Comment

A coherent and exhaustive cardiovascular model based
on oxygen consumption, mean arterial pressure, cardiac
output, and central venous pressure is available enabling
the clinician to manipulate vascular tone, compliance,
and heart efficiency by means of fluid, vasoactive, or
cardioactive drugs.

The present study offers the corollary of preserving the
parasympathetic component for the cellular protection
as yet another aim in goal-directed therapy, which
has not been explored so far.** Possible candidates are
epidural analgesia, B-blockade, central a-stimulation, or
low respiratory rate.

For goal-directed therapy to experience a renaissance,
this parasympathetic protection would be an obvious
target to include while simultaneously adapting a more
comprehensive understanding of the physiology of
goal-directed therapy.
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Mortality prediction in ICU: a methodological advance

In The Lancet Respiratory Medicine, Pirracchio and
colleagues® present a new approach to predicting
mortality in care units (ICUs). The
investigators propose that instead of picking one of
the many mortality prediction models available, an
ensemble machine learning approach can be used
(the non-parametric Super Learner’) to leverage the
individual candidate models from a pre-specified

intensive

library, to produce an optimum prediction algorithm.
This is an elegant idea that frees the user from making
an arbitrary choice of model, and that also guarantees
at least as good performance as any individual model
within that library. As statistician George Box said,

“All_ models are wrong; but some are useful”; Super
Learner looks like it could be a valuable new method to
identify the most useful model of mortality prediction
in ICUs.

www.thelancet.com/respiratory Vol 3 January 2015

Many ICU scoring systems exist for severity of disease,
morbidity, and mortality prediction (eg, Simplified Acute
Physiology Score Il [SAPS-Il], Acute Physiology and
Chronic Health Evaluation Il JAPACHE-III], and Sequential
Organ Failure Assessment [SOFA]) Mortality Probability
Model [MPM]):2 These scoring systems differ in which
factors are included, what weight these factors are given,
and measurement time (eg, on admission, or at 24 h,
or continuously). They also differ in ease of use, their
robustness to data quality (ie, completeness and accuracy),
and how they are used in practice (including divergence
from intended use). By applying the Super Learner to
Multiparameter Intelligent Monitoring in Intensive Care-I
(MIMIC-I1; 8 years of data from one US site with five ICUs),
with validation in a smaller ICU in Paris with 10 months
of data, Pirracchio and colleagues' convincingly show the
approach is feasible and fit for purpose methodologically.
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This improved methodological performance of Super
Learner comprises improved calibration (addressing
a common weakness of ICU scores) and maintains
the discrimination ability (for prognostic modelling
primers).* Additionally, the researchers used risk-
reclassification statistics,® and advanced cross-validation
techniques,® both of which should be introduced
routinely. In particular, the discrimination (can the
model separate the groups of survivors and deaths?)
and the calibration (can the model accurately predict the
individual probability of death?) are key for a prediction
model. Super Learner seems to cope with missing data,
potentially a major drawback for an individual model
requiring complete data; however, this aspect will
need rigorous assessment with real-life ICU patterns of
missing data.

Why is this approach a potentially important
development? Although many ICU scores are in use,
none have emerged as dominant in sufficiently varied
contexts. Super Learner will return an optimum model
for that context and take out the guesswork of model
selection, potentially providing the methodological
step change patiently anticipated. But what are the
costs and barriers for the busy ICU clinician to realise
any benefits? First, heterogeneity in patients in ICU
and processes; the site in the study by Pirracchio
and colleagues' had roughly a 12% mortality rate,
compared with 28% in ventilated patients in an UK
ICU, showing profound differences between patient
types and severity, interventions, length of stay, and
discharge destination.” So Super Learner will routinely
need adapting to specific contexts (ie, local, national,
or regional) depending on ICU type and case mix.
This customisation might include specification of a
different library of candidate models. Pirracchio and
colleagues only used covariates specified in established
ICU scores (ie, SAPS and APACHE), but with a richer
set of candidate models or a larger set of covariates,
the Super Learner might do even better. Additionally,
the local customisation will need local data loaded. At
present, both the customisation of the Super Learner
library and addition of local data in volume need
specialist programming and modelling, but an easy to
use interface is under development according to the

investigators.
What might the Super
provide? At an aggregate level, there is increasing

Learner-based model

interest in comparing performance between ICUs.®
Such comparisons are statistically complex, but
improved prognostic models should lessen risks of
inappropriate or misleading comparisons. However,
the most exciting possibilities might be realised
at the patient level. More robust and accurate
individual predictions of morbidity and mortality
from better models might improve clinical decision
making, giving clinicians better information about
the likelihood of good or poor outcomes, and hence
better inform risk-benefit assessments and improve
individual management.

However, whether such improved information
actually leads to clinical benefit will need to be
rigorously assessed. With the huge and increasing
volume and complexity of information coming
from many sources in the ICU, whether clinicians
actually act wisely on apparently improved outcomes
predictions to produce worthwhile benefit needs
to be assessed, along with the possible harms and
acceptability to patients. This step would call for
large-scale multicentre pragmatic effectiveness trials,
giving confidence to introduce such enhanced scoring
algorithms into clinical practice and continue their
development. Pirracchio and colleagues have made an
important contribution as a first step on that road to

better patient outcomes in ICU.
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Mortality prediction in intensive care units with the Super ICU
Learner Algorithm (SICULA): a population-based study

Romain Pirracchio, Maya L Petersen, Marco Carone, Matthieu Resche Rigon, Sylvie Chevret, Mark J van der Laan

Summary

Background Improved mortality prediction for patients in intensive care units is a big challenge. Many severity scores
have been proposed, but findings of validation studies have shown that they are not adequately calibrated. The Super ICU
Learner Algorithm (SICULA), an ensemble machine learning technique that uses multiple learning algorithms to obtain
better prediction performance, does at least as well as the best member of its library. We aimed to assess whether the
Super Learner could provide a new mortality prediction algorithm for patients in intensive care units, and to assess its
performance compared with other scoring systems.

Methods From January, 2001, to December, 2008, we used the Multiparameter Intelligent Monitoring in Intensive Care II
(MIMIC-II) database (version 26) including all patients admitted to an intensive care unit at the Beth Israel Deaconess
Medical Centre, Boston, MA, USA. We assessed the calibration, discrimination, and risk classification of predicted
hospital mortality based on Super Learner compared with SAPS-II, APACHE-II, and SOFA. We calculated performance
measures with cross-validation to avoid making biased assessments. Our proposed score was then externally validated on
a dataset of 200 randomly selected patients admitted at the intensive care unit of Hopital Européen Georges-Pompidou,
Paris, France, between Sept 1, 2013, and June, 30, 2014. The primary outcome was hospital mortality. The explanatory
variables were the same as those included in the SAPS II score.

