tion with PMNL. Additionally, direct
binding of PSP/reg to PMNL derived from
healthy volunteers was observed. Incuba-
tion of PMNL isolated from septic pa-
tients with PSP/reg did not show an effect
over CD62L or CD11b cell surface levels.
These data may suggest tolerance-like
phenomena, although further investiga-
tions are required. One of the questions
that remained unanswered in this work is
what is the binding capacity of PSP/reg by
sepsis-derived PMNL? In addition, it will
be important to know if this unrespon-
siveness to PSP/reg or altered binding
capacity are parameters that may be used
as prognosis indexes. To assess the real
relevance of PSP/reg as a sepsis marker
will require further investigations. Fur-
thermore, PSP/reg will be competing
with new sepsis marker candidates such
as peripheral endothelial progenitor cells
(11), plasma Treg cells, CD25 levels (12),
and B-type natriuretic peptide (13) to be
crowned as the definitive sepsis marker.

Thus, finding the “perfect” sepsis
marker has been one of the most elusive
dreams in modern medicine. The list of
potential sepsis markers increases day by
day, and we still do not have a parameter
or a group of them that can accurately
and rapidly diagnose sepsis. Most of the
current markers (clinical signs and labo-
ratory measurements) are the product of
the proinflammatory stage and therefore
are nonspecific. Thus, if we can make a
wish for the ideal sepsis marker, what
would we ask for? Probably an important
characteristic would be a parameter
that is altered in all types of sepsis,

independently of the agent causing the
infection. This characteristic would eliminate
“subpopulation of septic patients” and all the
nightmares associated with conflicting data
at the moment of evaluating a potential
sepsis marker. Thus, it would be desirable
to have a substance that reports early
changes and can be detected in an easy and
rapid way. Prognosis potential is also a
characteristic that should be added to this
wish list. PSP/reg seems to have a certain
potential as a predictor of sepsis, although
only time will tell if this protein fulfills the
minimum requirements to be called a true
sepsis marker.
Virginia L. Vega, PhD

Department of Surgery

University of California San Diego

La Jolla, CA
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Predictive models: The angel is in the details*

odels for measuring sever-
ity of illness and predicting
hospital mortality for pa-
tients in intensive care units
(ICUs) are now in their third and fourth

*See also p. 1649.
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generation (1-3), and newer models
have appeared recently (4, 5). This has
come about as a result of the desire to
assess ICU performance by comparing
observed and predicted mortality (6, 7)
and, at least in part, to the ability to
capture data electronically. Large data
sets containing numerous measure-
ments on all patients have enabled the
development of sophisticated predictive
models. Simplicity, however, is not a
hallmark of these systems. The leanest
critical care hospital mortality model,
Mortality Probability Model (MPM,-111),

still requires the collection of 17 data
elements (3).

Statistical modeling in other acute
care settings has lagged behind that in
critical care. Recent attempts have been
made to introduce predictive models out-
side of the ICU, most particularly in the
area of rapid response teams/medical
emergency teams (8). One example is the
Modified Early Warning System (9),
which was developed on 206 patients in a
postoperative ward. This scoring system
assigns “weights” to six physiologic mea-
surements. The weights are summed and
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a cut-point >4 is used as an early warn-
ing signal. What is common among deci-
sion algorithms in rapid response teams/
medical emergency teams is that they use
triggers (“antecedents”) and/or uncom-
plicated scoring algorithms to indicate
possible patient deterioration. Here, sim-
plicity is desirable, until such time as
electronic data capture mechanisms per-
mit the assimilation and multivariate
analysis of high-dimensional data.

In this issue of Critical Care Medicine,
Jones et al (10) examine how the Sequen-
tial Organ Failure Assessment (SOFA)
score (11) measured while the patient is
in the emergency department (ED), can
predict hospital mortality for patients
subsequently admitted to an ICU. The
authors also gathered data for the SOFA
score collected 72 hours postadmission as
well as the difference between this value
and the value recorded in the ED. These
additional measurements may be useful
variables for stratification in post hoc
analyses, but as they are based on infor-
mation collected after admission to the
ICU, they cannot be used as a predictor
for patients in the ED.

In addition to the SOFA score, the
authors collected information on other
physiologic measures while patients were
in the ED: vital signs, oxygen saturation,
Glasgow Coma Score, white blood cell
count, and lactate concentration. These
were all recorded prospectively on stan-
dardized forms. The patient population is
narrowly focused in terms of case mix:
248 patients with severe sepsis who had
resuscitation procedures initiated in the
ED. This strategy is a wise one, given the
difficulty of developing a model using
what would be an otherwise heteroge-
neous population. Limiting the study to a
single institution, however, means that
the results reported by Jones et al must
be considered exploratory.

The primary statistic chosen for deter-
mining the ability to predict hospital
mortality was the area under the receiver
operating characteristics curve (AU-ROC)
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(12). This is a measure of “discrimina-
tion,” i.e., the ability to distinguish be-
tween patients who die vs. those who
survive. The AU-ROC ranges from 0.50,
which indicates that the prediction is no
better than flipping a coin, to 1.00, which
is a perfect predictor. All of the ICU
predictive models cited above have AU-
ROC values >0.80. Values lower than
that are considered mediocre. Unfortu-
nately, the AU-ROC to predict mortality
using the SOFA score taken in the ED
was only 0.75.

The authors compare this value with
the AU-ROC generated by other variables
they had collected, and found that none
had higher AU-ROC values than the SOFA
score. Given the additional physiologic
variables that Jones et al collected, they
might have considered a more sophisti-
cated approach. They certainly could
have constructed a pseudo-Modified
Early Warning System instrument, which
most likely would have increased their
AU-ROC beyond 0.80.

The authors should be commended for
assessing the value of the relatively sim-
ple SOFA score in the ED as a predictor of
subsequent in-hospital mortality. But in
their attempt to maintain simplicity, they
gave away the opportunity to look at a
metric that had high discrimination with
little additional data capture burden. I
agree with the authors that using ICU
predictive models in the ED is at present
not feasible. But, although simplicity can
be alluring, it should not trump a com-
prehensive inclusion of enough variables
to generate a precise yet timely predic-
tion. When it comes to predicting out-
comes, the angel is in the details.

Andrew A. Kramer, PhD
Cerner Corporation
Vienna, VA
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