which was used as the cut-off for inclusion
in the final model. The final model was built
to predict mortality using forward selection,
backward selection, and stepwise. All ap-
proaches resulted in a uniform final model.
Two scores were then created, one using a
weighted system by dividing the beta-
coefficients by a common denominator to
obtain an integer score proportional to the
magnitude of the beta-coefficient and the
other assigned 1 point per covariate. Ulti-
mately, both rules performed in a similar
fashion, so the simpler 1 point per covariate
method was selected as the final rule for
ease of application at triage. The perfor-
mance of the rule was assessed by calculat-
ing the area under the receiver operating
characteristic curve. The model was derived
on cohort 1 and then validated separately on
cohorts 2 and 3. Next, the rule was assessed
to predict secondary outcomes of ICU usage
and mechanical ventilation—the rule was
not re-derived for these outcomes; instead,
the rule derived from mortality outcomes
was used.

RESULTS

There were a total of 5,133 patients
included in the study: 3,206 in the der-

ivation cohort (site 1), 1,118 in the in-
ternal validation cohort (site 1), and
809 in the external validation cohort
(site 2). The mortality rates were 4.7%,
6.6%, and 6.3%, respectively. The prev-
alence of the secondary outcomes was:
3.8%, 13%, and 4.0% for intubation and
12%, 22%, and 15% for admission to
the ICU. Patient characteristics are
shown in Table 1.

Multiple logistic regression demon-
strated the following as independent pre-
dictors of death: a) age of �65 yrs, b)
altered mental status, c) respiratory rate
of �30 breaths/min, d) low oxygen satu-
ration, and e) shock index of �1 (heart
rate � blood pressure) (Table 2). This
model had an area under the receiver
operating characteristic curve (AUC) of
0.80, and when converted to a simple rule
assigning 1 point per covariate, the dis-
crimination of the model remained es-
sentially unchanged, with an AUC of 0.79.
We assessed another model by using as-
signed points based on each covariate’s
beta coefficient, but it yielded a very sim-
ilar AUC. We therefore selected the sim-
pler model. Four logical groupings, with
increasing points, were created and had
the following mortality rates in the deri-
vation cohort: very low risk (0 points),
0.4% mortality (95% confidence interval,

Table 1. Patient characteristics in the derivation and validation sets

Center 1 Center 1 Center 2

Derivation (n � 3206) Internal Validation (n � 1,118) External Validation (n � 809)

Age in years, mean � SD 60 � 20 64 � 19 54 � 19
Male sex, % 47 49 52
Co-morbid conditions, %

Cerebrovascular disease 9 11 8
Congestive heart failure 15 18 9
Diabetes 23 31 25
HIV 7 5 13
Malignancy 20 15 6
Altered mental status 21 14 10

HR, beats/min (mean � SD) 94 � 21 93 � 22 101 � 22
SBP, mm Hg (mean � SD) 129 � 28 133 � 31 128 � 29
Shock index, mean � SD 0.77 � 0.26 0.75 � 0.28 0.82 � 0.27
Respiratory rate, breaths/min (mean � SD) 20 � 5.9 20 � 5.7 21 � 6.2
Pulse oximetry, % (mean � SD) 94 � 8 96 � 5 90 � 24
Hospitalization outcomes, %

Intubated 4 13 4
ICU admission 12 22 15
Mortality 5 7 6

Suspected source of infection, n (%)
Respiratory 854 (27) 292 (26) 257 (32)
Urogenital 347 (11) 132 (14) 110 (14)
Skin/soft tissue 675 (21) 225 (23) 138 (17)
CSF 89 (3) 8 (1) 18 (2)
Suspect bacteremia 210 (7) 28 (3.4) 108 (13)
Fever without a source 487 (15) 83 (9) 23 (3)
Other/unknown 614 (19) 220 (23) 155 (19)

HIV, human immunodeficiency virus; HR, heart rate; SBP, systolic blood pressure; ICU, intensive care unit; CSF, cerebrospinal fluid.
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0.1–0.8%); low risk (1 point), 8.8% mor-
tality (2.6 – 4.6%); moderate risk (2
points), (6.5–11.0%); and high risk (�3
points), 25% mortality (19–31%) (Table
2, Fig. 1A). Although not derived specifi-
cally to predict the secondary outcomes
of need for admission to an ICU and re-
quirement of mechanical ventilation, the
rule also worked reasonably well in pre-
dicting these secondary outcomes (Tables
3 and 4, Fig. 1, B and C).