Findings 24 508 patients were included, with median SAPS-II of 38 (IQR 27-51) and median SOFA of 5 (IQR 2-8). 3002
of 24508 (12%) patients died in the Beth Israel Deaconess Medical Centre. We produced two sets of predictions based on
the Super Learner; the first based on the 17 variables as they appear in the SAPS-II score (SL1), and the second, on the
original, untransformed variables (SL2). The two versions yielded average predicted probabilities of death of 0-12 (IQR
0-02-0-16) and 0-13 (0-01-0-19), whereas the corresponding value for SOFA was 0-12 (0-05-0-15) and for SAPS-II
0-30 (0-08-0-48). The cross-validated area under the receiver operating characteristic curve (AUROC) for SAPS-II was
0-78 (95% CI 0-77-0-78) and 0-71 (0-70-0-72) for SOFA. Super Learner had an AUROC of 0-85 (0-84-0-85) when
the explanatory variables were categorised as in SAPS-II, and of 0- 88 (0-87-0-89) when the same explanatory variables
were included without any transformation. Additionally, Super Learner showed better calibration properties than
previous score systems. On the external validation dataset, the AUROC was 0-94 (0-90-0-98) and calibration properties
were good.

Interpretation Compared with conventional severity scores, Super Learner offers improved performance for predicting
hospital mortality in patients in intensive care units. A user-friendly implementation is available online and should be
useful for clinicians seeking to validate our score.

Funding Fulbright Foundation, Assistance Publique-Hopitaux de Paris, Doris Duke Clinical Scientist Development
Award, and the NIH.

Introduction of death in patients in ICU. Several severity scores have

The burden of care for critically ill patients is huge. In the
USA, the cost of care for critically ill patients accounts for
nearly 1% of the gross domestic product, and although
less than 10% of hospital beds are found in intensive care
units (ICU), ICU departments account for 22% of total
hospital costs.! In the UK, the cost of intensive care is
estimated to be £541 million per year, which represents
0-6% of National Health Service expenditures.? During
2009-12, the average hospital mortality rate for patients in
ICU was estimated to be 11-12%. Prediction of mortality
in patients in ICU is crucial for the assessment of severity
of illness and adjudication of the value of novel treatments,
interventions, and health-care policies. In the past
30 years, a big effort has been made in modelling the risk

been developed with the objective of predicting hospital
mortality from baseline patient characteristics.

The first scores proposed with the Acute Physiology
and Chronic Health Evaluation (APACHE),* APACHE-I1,
and Simplified Acute Physiology Score (SAPS),° relied on
subjective methods for variable selection, namely relying
on a panel of experts to select and assign weights to
variables according to perceived relevance for mortality
prediction. Further scores, such as the SAPS-II, were
subsequently developed with statistical modelling
techniques.”™ Up to now, the SAPS-II” and APACHE-II®
scores remain the most widely used in clinical practice.
However, since first being published, they have been
modified several times to improve their predictive
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performance.” These scores discriminate survivors and
non-survivors well. However, data from several external
validation studies done in various countries have
suggested that the most recent versions of SAPS and
APACHE are not adequately calibrated, which means that
they fail to accurately predict the actual probability of
death.™” Locally customised variants of these scores have
also been developed to incorporate regional variations.
For instance, versions of the SAPS score have been
specifically tailored to France, southern Europe, and
Mediterranean countries, and to central and western
Europe.”*" Despite these extensions of SAPS, predicted
hospital mortality remains generally overestimated.""""
Most ICU severity scores rely on a logistic regression
model. Such models impose stringent constraints on the
association between explanatory variables and risk of
death. For instance, main-term logistic regression typically
relies on a linear and additive relationship between a pre-
specified transformation of the mean outcome and its
predictors. In view of the complex processes underlying
death in patients in ICU, such an assumption might be
unrealistic, and predictive power might be low if an
incorrect parametric model is used as opposed to a more
flexible option. On the contrary, if the assumed parametric
model is correct, it will generally provide the best
prediction, at least in large samples. Hence, the poor
calibration of present severity scores might be, to a large
extent, a consequence of the misspecification of the
underlying statistical model rather than to the choice of
variables included in this model. We aimed to assess
whether a more flexible statistical approach, namely the
Super Learner, could improve ICU mortality prediction
compared with conventional methods without needing to
include additional variables in the scoring procedure.

Methods

Study design and participants

The MIMIC-II study®™ includes all patients admitted to
an ICU at the Beth Israel Deaconess Medical Centre
(BIDMC), Boston, MA, USA, since 2001. Patient
recruitment is still in progress. In this study, we only
included data from MIMIC-II version 26 (2001-08) for
adult patients (aged >15 years) in ICU.

The BIDMC is a 620-bed tertiary academic medical
centre and a level one trauma centre with 77 critical care
beds. The ICUs at the BIDMC are closed (ie, the
intensivists are responsible for patient care, not the
physician referring the patient to the ICU), with
continuous in-house supervision of patient care by an
intensivist. These ICUs include medical, trauma-
surgical, coronary, cardiac surgery recovery, and
medicosurgical critical care units.

All consecutive patients were included in the MIMIC-II
database. Staff were not involved with data acquisition
and did not interfere with the clinical care of patients or
methods of monitoring. We included only patients with
one ICU admission per hospital stay. We collected two

www.thelancet.com/respiratory Vol 3 January 2015

categories of data: clinical data, aggregated from ICU
information systems and hospital archives, and high-
resolution physiological data (waveforms and time series
of derived physiological measurements), recorded on
bedside monitors. Clinical data were obtained from the
CareVue clinical information system (models M2331A
and M1215A, Philips Healthcare, Andover, MA, USA)
deployed in all study ICUs, and from hospital electronic
archives. The data included time-stamped nurse-verified
physiological measurements (eg, measurements of heart
rate, arterial blood pressure, and pulmonary artery
pressure every hour), nurses’ and respiratory therapists’
progress notes, continuous intravenous drip drugs, fluid
balances, patient demographics, interpretations of
imaging studies, physician orders, discharge summaries,
and International Classification of Diseases-9 (ICD-9)
codes. Comprehensive diagnostic laboratory results (eg,
blood chemistry, complete blood counts, arterial blood
gases, and microbiology results) were obtained from the
patient’s entire hospital stay including periods outside the
ICU. In the present study, we focused exclusively on
outcome variables (specifically ICU and hospital
mortality) and variables included in the SAPS-II” and
SOFA scores.”

This study was approved by the institutional review
boards of BIDMC and the Massachusetts Institute of
Technology (Cambridge, MA, USA). Requirement for
individual patient consent was waived because the study
did not affect clinical care and all protected health
information was de-identified. De-identification was
done in compliance with Health Insurance Portability
and Accountability Act (HIPAA) standards to facilitate
public access to MIMIC-II. Deletion of protected health
information from structured data sources (eg, database
fields that provide patient name or date of birth) was
direct and systematic. Additionally, protected health
information was removed from the discharge
summaries and diagnostic reports and the roughly
700000 free-text nursing and respiratory notes in
MIMIC-II with an automated algorithm previously
shown to outperform clinicians in detecting protected
health information.”

