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A coherent and exhaustive cardiovascular model based 
on oxygen consumption, mean arterial pressure, cardiac 
output, and central venous pressure is available enabling 
the clinician to manipulate vascular tone, compliance, 
and heart effi  ciency by means of fl uid, vasoactive, or 
cardioactive drugs. 

The present study off ers the corollary of preserving the 
parasympathetic component for the cellular protection 
as yet another aim in goal-directed therapy, which 
has not been explored so far.14 Possible candidates are 
epidural analgesia, β-blockade, central α-stimulation, or 
low respiratory rate.

For goal-directed therapy to experience a renaissance, 
this parasympathetic protection would be an obvious 
target to include while simultaneously adapting a more 
comprehensive understanding of the physiology of 
goal-directed therapy.
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Mortality prediction in ICU: a methodological advance 
In The Lancet Respiratory Medicine, Pirracchio and 
colleagues1 present a new approach to predicting 
mortality in intensive care units (ICUs). The 
investigators propose that instead of picking one of 
the many mortality prediction models available, an 
ensemble machine learning approach can be used 
(the non-parametric Super Learner2) to leverage the 
individual candidate models from a pre-specifi ed 
library, to produce an optimum prediction algorithm. 
This is an elegant idea that frees the user from making 
an arbitrary choice of model, and that also guarantees 
at least as good performance as any individual model 
within that library. As statistician George Box said, 
“All models are wrong; but some are useful”; Super 
Learner looks like it could be a valuable new method to 
identify the most useful model of mortality prediction 
in ICUs. 

Many ICU scoring systems exist for severity of disease, 
morbidity, and mortality prediction (eg, Simplifi ed Acute 
Physiology Score III [SAPS-II], Acute Physiology and 
Chronic Health Evaluation III [APACHE-III], and Sequential 
Organ Failure Assessment [SOFA]) Mortality Probability 
Model [MPM]).3 These scoring systems diff er in which 
factors are included, what weight these factors are given, 
and measurement time (eg, on admission, or at 24 h, 
or continuously). They also diff er in ease of use, their 
robustness to data quality (ie, completeness and accuracy), 
and how they are used in practice (including divergence 
from intended use). By applying the Super Learner to 
Multiparameter Intelligent Monitoring in Intensive Care-II 
(MIMIC-II; 8 years of data from one US site with fi ve ICUs), 
with validation in a smaller ICU in Paris with 10 months 
of data, Pirracchio and colleagues1 convincingly show the 
approach is feasible and fi t for purpose methodologically. 
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This improved methodological performance of Super 
Learner comprises improved calibration (addressing 
a common weakness of ICU scores) and maintains 
the discrimination ability (for prognostic modelling 
primers).4 Additionally, the researchers used risk-
reclassifi cation statistics,5 and advanced cross-validation 
techniques,6 both of which should be introduced 
routinely. In particular, the discrimination (can the 
model separate the groups of survivors and deaths?) 
and the calibration (can the model accurately predict the 
individual probability of death?) are key for a prediction 
model. Super Learner seems to cope with missing data, 
potentially a major drawback for an individual model 
requiring complete data; however, this aspect will 
need rigorous assessment with real-life ICU patterns of 
missing data. 

Why is this approach a potentially important 
development? Although many ICU scores are in use, 
none have emerged as dominant in suffi  ciently varied 
contexts. Super Learner will return an optimum model 
for that context and take out the guesswork of model 
selection, potentially providing the methodological 
step change patiently anticipated. But what are the 
costs and barriers for the busy ICU clinician to realise 
any benefi ts? First, heterogeneity in patients in ICU 
and processes; the site in the study by Pirracchio 
and colleagues1 had roughly a 12% mortality rate, 
compared with 28% in ventilated patients in an UK 
ICU, showing profound diff erences between patient 
types and severity, interventions, length of stay, and 
discharge destination.7 So Super Learner will routinely 
need adapting to specifi c contexts (ie, local, national, 
or regional) depending on ICU type and case mix. 
This customisation might include specifi cation of a 
diff erent library of candidate models. Pirracchio and 
colleagues only used covariates specifi ed in established 
ICU scores (ie, SAPS and APACHE), but with a richer 
set of candidate models or a larger set of covariates, 
the Super Learner might do even better. Additionally, 
the local customisation will need local data loaded. At 
present, both the customisation of the Super Learner 
library and addition of local data in volume need 
specialist programming and modelling, but an easy to 
use interface is under development according to the 
investigators.