When the triage rule was validated on
the internal validation cohort, the overall
AUC for the score as a predictor of death
was 0.76 (Table 4). As the score increased,
mortality also increased in a fashion sim-
ilar to the derivation cohort (Fig. 1A).
Similarly, the score was less precise but
still predictive of the need for admission
to an ICU and mechanical ventilation,
with an AUC of 0.72 and 0.73, respectively
(Fig. 1, B and C).

Results from the external validation
also support the rule’s performance (Ta-
ble 3, Fig. 1A). The AUC for the rule as a
predictor of death was 0.73. As expected,
in a different center, the AUC of the rule
was less, although the rule still signifi-
cantly predicted outcome (Fig. 1, B and
C). In the external validation cohort, the
rule’s AUC for need for ICU admission
was 0.70 and for mechanical ventilation
was 0.68.

DISCUSSION

We have demonstrated that a simple
rule—using only variables readily avail-
able at ED triage—risk stratifies patients
who present to the ED with suspected
infection. Using a combination of a) age
of �65 yrs, b) altered mental status, c)
respiratory rate of �30 breaths/min, d)
low oxygen saturation, and e) shock index
of �1 (heart rate � blood pressure), pa-
tients may be categorized according to
likelihood of survival with hospitaliza-
tion. Although not designed to do so,
these categories also predict, reasonably
well, consumption of hospital critical
care resources, specifically, of critical
care beds and mechanical ventilators.
The strength of our study lies in the
large, prospectively collected cohorts of
patients, on whom the rule was developed
and both internally and externally vali-
dated. There is an inherent weakness in
the rule in that it was not created using
patients presenting to the hospital during
an epidemic; however, we submit that
our populations of ED patients with sus-
pected infection represent reasonable

surrogates for our “proof-of-concept” tri-
age rule.

Experts at the World Health Organiza-
tion and elsewhere believe that the world
is now closer to another influenza pan-
demic than at any time since 1968, when
the last pandemic occurred. If a severe
human influenza pandemic occurs, it is
likely that many people will develop seri-
ous or critical illness due to insufficient,
immediately available vaccines and effec-
tive antivirals (15). Even in developed
countries with modern healthcare infra-
structures, there is little capability to ex-
pand hospital capacity, and particularly
critical care capacity, to meet the surge
in critical care demand that would be
expected during a pandemic. During the
recent severe acute respiratory syndrome
(SARS) epidemic, relatively few acutely ill

patients (370 suspected and confirmed
cases in 4 months) strained the resources
of the health system in Toronto. In fact,
surge capacity actually decreased at
points of the outbreak due to ICU and ED
closures (16). During a severe influenza
pandemic, it may be impossible to main-
tain traditional hospital and clinical stan-
dards of care. Even if the commerce in-
frastructure is maintained, extreme
shortages of healthcare professionals and
medical equipment may well occur.
Hence, if patient demand far exceeds the
capability to provide needed medical ser-
vices, a fair and just system to allocate
limited resources will be essential. The
triage rule we have developed can serve as
an initial guide for such a process.

How would our model be operational-
ized and incorporated into existing triage
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Figure 1. Discrimination of the rule in predicting death (A); discrimination of the rule in predicting
need for intensive care unit admission (B); discrimination of the rule in predicting need for mechanical
ventilation (C).