Outcomes and procedures

The primary outcome measure was hospital mortality.
The data recorded within the first 24 h after ICU
admission were extracted separately from the MIMIC-II
(version 26) database and used to compute two of the
most widely used severity scores, namely the SAPS-II’
and SOFA” scores. Individual mortality prediction for the
SAPS-II score was calculated as defined by its authors?’

_pr(death) | 5 03140.0737x SAPS-TT +
1-pr(death) | 0-9971xlog(1+SAPS-II)

Additionally, we developed a new version of the SAPS-II
score, by fitting a main-term logistic regression model to
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our data by use of the same explanatory variables as those
used in the original SAPS-II score.” The same procedure
was used to build a new version of the APACHE-II score.’
Finally, we computed SOFA score for all participants
because it is sometimes used in clinical practice as a proxy
for outcome prediction.” We obtained mortality prediction
based on the SOFA score by regressing hospital mortality
on the SOFA score with a main-term logistic regression.
We compared these two algorithms for mortality
prediction with our Super Learner-based proposal.

The Super Learner has been proposed as a method for
selecting via cross-validation the optimum regression
algorithm among all weighted combinations of a set of
candidate algorithms (ie, the library; appendix pp 3—4).*%
To implement the Super Learner, a user needs to provide
a customised collection of various data-fitting algorithms
and also specify a performance measure (in this study
the squared difference between observed and predicted
outcomes). The Super Learner then uses V-fold cross-
validation to estimate the mean squared prediction error

Overall population  Dead at hospital Alive at hospital
(n=24508) discharge (n=3002) discharge (n=21506)
Age (years) 65 (51-77) 74 (59-83) 64 (50-76)
Sex (% women) 13838 (57%) 1607 (54%) 12231 (57%)
First SAPS 13 (10-17) 18 (14-22) 13 (9-17)
First SAPS-II 38(27-51) 53 (43-64) 36 (27-49)
First SOFA 5(2-8) 8 (5-12) 5(2-8)
Type of admission
Medical 2453 (10%) 240 (8%) 2213 (10%)
Trauma 7703 (31%) 1055 (35%) 6648 (31%)
Emergency surgery 10803 (44%) 1583 (53%) 9220 (43%)
Scheduled surgery 3549 (15%) 124 (4%) 3425 (16%)
Type of ICU
Medical 7488 (31%) 1265 (42%) 6223 (29%)
Medicosurgical 2686 (11%) 347 (12%) 2339 (11%)
Coronary 5285 (22%) 633 (21%) 4652 (22%)
Cardiac surgery recovery 8100 (33%) 664 (22%) 7436 (35%)
Trauma surgical 949 (4%) 93 (3%) 856 (4%)
Heart rate (bpm) 87 (75-100) 92 (78-109) 6 (75-99)
Mean arterial pressure (mm Hg) 81 (70-94) 78 (65-94) 82 (71-94)
Respiratory rate (cpm) 14 (12-20) 18 (14-23) 14 (12-18)
Serum sodium (mmol/L) 139 (136-141) 138 (135-141) 139 (136-141)
Serum potassium (mmol/L) 42 (3-8-4-6) 42 (3-8-4-8) 42 (3-8-4-6)
Serum bicarbonates (mmol/L) 26 (22-28) 24 (20-28) 26 (23-28)
White blood cell count (10°/mm?) 10-3 (7-5-14-4) 11-6 (7-9-16-9) 10-2(7-4-14-1)
Pa0,/Fio, 281 (130-447) 174 (90-352) 312 (145-461)
Haematocrit (%) 34-7 (30-4-39) 33-8(29-8-38) 34-8 (30-5-39-1)
Urea nitrogen (mmol/I) 20 (14-31) 28 (18-46) 19 (13-29)
Bilirubin (umol/L) 0-6 (0-4-1) 0-7 (0-4-1-5) 0-6 (0-4-0-9)
Hospital length of stay (days) 8 (4-14) 9 (4-17) 8 (4-14)
ICU death (%) 1978 (8%) 1978 (66%)
Data are median (IQR) or count (%). SAPS=Simplified Acute Physiology Score. SOFA=Sepsis-related Organ Failure
Assessment. ICU=intensive care unit. bpm=beats per minute. cpom=counts per minute.
Table 1: Baseline characteristics and outcome measures
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of each algorithm on data not used when building the
prediction model, and then selects the convex
combination of algorithms that provides the smallest
squared prediction error on independent data.

Comparison of the 12 algorithms relied on ten-fold
cross-validation. We split data into ten mutually exclusive
and exhaustive blocks of roughly equal size (appendix
p 2). Each algorithm was fitted on nine blocks (the
training set) and used to predict mortality for patients in
the remaining block (the validation set). We then
calculated the mean squared error between predicted and
recorded outcomes. This procedure was repeated ten
times, with a different block used as validation set every
time. Therefore, each finding served exactly once in the
validation set and was included in the training set for all
other rounds. We aggregated performance measures over
all ten iterations, yielding a cross-validated estimate of the
mean-squared error (CV-MSE) for each algorithm.
A crucial aspect of this approach is that for each iteration,
no patient appears in both the training and validation
sets. The potential for overfitting, wherein the fit of an
algorithm is overly tailored to the available data at the
expense of performance on future data, is thereby
mitigated because overfitting is more likely when training
and validation sets intersect. Candidate algorithms were
ranked according to their CV-MSE and the algorithm with
least CV-MSE was identified. We then refitted the
algorithm with all available data, leading to a prediction
rule referred to as the Discrete Super Learner.
Subsequently, we computed the prediction rule consisting
of the CV-MSE-minimising weighted convex combination
of all candidate algorithms and refitted on all data (ie, the
Super Learner combination algorithm).” Finally, we
assessed the performance of the Super Learner
combination algorithm with an additional layer of cross
validation; the entire procedure was run in turn on each
9/10th of the data, and performance measures described
below were assessed on the remaining validation set and
averaged across the ten validation sets.

Theoretical data suggest that, to optimise the
performance of the resulting algorithm, the inputted
library should include as many algorithms as possible. In
this study, the library size was limited to 12 algorithms
(appendix pp 3—4) for computational reasons. Of these
12 algorithms, some were parametric, such as logistic
regression or related methods classically used for ICU
scoring systems, and some were non-parametric—ie,
they imposed only minimum constraints on the
underlying data distribution. In the present study, we
chose the library to include most of the parametric
(including regression models with various combinations
of main and interaction terms as well as splines, and
fitted using maximum likelihood with or without
penalisation) and non-parametric algorithms previously
assessed for the prediction of mortality in critically ill
patients in the scientific literature. The main-term logistic
regression is the parametric algorithm that has been used
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for constructing both the SAPS-II and APACHE-II
scores. This algorithm was included in the Super Learner
library so that revised fits of the SAPS-II score based on
the current data also competed against other algorithms.