What might the Super Learner-based model 
provide? At an aggregate level, there is increasing 

interest in comparing performance between ICUs.8 
Such comparisons are statistically complex, but 
improved prognostic models should lessen risks of 
inappropriate or misleading comparisons. However, 
the most exciting possibilities might be realised 
at the patient level. More robust and accurate 
individual predictions of morbidity and mortality 
from better models might improve clinical decision 
making, giving clinicians better information about 
the likelihood of good or poor outcomes, and hence 
better inform risk–benefit assessments and improve 
individual management. 

However, whether such improved information 
actually leads to clinical benefi t will need to be 
rigorously assessed. With the huge and increasing 
volume and complexity of information coming 
from many sources in the ICU, whether clinicians 
actually act wisely on apparently improved outcomes 
predictions to produce worthwhile benefi t needs 
to be assessed, along with the possible harms and 
acceptability to patients. This step would call for 
large-scale multicentre pragmatic eff ectiveness trials, 
giving confi dence to introduce such enhanced scoring 
algorithms into clinical practice and continue their 
development. Pirracchio and colleagues have made an 
important contribution as a fi rst step on that road to 
better patient outcomes in ICU. 
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Mortality prediction in intensive care units with the Super ICU 
Learner Algorithm (SICULA): a population-based study
Romain Pirracchio, Maya L Petersen, Marco Carone, Matthieu Resche Rigon, Sylvie Chevret, Mark J van der Laan

Summary
Background Improved mortality prediction for patients in intensive care units is a big challenge. Many severity scores 
have been proposed, but fi ndings of validation studies have shown that they are not adequately calibrated. The Super ICU 
Learner Algorithm (SICULA), an ensemble machine learning technique that uses multiple learning algorithms to obtain 
better prediction performance, does at least as well as the best member of its library. We aimed to assess whether the 
Super Learner could provide a new mortality prediction algorithm for patients in intensive care units, and to assess its 
performance compared with other scoring systems. 

Methods From January, 2001, to December, 2008, we used the Multiparameter Intelligent Monitoring in Intensive Care II 
(MIMIC-II) database (version 26) including all patients admitted to an intensive care unit at the Beth Israel Deaconess 
Medical Centre, Boston, MA, USA. We assessed the calibration, discrimination, and risk classifi cation of predicted 
hospital mortality based on Super Learner compared with SAPS-II, APACHE-II, and SOFA. We calculated performance 
measures with cross-validation to avoid making biased assessments. Our proposed score was then externally validated on 
a dataset of 200 randomly selected patients admitted at the intensive care unit of Hôpital Européen Georges-Pompidou, 
Paris, France, between Sept 1, 2013, and June, 30, 2014. The primary outcome was hospital mortality. The explanatory 
variables were the same as those included in the SAPS II score. 

Findings 24 508 patients were included, with median SAPS-II of 38 (IQR 27–51) and median SOFA of 5 (IQR 2–8). 3002 
of 24 508 (12%) patients died in the Beth Israel Deaconess Medical Centre. We produced two sets of predictions based on 
the Super Learner; the fi rst based on the 17 variables as they appear in the SAPS-II score (SL1), and the second, on the 
original, untransformed variables (SL2). The two versions yielded average predicted probabilities of death of 0·12 (IQR 
0·02–0·16) and 0·13 (0·01–0·19), whereas the corresponding value for SOFA was 0·12 (0·05–0·15) and for SAPS-II 
0·30 (0·08–0·48). The cross-validated area under the receiver operating characteristic curve (AUROC) for SAPS-II was 
0·78 (95% CI 0·77–0·78) and 0·71 (0·70–0·72) for SOFA. Super Learner had an AUROC of 0·85 (0·84–0·85) when 
the explanatory variables were categorised as in SAPS-II, and of 0·88 (0·87–0·89) when the same explanatory variables 
were included without any transformation. Additionally, Super Learner showed better calibration properties than 
previous score systems. On the external validation dataset, the AUROC was 0·94 (0·90–0·98) and calibration properties 
were good.