Table 2. Independent predictors of mortality identified by multivariate analysis

Variable Odds Ratio 95% CI

Complex
Rule

Points

Simplified
(Final)
Rule

Points

Respiratory rate of �30 breaths/min 3.9 2.5 to 6.3 4 1
Shock index � 1 (HR � BP) 2.8 1.8 to 4.2 3 1
Low oxygen saturation 2.8 1.8 to 4.2 3 1
Altered mental status 1.9 1.3 to 2.8 2 1
Age of 65–74 yrs 3.0 1.7 to 5.5 3 1
Age of �75 yrs 4.4 2.7 to 7.2 4 1

CI, confidence interval; HR, heart rate; BP, blood pressure.
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frameworks? Because supportive care is
similar regardless of cause of respiratory
failure and sepsis, we believe that devel-
oping an initial algorithm based on exist-
ing cohorts of patients with suspected
infection is the best way to provisionally
develop a triage algorithm for a future
infectious pandemic. As time passes dur-
ing a pandemic, the triage rule can and
will need to be refined. At the beginning
of a pandemic, medical care may con-
tinue at the usual standard for the given
region. As an epidemic expands and the
mismatch of resources and demand for
care worsens, a decision on the need for
patient triage would need to occur. Such
a decision would need to be taken on a
regional basis, with input from all of the
stakeholders in the community (1, 11).
Our model provides an appropriate start-
ing point for such a system of triage. As
the event progresses, the model would be
further modified based on available re-
sources and operational research.

We have deliberately excluded the
patient’s medical history from the vari-
ables included in the analysis. Other
proposed schemes have included such
information (11, 12). We believe that it

will be logistically difficult to accu-
rately assess these data during an over-
whelming catastrophe. Patients are not
likely to arrive at the hospital with their
medical records, triaging physicians are
not going to have time to search for the
patients’ records, and once it becomes
clear that triage of patients based on
medical history is taking place, patients
are unlikely to volunteer truthful infor-
mation. Similarly, although both Hick
and O’Laughlin (11) and the Ontario
Working Group (12) have included lab-
oratory testing within their triage
schemes, we have excluded laboratory
testing from our algorithm. Such test-
ing will be resource intensive and will
unnecessarily delay triage decisions in a
mass-casualty setting. In addition, the
use of these laboratory results, either
individually or as components of ICU
scoring systems, has not been validated
in patients presenting to the ED with
infection. However, if point-of-care
testing of strong, validated, laboratory
predictors of mortality, such as lactate,
are made available, these may be rea-
sonable supplements to clinical triage
rules such as ours (17).

The Working Group on Emergency
Mass Critical Care (1) recommended uni-
form application of triage to all patients
in the hospital, rather than just victims of
the outbreak. A sophisticated schema will
ultimately need to be developed for deci-
sions regarding initiating, withholding,
and withdrawing potentially life-saving
scarce resources. We chose to focus on
triage at entrance of the patient into the
medical system, where initiation and
withholding of care decisions will be ini-
tially determined. We envision that if the
pandemic is so severe that those in need
far outnumber available resources, 1)
many communities will be affected con-
currently, evacuation to a distant region
will not be feasible, and deployment of
sufficient medical resources from exter-
nal resources will be limited, 2) nonhos-
pital locations may be used to screen pa-
tients for medical needs, 3) laboratory
and radiographic studies may not be
readily available for many patients requir-
ing triage, and 4) not all patients will be
able to get a trial of critical care to see if
they benefit due to resource limitations.
A triage algorithm based on data readily
available at medical system presentation
that could help predict severity of illness
and expected need for scarce critical care
resources would be an invaluable tool.