The data used in fitting our prediction algorithm
included the 17 variables used in the SAPS-II score:
13 physiological variables (age, Glasgow Coma Scale,
systolic blood pressure, heart rate, body temperature,
PaO,/FiO, ratio, urinary output, serum urea nitrogen
concentration, white blood cell count, serum bicarbonate
concentration, sodium  concentration, potassium
concentration, and bilirubin concentration), type of
admission (scheduled surgical, unscheduled surgical, or
medical), and three underlying disease variables (acquired
immunodeficiency syndrome, metastatic cancer, and
haematological cancer derived from ICD-9 discharge
codes). We produced two sets of predictions based on the
Super Learner; the first based on the 17 variables as they
appear in the SAPS-II score (SL1), and the second, on the
original, untransformed variables (SL2).

The SICULA prediction algorithm

We refer to the Super Learner-based prediction algorithm
using untransformed variables (SL2) as SICULA, an
acronym for Super ICU Learning Algorithm. An
implementation of the SICULA in JavaScript and R has
been made available via a user-friendly web interface.
With this web application, clinicians and researchers can
obtain the predicted probability of hospital mortality in
patients in ICU based on SICULA by inputting patient
characteristics.

External validation

An external validation of the predictive performance of the
SICULA was done with the same metrics but an
independent dataset. For external validation, we used data
from 200 patients admitted to hospital between Sept 1,
2013, and June 30, 2014. The patients were randomly
selected (a random list of patient IDs was generated in all
patient IDs found in our local ICU database, and
corresponding patients were recruited into our cohort)
from the internal anonymous database of patients from
the medical, surgical, and trauma ICU at Hoépital
Européen Georges Pompidou, Paris, France, a tertiary
academic medical centre and level one trauma centre.

Performance measures

A key objective of this study was to compare the predictive
performance of scores based on the Super Learner with
that of the SAPS-II and SOFA scores. This comparison
depended on various measures of predictive performance.
First, a mortality prediction algorithm has adequate
discrimination if it tends to assign higher severity scores
to patients who died in the hospital than to those who did
not. We assessed discrimination with the cross-validated
area under the receiver-operating characteristic curve
(AUROC), reported with corresponding 95% confidence
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intervals. Discrimination can be graphically shown with
the receiver-operating curves (ROC). Additional methods
for assessment of discrimination include boxplots of
predicted probabilities of death for survivors and non-
survivors, and corresponding discrimination slopes,
defined as the difference between the mean predicted
risks in survivors and non-survivors.

Second, a mortality prediction algorithm is adequately
calibrated if predicted and recorded probabilities of death
coincide well. We assessed calibration with the Cox
calibration test.*” Because of its many shortcomings,
including poor performance in large samples, we avoided
the more conventional Hosmer-Lemeshow statistic.””
Under perfect calibration, a prediction algorithm will
satisfy the logistic regression equation:

Observed log-odds of death=a+Bxpredicted log-odds
of death

Where a=0 and B=1. To implement the Cox calibration
test, a logistic regression is done to estimate a and f;
these estimates suggest the degree of deviation from
ideal calibration. The null hypothesis (a, $)=(0,1) is tested
formally with a U-statistic.”

Third, summary reclassification measures, including
the continuous Net Reclassification Index (cNRI) and
the Integrated Discrimination Improvement (IDI), are
relative metrics that have been devised to overcome the
limitations of usual discrimination and calibration
measures.”* The cNRI comparing severity score A with

1.0
0-8
2
=
g 067
2
<
=
204 AUROC
c
3 —— 0-71 First SOFA
— 078 SAPS-II
—— 0-83 New SAPS
02 —— 0-82 New APACHE-II
—— 0-855L1
— 0-885L2
0 T T T T 1
0 0-2 0-4 0-6 0-8 10

1-specificity (false positives)

Figure 1: Receiver-operating characteristics curves

SL1 with categorised variables and SL2 with non-transformed variables.
Results were obtained with 10-fold cross-validation. We also implemented
50-fold cross-validation and noted no material change in the estimated
performance of the SICULA algorithm (cross-validated-AUC for the SICULA
0-91[95% C1 0-90-0-92]). AUROC=area under the receiver-operating
characteristics curve. SOFA=Sepsis-related Organ Failure Assessment.
SAPS=Simplified Acute Physiology Score. APACHE=Acute Physiology and
Chronic Health Evaluation. SL1=Super Learner 1. SL2=Super Learner 2.

For the SICULA web interface see
http://webapps.biostat.berkeley.

edu:8080/sicula/
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score B is defined as twice the difference between the
proportion of mnon-survivors and of survivors,
respectively, deemed more severe according to score A
rather than score B. The IDI comparing severity score
with score B is the average difference in score A between
survivors and non-survivors minus the average
difference in score B between survivors and non-
survivors. Positive values of the cNRI and IDI suggest
that score A has better discriminative ability than score
B, whereas negative values suggest the opposite. We
computed the reclassification tables and associated
summary measures to compare each Super Learner
proposal with the original SAPS-II score and each of the
revised fits of the SAPS-II and APACHE-II scores. All
analyses were done with statistical software R (version
2.15.2) for Mac OS X cross-validated AUROC (cv-
AUROC),* Super Learner,* and ROCR.*

Role of the funding sources
The funders of the study had no role in study design, data
collection, data analysis, data interpretation, or writing of

Mortality prediction

SOFA 0-12 (0-05-0-15)
SAPS-Il original version 0-30 (0-08-0-48)
SAPS-Il refitted 0-12 (0-03-0-16)
APACHE-Il refitted 0-12 (0-03-0-16)
SsL1 0-12 (0-02-0-16)
(

SL2 0-13 (0-01-0-19)

Data are mean (IQR). SOFA=Sepsis-related Organ Failure Assessment.
SAPS=Simplified Acute Physiology Score. APACHE=Acute Physiology and
Chronic Health Evaluation. SL1=Super Learner 1. SL2=Super Learner 2.

Table 2: Recorded (3002 [12%]) versus predicted hospital mortality

Patients (%) Patients (%)

Patients (%)

C New SAPS-II

0-2

Predicted death probability

B sora
I Alive
Il Dead
D New APACHE-II
F sL2
0-6 0-8 1.0 0 0-2 0-4 0-6 0-8 1.0

Predicted death probability

Figure 2: Distribution of the predicted probability of death in the survivors and the non-survivors
SOFA=Sepsis-related Organ Failure Assessment. SAPS=Simplified Acute Physiology Score. APACHE=Acute
Physiology and Chronic Health Evaluation. SL1=Super Learner 1. SL2=Super Learner 2.
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the report. The corresponding author had full access to all
the data in the study and had final responsibility for the
decision to submit for publication.

Results

24508 patients were included in this study. Table 1 shows
their baseline characteristics. Figure 1 shows ROCs for
hospital mortality prediction. The cv-AUROC was 0-71
(95% CI 0-70-0-72) for the SOFA score, and 0-78
(0-77-0-78) for the SAPS-II score. When refitting the
SAPS-II score on our data, the cv-AUROC reached 0-83
(95% CI 0-82-0-83), which is similar to the results
obtained with the revised fit of the APACHE-II, which
led to an AUROC of 0-82 (0-81-0-83). The two Super
Learner (SL1 and SL2) prediction models substantially
outperformed the SAPS-II and the SOFA scores, showing
a clear advantage of the Super Learner-based prediction
algorithms over both the SOFA and SAPS-II scores.

We also investigated discrimination by comparing
differences between the predicted probabilities of death
in the survivors and the non-survivors with each
prediction algorithm (appendix p 3). The discrimination
slope was 0-09 for the SOFA score, 0-26 for the SAPS-II
score, 0-21 for SL1, and 0-26 for SL2.

Table 2 shows the average predicted probabilities of
death based on SL1 and SL2. Probability was similar
when we used the SOFA score, the refitted version of the
SAPS-II score, and the APACHE-II score. The average
probability of death was severely overestimated by the
original version of the SAPS-II score (0-30; IQR
0-08-0-48). Figure 2 shows the predicted probabilities of
death by survivorship status. Calibration plots suggest a
lack of fit for the SAPS-II score (appendix pp 5-7),
although the calibration properties were markedly
improved by refitting the SAPS-II score. The prediction
based on the SOFA and the APACHE-II scores showed
excellent calibration properties. For the Super Learner-
based predictions, the estimates of a and [ were close to
the null values. The calibration plots suggest that SL1 is
the only method that provides accurate predictions for the
entire range of death probability. Indeed, for other
algorithms, the predicted probabilities fall close to the
ideal calibration line for low probabilities of death but
move away from this line as death probabilities increase.
For SL1, the predicted probabilities stay close to the ideal
calibration line whatever the death probability.

Figure 3 shows the performance of the 12 candidate
algorithms, the Discrete Super Learner and the Super
Learner combination algorithms, as assessed by CV-MSE
and cv-AUROC. As suggested by theory, when either
categorised variables (SL1) or untransformed variables
(SL2) are used, the Super Learner combination algorithm
achieved the same performance as the best of all
12 candidates, with an average CV-MSE of 0- 084 (SE 0-001)
and an average AUROC of 0-85 (95% CI 0-84-0-85) for
SL1 (best algorithm was Bayesian additive regression
trees, with CV-MSE 0-084 and AUROC 0-85 [95% CI
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Figure 3: Cross-validated mean-squared error for Super Learner and the 12 candidate algorithms included in the library

(A) SL with categorised variables (Super Learner 1); mean squared error associated with each candidate algorithm. (B) Receiver operating curve (ROC) for each
candidate algorithm. (C) Super Learner with non-transformed variables (Super Learner 2); mean squared error associated with each candidate algorithm. (D) ROC for
each candidate algorithm. SL=Super Learner. GAM=generalised additive model. GLM=generalised linear model. RPART=recursive partitioning and regression trees.
CV=cross-validated. AUROC= area under the receiver-operating characteristics curve.

0-84-0-85]). For the SL2, the average CV-MSE was of
0-076 (SE=0-001) and the average AUROC was 0-88
(95% CI 0-87-0-89; best algorithm was random forests,
with CV-MSE 0-076 and AUROC 0-88 [95% CI
0-87-0-89)). In both cases (SL1 and SL2), the Super
Learner was better than the main-term logistic regression
used to develop the SAPS-II or the APACHE-II score

www.thelancet.com/respiratory Vol 3 January 2015

(main-term logistic regression: CV-MSE=0-087 [SE=0-001]
and AUROC=0-83 [95% CI 0-82-0-83]).

Table 3 shows reclassification including the SAPS-II
score in its original and its actualised versions, the revised
APACHE-II score, and the SL1 and SL2 scores. When
compared with the classification provided by the original
SAPS-II, the actualised SAPS II or the revised
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APACHE-II score, the Super Learner-based scores
resulted in a downgrade of most patients to a lower risk
stratum. We noted this finding especially in patients with
a predicted probability of death higher than 0-5. When
compared with either the revised SAPS-II or APACHE-II
scores, both Super Learner proposals resulted in a large
proportion of patients reclassified, especially from higher
predicted probability strata to lower ones.

We computed the cNRI and the IDI considering each
Super Learner proposal (score A) as the updated model
and the original SAPS-II, the new SAPS-II and the new
APACHE-II scores (score B) as the initial model. In this
case, positive values of the cNRI and IDI would suggest
that score A has better discriminative ability than score
B, whereas negative values suggest the opposite (table 4).

Predicted probability according to initial model Reclassified (%)
0-0-25 0-25-0-5 0-5-075 0-75-1
SAPS-I1, original
SL1
0-0-25 13341 134 3 0 1%
0-25-0-5 4529 723 50 0 86%
0-5-0-75 2703 1090 174 2 96%
0-75-1 444 705 473 137 92%
SL2
0-0-25 12932 490 55 1 4%
0-25-0-5 4062 1087 142 11 79%
0-5-0-75 2531 1165 258 15 93%
0-75-1 485 775 448 51 97%
SAPS-II, refitted
SL1
0-0-25 20104 884 30 2 4%
0-25-0-5 894 1426 238 9 44%
0-5-0-75 18 328 361 62 53%
0-75-1 1 14 71 66 57%
SL2
0-0-25 19221 1667 124 8 9%
0-25-0-5 765 1478 318 6 42%
0-5-0-75 24 346 367 32 52%
0-75-1 0 26 94 32 79%
APACHE-II, refitted
SL1
0-0-25 19659 1140 107 6 6%
0-25-0'5 1262 1195 296 34 57%
0-5-0-75 89 298 264 71 63%
0-75-1 7 19 33 28 68%
SL2
0-0-25 18930 1764 200 18 9%
0-25-0-5 1028 1395 345 19 50%
0-5-0-75 50 333 309 30 57%
0-75-1 2 25 49 11 87%

SL1 with categorised variables. SL2 with non-transformed variables. SAPS=Simplified Acute Physiology Score.
SL1=Super Learner 1. SL2=Super Learner 2. APACHE=Acute Physiology and Chronic Health Evaluation.

Table 3: Reclassification
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Compared with the original SAPS-II, both the cNRI and
IDI were significantly different from zero for SL1. For
SL2, the cNRI was significantly different from zero,
whereas the IDI was close to zero. Compared with the
classification provided by the actualised SAPS II, the
cNRI and IDI were significantly different from zero for
both SL1and SL2 (ie, actualised SAPS-II is better). When
compared with the actualised APACHE-II score, the
cNRI, and IDI were also significantly different from zero
(actualised APACHE-II is better) for both SL1 and SL2.

For the patients included in external validation of the
SICULA, the main reasons for ICU admission were
emergency surgery in 129 patients (65%), elective surgery
in 12 patients (6%), and medical (ie, non-surgical) in
59 patients (30%). The median SAPS-II at ICU admission
was 40 (18-56). 42 patients (21%) died during their ICU
stay. The appendix (pp 8-9) shows ROC curve for
SICULA-based hospital mortality prediction. The
corresponding AUROC was 0-94 (95% CI 0-90-0-98).
The estimated values of a and 3 were —0-43 and 1-88,
respectively (U statistic —0-01, p=0-48), suggesting good
calibration properties.