To design successful triage systems,
protocols must be developed, validated,
and available before a crisis. Input is re-
quired from many stakeholders, includ-
ing community members, emergency
management officials, hospital officials,
critical care experts, public health offi-
cials, and ethicists. Such protocols need
to be applied in a standardized and fair
process for all patients. Ultimately, there
are difficult ethical decisions that may
need to be made. Protocols, developed
during the course of usual healthcare sys-
tem operations, will obviously represent
the “best case” scenario for patient sur-
vival. As an epidemic progresses and the
requirement for healthcare resources
outstrips the available resources, patient
care is likely to be further degraded. In
such an event it is likely that this predic-
tion rule will need modification. For
these reasons, the rule we present is only
a starting point.

Our study has several limitations.
First, this model is derived on patients
arriving to the ED with a variety of infec-
tious diseases. Most of these conditions
have a mortality rate less than that of
avian influenza, and although both con-
ditions are manifested by the immune

Table 3. Performance of the rule

Variable
Derivation

(%)

Internal
Validation

(%)

External
Validation

(%)

Mortality, points
0 5/1144 (0.4) 5/396 (1.3) 6/357 (1.7)
1 45/1257 (3.6) 26/477 (5.5) 16/282 (5.7)
2 54/617 (8.8) 21/174 (12) 13/120 (11)
�3 47/188 (25) 22/71 (31) 16/50 (32)

Need for intensive care, points
0 61/1144 (5.3) 39/396 (9.9) 25/357 (7.0)
1 124/1257 (9.9) 90/477 (19) 44/282 (16)
2 140/617 (23) 67/174 (39) 36/120 (30)
�3 68/188 (36) 52/71 (73) 20/50 (40)

Need for mechanical ventilation, points
0 18/144 (1.6) 20/396 (5.1) 6/357 (1.7)
1 37/1257 (2.9) 43/477 (9.0) 11/282 (3.9)
2 43/617 (7.0) 38/174 (22) 10/120 (8.3)
�3 25/188 (13) 40/71 (56) 5/50 (10)

Table 4. Area under the receiver operating characteristic curves for the different cohorts and outcomes

n Mortality
ICU

Admission
Ventilatory

Requirement

Site 1: derivation 3906 0.80 0.70 0.69
Site 1: validation 1118 0.76 0.72 0.73
Site 2: validation 809 0.73 0.70 0.68

ICU, intensive care unit.
This table shows the different area under the curves for each of the cohorts and the different

outcomes. The rule was built primarily for the mortality outcome but has validity for the secondary
outcomes as well.
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system’s inflammatory response, there
are still important differences in the bi-
ology of the disease states. The reported
case fatality rates for avian influenza are
between 33% and 100% (13). This high
mortality indicates that our model would
err on the conservative side. In addition,
the rule may perform differently with a
respiratory-based illness than in our pop-
ulation comprising a heterogeneous set
of infectious diseases. Similarly, the aver-
age ages in our three cohorts are between
54 and 64 yrs, and age of �65 is a pre-
dictor of mortality in our schema. The
limited available evidence suggests that
the attack rate and mortality rates for
avian influenza are higher in younger
populations (13). For all of these reasons,
it will be important to revalidate any tri-
age model at the outbreak of an epidemic
and continuously throughout.

The second major limitation of our
study is that, although we have validated
the model in two centers and three time
periods, there may be populations or
healthcare systems in which the model
performs differently. Notably, our site 1
validation population had higher rates of
outcome; the reason for this is that it was
an inpatient population only, compared
with the initial and site 2 validation co-
horts, which were both inpatients and
outpatients. Any model of triage should
be validated in the population it is meant
to serve, and we would encourage health-
care systems outside of the United States
to validate our model within their sys-
tem.

Finally, patients with severe illness,
who might have benefited from usual
hospital care, will be found to be beyond

rescue within the constraints of an epi-
demic. Provision must be made for pal-
liative care for patients for whom critical
care services have been withheld or with-
drawn.

In summary, we present a triage rule
for use during an epidemic. This rule was
derived using actual data from patients
presenting to the ED with suspected in-
fection. Although the rule will need mod-
ification or validation in the future using
data from a real pandemic, it provides a
starting point for an organized triage sys-
tem for use during such an event.
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