Discussion

The scores developed based on the Super Learner
algorithm improved the prediction of hospital mortality
in our sample and in an external validation sample, both
in terms of discrimination and calibration, compared
with the SAPS-II or the APACHE-II scoring systems.
The Super Learner severity score (SL2 or SICULA) is
based on untransformed versions of the variables used in
SAPS-1I and APACHE-II, and is available online through
a web application. Table 5 shows mortality prediction
scores obtained from the SAPS-II, APACHE-II, and
SICULA algorithms for three different patient profiles.
Specifically, the SAPS-II score is prone to overprediction
relative to its two other competitors, except in high-risk
surgical patients.

Acknowledging that the assumptions underlying the
use of common parametric methods are generally
unrealistic in this context for predicting ICU mortality
(eg, logistic regression, because the process leading to
ICU death is highly complex and therefore unlikely to be
adequately captured by a linear relationship with
explanatory variables), various investigators have
advocated the use of non-parametric techniques for
predicting ICU mortality. More than 15 years ago,
Dybowski and colleagues” assessed neural networks for
this purpose and reported a significantly improved
AUROC compared with standard logistic regression
including second order interactions. However, in a
similar setting, Clermont and colleagues® later found
that logistic regression and neural networks had similar
results for ICU mortality prediction. Conflicting results
were reported for other non-parametric techniques as
well. For instance, Ribas and colleagues® reported that
use of support vector machines resulted in increased
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prediction accuracy relative to the APACHE-II score® and
various shrinkage methods (including the Lasso and
ridge regression). Again, these results were tempered
when Kim and colleagues® reported no clear benefit
derived from using neural networks and support vector
machines in their sample compared with APACHE-III.
Rather, in the latter study, optimum performance was
achieved with a decision tree. Similar results have
previously been reported with the MIMIC-II dataset.”
Indeed, a Bayesian ensemble learning algorithm has
recently been assessed during an ICU mortality
prediction modelling exercise as part of the PhysioNet/
Computing in Cardiology Challenge and has shown
substantial improvement in prediction performance
compared with the SAPS score.” During the same study,
different authors achieved improved mortality prediction
with a method based on support vector machines.” Such
contradictory results on the relative performance of
different prediction methods underscore the fact that no
one algorithm invariably outperforms all others.

In any given setting, according to the outcome of
interest, the set of explanatory variables available and the
underlying population to which it will be applied, the
best predictive model might be achieved by a parametric
or any of various non-parametric methods. For example,
in a situation in which some knowledge about the true
shape of the association between the outcome and the
explanatory variables is available, a parametric model
reflecting this knowledge is likely to outperform any non-
parametric technique. The crucial advantage of the Super
Learner is that it can include as many candidate
algorithms as inputted by investigators, including
algorithms that use available scientific knowledge, and in
fact borrows strength from diversity in its library. Indeed,
established theory suggests that in large samples the
Super Learner did at least as well as the (unknown)
optimum choice among the library of candidate
algorithms.” SL1 achieves similar performance as BART,
the best candidate when using transformed variables,
whereas SL2 achieves similar performance as random
forest, which outperformed all other candidates when
using untransformed variables (figure 3). Hence, the
Super Learner offers a much more flexible alternative to
other non-parametric methods.

Our results show that various measures should be
considered when assessing the predictive performance
of a given severity score (panel). Although the discrepancy
between average predicted probability of death and actual
recorded in-sample mortality rate was substantial for the
original SAPS-II score, it was very small and nearly equal
to each of SL1, SL2, the SOFA score and the refitted
version of the SAPS-IT and APACHE-II scores. However,
these findings do not imply that the latter are equally
good mortality scores. Indeed, prediction might very well
be accurate on average, but still poor at the individual
level. Moreover, the accurate average mortality prediction
seen with the refitted SAPS-II and APACHE-II scores
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SL1 SL2
SAPS-I1, original
CNRI 0-088 (0-050 to 0-126) 0-247 (0209 t0 0-285)
IDI -0-048 (-0-055t0-0-041)  -0-001 (~0-010 to-0-008)
SAPS-II, refitted
NRI 0-295 (0-257 to 0-333) 0-528 (0-415 to 0-565)
DI 0-012 (0-008 to 0-017) 0-060 (0-054 to 0-065)
APACHE-II, refitted
cNRI 0-336 (0298 to 0-374) 0-561 (0-524 to 0-598)
IDI 0-029 (0-023 to 0-035) 0-076 (0-069 to 0-082)

Data are mean (IQR). SL1 with categorised variables. SL2 with non-transformed
variables. SL1=Super Learner 1. SL2=Super Learner 2. SAPS=Simplified Acute
Physiology Score. cNRI=continuous Net Reclassification Index. IDI=Integrated
Discrimination Improvement. APACHE=Acute Physiology and Chronic Health
Evaluation.

Table 4: Reclassification statistics

Patient two:
medical sepsis

Patient one:
haemorrhagic shock

Patient three: scheduled
high-risk surgery

Age (years) 40 80
Heart rate (bpm) 120 100
Systolic blood pressure 95 85
(mm Hg)
Glasgow Coma Scale score 8 14
Temperature (°C) 36 38
Urine output (mL) 700 700
Pa0,/Fi0, 300 200
Serum urea (mmol/L) 7 10
White blood cell count (10°/ 9 19
mm?)
Serum potassium (mmol/L) 40 4-8
Serum sodium (mmol/L) 142 142
Serum bicarbonates (umol/L) 18 18
Haematocrit (%) 25% 35%
Bilirubin (umol/L) 0-8 0-8
Chronic diseases None None
Type of admission Unscheduled surgery  Medical
(trauma)
Mortality prediction
SAPS-II 46-1% 41-5%
APACHE-II 32:2% 23-5%
SICULA 29-4% 29-9%

ICU Learner Algorithm.

80
100
100

15
35
1200
300
7

14

4-0
142
22
35%
0-8
Metastatic cancer

Scheduled surgery

213%
26-2%
287%

SAPS=Simplified Acute Physiology Score. APACHE=Acute Physiology and Chronic Health Evaluation. SICULA=Super

three different patient profiles

Table 5: mortality prediction scores obtained from the SAPS-II, APACHE-II, and SICULA algorithms for

might be indicative of a certain level of overfitting. A
broader assessment of these scores’ performance should
be considered, namely by carefully studying their
discrimination and calibration properties. On one hand,
the first SOFA score exhibited very good calibration, yet
had very poor discrimination, as shown by the large
overlap in predicted probabilities of death between
survivors and non-survivors. On the other hand, the
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Panel: Research in context

Systematic review

We searched Pubmed and Google Scholar with the following keywords: “ICU”, “mortality
prediction”, “severity scores”, “machine learning”, “Super Learner”, and “non-parametric”.
No language or date restriction was applied. All appropriate articles were selected based
on a careful reading and served as background for our research. Our search showed several
attempts had been made to use machine learning techniques in the context of intensive
care unit (ICU) mortality prediction, although to the best of our knowledge, none of the
reported efforts used ensemble learning techniques. More importantly, the resulting
scores are not commonly used or widely available to clinicians and researchers. The most
common severity scores in practice date back to the early 1980s and are based on classical
logistic regression models.

Interpretation

Our results show that flexible modelling approaches might yield significant improvement
in ICU mortality prediction. Our data suggest that instead of relying on one parametric or
non-parametric modelling technique, an ensemble machine learning approach should be
used to model outcomes as complex as ICU mortality. Clinicians should be aware that
prediction based on classical parametric approaches could be misleading. With regards to
ICU mortality prediction, the Super ICU Learner Algorithm (SICULA) is a promising
alternative that could be valuable both in clinical practice and for research purposes.

SAPS-II score had high discrimination, but was
inadequately calibrated in our sample. These results are
consistent with previous studies that evaluated the
calibration of the SAPS-II score.”

The Super Learner offered an appealing tradeoff with
good calibration properties and far better discrimination
than either the SAPS-IT and SOFA scores. Nonetheless, a
disclaimer should accompany a criticism of the SOFA
score on this basis: in reality, this score was not initially
developed for mortality prediction. However, many
intensivists use the SOFA score as a surrogate for organ
failure quantification and follow-up to assess patients’
response to ICU care, and thereby adjust their own
perception of likely patient outcomes. For this reason, we
chose to assess the performance of SOFA for ICU
mortality prediction. In view of the similarity in
calibration of the two Super Learner-based scores (SL1
and SL2), we recommend using the Super Learner with
untransformed explanatory variables (SL2) in view of its
greater discrimination. When considering risk reclassi-
fication, the two Super Learner prediction algorithms had
similar ¢cNRI, but SL2 clearly had a better IDI. When
considering the IDI, the SL1 seemed to perform worse
that the SAPS II score. Nonetheless, the IDI should be
used carefully because it has similar drawbacks as the
AUROC—ie, it summarises prediction characteristics
uniformly over all possible classification thresholds even
though many of these are unacceptable and would never
be considered in practice.”

We externally validated the performance of the SICULA
with a small dataset obtained from a French ICU.
Discrimination performance was excellent. Calibration
results were slightly worse than those obtained internally.
However, this is mitigated by the fact that the validation

sample substantially differed from the training sample,
with more severely ill patients, very few patients admitted
to hospital for coronary care, and thus a consistently
higher hospital mortality rate. Refitting the SICULA with
a wider spectrum of ICU patients would probably
improve its external validity, which is one of the main
goals of the second phase of the SICULA project.

Our study has some limitations. First, we used the
SAPS-IT and the APACHE-II scores as references
although more recent algorithms are available. This was
partly because some of the predictors included in the
most recent version of these scores were not directly
available in the MIMIC-II database. Nonetheless, these
scores (eg, SAPS-IIT and APACHE-III) are associated
with the same drawbacks as SAPS-IL*** Moreover,
those scores are the most widely used scores in practice.”
Second, our sample comes from one hospital. However,
patients in our sample come from five different ICUs,
injecting a certain level of heterogeneity in our patient
pool. This case-mix heterogeneity might in turn represent
a limitation when considering the score for a very specific
subpopulation of patients. Moreover, overfitting was
mitigated by the use of cross-validation.” The patients
included in the MIMIC-II cohort seem representative of
the overall ICU patient population, as shown by a hospital
mortality rate in the MIMIC-II cohort that is similar to
the one reported for ICU patients during the same time.?
Consequently, our score can be expected to show, in other
samples, performance characteristics similar to those
reported here, at least in samples drawn from similar
patient populations. However, by discarding patients
with many ICU admissions during the same ICU stay,
we might have shrunk the study population toward a less
severely ill one. The second phase of the SICULA project
will include patients with multiple ICU stays.
Additionally, information about do not resuscitate orders
or restricted treatments was missing in our dataset and
should ideally be taken into account in future work.
Third, the large representation in our sample of patients
admitted to coronary or cardiac surgery recovery ICU,
who often have lower severity scores than medical or
surgical ICU patients, might have limited our score’s
applicability to more critically ill patients. However,
further scrutiny showed that the average SAPS-II score
in our sample was similar to that reported in similar
studies.”*

Of note, results of the discrimination and calibration of
the SICULA by ICU type (ie, medical, trauma-surgical,
coronary, cardiac surgery recovery, and medicosurgical)
showed mno substantial difference in prediction
performance between units (appendix pp 10-12). Fourth,
some variables needed to compute the SAPS-II (eg, elective
surgery, underlying disease variables or main reason for
ICU admission) were not directly available in the dataset
and had to be extrapolated from other data. Finally, a key
assumption made was that the poor calibration associated
with present severity scores derives from the use of
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insufficiently flexible statistical models rather than an
inappropriate selection of variables included in the model.
For this reason and for the sake of providing a fair
comparison of our novel score with the SAPS-II score, we
included the same explanatory variables as used in
SAPS-II. Expansion of the set of explanatory variables used
could potentially result in a score with even better
predictive performance. In the future, expanding the
number of explanatory variables will probably further
improve the predictive performance of the score. However,
this expansion will probably strengthen further the need
for nonparametric approaches and ensemble learning
algorithms such as the Super Learner. Indeed, parametric
models are known to be less and less adequate as the
number of predictors increases.” Moreover, when
increasing the number of predictors, a sensible trade-off
between complexity and performance is even more crucial
for the score to still be applicable in practice.

Although additional work remains to be done to validate
the resulting prediction algorithm on a large external
cohort and to incorporate additional predictor variables, an
accessible, user-friendly web implementation of our
scoring procedure has been made available. This
implementation allows clinicians to use our score in their
own practice, say as an aid in working out treatment
allocation, provides an opportunity for clinician-
researchers to validate our algorithm within the context of
their own patient populations, and serves as an improved
risk stratification method for use in clinical research. This
is in rather sharp contrast with other instances in which
scores have been developed using complex machine
learning methods but the resulting scores cannot be
readily calculated by dlinicians. Indeed, we found no
example in which an implementation of a published
scoring procedure was made publicly available on the web.
In addition, we have made the corresponding R code
available to other investigators in an online appendix.

We conclude from this first stage of the SICULA project
that, in this population, the prediction of hospital mortality
based on the SICULA prediction algorithm achieves
significantly improved performance, both in terms of
calibration and discrimination, compared with
conventional severity scores. The SICULA prediction
algorithm is a promising alternative that could be valuable
both in clinical practice and for research purposes.
External validation of results of this study in different
populations, especially outside of the USA, providing
periodic updates of the SICULA fit, and assessment of the
potential benefit of including additional variables in the
score remain important future challenges that will be
tackled in the second stage of the SICULA project. Before
an unequivocal recommendation of the widespread use of
our algorithm can be made, our findings need to be
confirmed in this second phase. Nevertheless, we believe
the currently available web implementation of SICULA
(appendix p 13) should prove useful to both clinicians and
other investigators in critical care medicine.
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Appendix

Appendix 1. Super Learner Algorithm
Appendix 2. Algorithms included in the Super Learner Library

Appendix 3. Calibration plots (left, with the corresponding U statistic) and
discrimination plots (right, with corresponding discrimination slope).

The plots indicate a lack of fit for the SAPS II score. The estimated values of a and p were of -1.51
and 0.72 respectively (U statistic = 0.25, p<0.0001). The calibration properties were markedly
improved by refitting the SAPS Il score: 2 <0.0001 and f=1 (U<0.0001, p=1.00). The prediction
based on the SOFA and the APACHE II scores exhibited excellent calibration properties, as
reflected by <0.0001 and =1 (U<0.0001, p=1.00). For the Super Learner-based predictions,

though the estimates of a and p were close to the null values, the large sample size nonetheless

resulted in U-statistics significantly different from zero: SL1: 0.14 and 1.04, respectively
(U=0.0007, p=0.0001); SL2: 0.24 and 1.25, respectively (U=0.006, p<0.0001).

Appendix 4. External Validation of the SICULA
Appendix 5. Results by ICU.
Appendix 6. Use of the web app and clinical illustration

Webappendix. R Code
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Appendix 2.

Linear Models and derivatives:

Logistic regression: standard logistic regression, including only main terms for
each covariate and including interaction terms 43 (SL.glm);

Stepwise regression: logistic regression using a variable selection procedure
based on the Akaike Information Criteria 44 (SL.stepAIC);

Generalized additive model #*: additive model including smoothing functions of
the predictors, the functions being choosed in order to optimize the outcome
prediction (SL.gam);

Generalized linear model with penalized maximum likelihood #> : regression
models where the coefficients are constrained so that the sum of their absolute
values falls below some constant chosen by cross-validation, thereby achieving
variable selection while shrinking some regression coefficients toward zero
(SL.glmnet);

Multivariate adaptive polynomial spline regression *>: adaptive regression
procedure using piecewise linear splines to model the response (SL.polymars);
Bayesian generalized linear model #6 : approach to linear regression in which the
statistical analysis is undertaken within the context of Bayesian inference
(SL.bayesglm);

Generalized boosted regression model >°: machine learning method for regression
problems which produces a prediction model in the form of an ensemble of weak

prediction models (SL.gbm);

Trees and Networks:

Neural Networks 48: machine learning algorithm inspired by animal’s neuronal
network which is capable of pattern recognition (SL.nnet);
Classification trees: generally speaking, trees are methods that partition the
covariate space into disjoint pieces and then classify the observations according
to which partition element they fall in. Bagging, pruning, random forests and
BART are particular implementations of this general principle

o Bagging classification trees #°: a set a trees is created from several

subsamples drawn with replacement (SL.ipredbagg);



o Pruned Recursive Partitioning and Regression Trees 5!: pruning is a
backing technique that avoids data overfiiting (SL.rpartPrune);

o Random Forest 47 : a set a trees is created from several bootstrap samples
(SL.randomForest);

o Bayesian Additive Regression Trees >2: BART is a sum of trees model
where the growth of a tree is constrained bypriors and then uses an
iterative Markov-chain Monte Carlo algorithm to back fit the model

(SL.bart);



Appendix 3.

1. SAPSII (U=0.25, p<0.0001; discrimination slope=0.26)
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3. New fit of the SAPS Il score (U<0.0001, p=0.9999; discrimination slope=0.20)
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4. New fit of the APACHE II score (U<0.0001, p=0.9999; discrimination slope=0.18)
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Actual Probability

Actual Probability

Super Learner 1 (U=0.0007, p<0.0001; discrimination slope=0.21)
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Appendix 4.

A. Discrimination
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B. Calibration
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Appendix 5.

A. Calibration Plots
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B. Discrimination Plots (ROC curves)
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Appendix 6.

OB

SICULA (Super ICU Learner Algorithm)

This web app provides a predicted hospital mortality for any ICU patient given a set of user-supplied characteristics. WARNING: the first prediction query will necessitate several files to be uploaded on the
server. This might take several minutes. For more information, please visit: http://www.romainpirracchio.org

+ | @ webapps.biostat.berkeley.edu:8080/sicula/ — SICULA (Super ICU Learner Algorithm)

Lecteur

(@] AIDS
(=] METASTATIC CANCER
(@] LYMPHOMA
(@] Reason for ICU admission: scheduled surgery
(m] Reason for ICU issil surgery (including trauma)
(@] Reason for ICU admission: medical
E PO2/FiO2 ratio
B2 Body temperature (Celsius)
s 1 Serum Bilirubin (mg/dl)
s ] Serum urea nitrogen (mmol/l)
Clso ] ‘White Blood Cell count (x1000/mm3)

The use of the web app requires entering patients’ characteristics. For continuous variables, average
normal values are proposed by default, but can be readily entered by users. Missing values are allowed.
After inputting data in all relevant fields, the SICULA mortality prediction score can be obtained by
clicking on ‘Analyse.” In any given web session, the first prediction requested may only appear after
several minutes, since initialization of the system requires significant computational efforts.



WebAppendix.

library(SuperLearner)
# User Supplied Library for SuperLearner

SL.library =
c("SL.glmnet","SL.bayesglm","SL.glm","SL.stepAIC","SL.nnet","S
L.polymars","SL.randomForest","SL.gam", "SL.ipredbagg", "SL.gbm"
,"SL.bart","SL.svm","SL.rpartPrune")

# Define Outcome Y and Predictor Set X
Y = my.databaseSoutcome

X=
my.database[,c("admissionSAPS", "chronicSAPS", "glasgowSAPS", "ag
eSAPS", "SBPSAPS", "HRSAPS", "TempSAPS", "PF_SAPS","diuresis SAPS"
, 'ureaSAPS", "WBC_ SAPS","K SAPS","Na SAPS", "Bicarbonates SAPS",
"Bilirubin SAPS")]

# Run CV.SuperLearner (arguments : methods : non-negative
least-squares loss function ; 10-fold cross-validation for
algorithm comparison and for SuperLearner convex combination)

fitSL<-CV.SuperLearner (Y=Y, X=X, V=10, family = binomial(),
SL.library=SL.library, method = "method.NNLS", id = NULL,
verbose = TRUE, cvControl=list(stratifyCV=TRUE, shuffle=TRUE,
V=10))

# Retrieve SuperLearner-based predictions as well as
predictions from all candidate algorithms included in the SL
library

predictions <- cbind(fitSL$SL.predict,fitSL$library.predict)
# CV risk estimation for each candidate and SL

labels <- fitSLSY

folds <- fitSL$folds
plot (fitSL, package="ggplot2",constant=gnorm(0.975),sort=TRUE)
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