Interpretation Compared with conventional severity scores, Super Learner off ers improved performance for predicting 
hospital mortality in patients in intensive care units. A user-friendly implementation is available online and should be 
useful for clinicians seeking to validate our score.

Funding Fulbright Foundation, Assistance Publique–Hôpitaux de Paris, Doris Duke Clinical Scientist Development 
Award, and the NIH.

Introduction
The burden of care for critically ill patients is huge. In the 
USA, the cost of care for critically ill patients accounts for 
nearly 1% of the gross domestic product, and although 
less than 10% of hospital beds are found in intensive care 
units (ICU), ICU departments account for 22% of total 
hospital costs.1 In the UK, the cost of intensive care is 
estimated to be £541 million per year, which represents 
0·6% of National Health Service expenditures.2 During 
2009–12, the average hospital mortality rate for patients in 
ICU was estimated to be 11–12%.3 Prediction of mortality 
in patients in ICU is crucial for the assessment of severity 
of illness and adjudication of the value of novel treatments, 
interventions, and health-care policies. In the past 
30 years, a big eff ort has been made in modelling the risk 

of death in patients in ICU. Several severity scores have 
been developed with the objective of predicting hospital 
mortality from baseline patient characteristics.

The fi rst scores proposed with the Acute Physiology 
and Chronic Health Evaluation (APACHE),4 APACHE- II,5 
and Simplifi ed Acute Physiology Score (SAPS),6 relied on 
subjective methods for variable selection, namely relying 
on a panel of experts to select and assign weights to 
variables according to perceived relevance for mortality 
prediction. Further scores, such as the SAPS-II,7 were 
subsequently developed with statistical modelling 
techniques.7–10 Up to now, the SAPS-II7 and APACHE-II5 
scores remain the most widely used in clinical practice. 
However, since fi rst being published, they have been 
modifi ed several times to improve their predictive 

Lancet Respir Med 2015; 
3: 42–52

Published Online
November 24, 2014

http://dx.doi.org/10.1016/
S2213-2600(14)70239-5

See Comment page 5

Division of Biostatistics, 
School of Public Health, 
University of California, 

Berkeley, CA, USA 
(R Pirracchio MD, 
M L Petersen MD, 

Prof M J van der Laan PhD); 
Service de Biostatistique et 

Information Médicale, Unité 
INSERM 1153, Equipe ECSTRA, 

Hôpital Saint Louis, Paris, 
France (R Pirracchio, 

M R Rigon MD, 
Prof S Chevret MD); Service 

d’Anesthésie-Réanimation, 
Hôpital Européen Georges 

Pompidou, Paris, France 
(R Pirracchio); and Department 

of Biostatistics, School of 
Public Health, University of 

Washington, Seattle, WA, USA 
(M Carone PhD)

Correspondence to:
Dr Romain Pirracchio, Service 

d’Anesthésie-Réanimation, 
Hôpital Européen Georges 

Pompidou, Paris 75015, France
romain.pirracchio@egp.aphp.fr

http://crossmark.crossref.org/dialog/?doi=10.1016/S2213-2600(14)70239-5&domain=pdf
John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




Articles

www.thelancet.com/respiratory   Vol 3   January 2015 43

performance.9,10 These scores discriminate survivors and 
non-survivors well. However, data from several external 
validation studies done in various countries have 
suggested that the most recent versions of SAPS and 
APACHE are not adequately calibrated, which means that 
they fail to accurately predict the actual probability of 
death.11,12 Locally customised variants of these scores have 
also been developed to incorporate regional variations. 
For instance, versions of the SAPS score have been 
specifi cally tailored to France, southern Europe, and 
Mediterranean countries, and to central and western 
Europe.10,13,14 Despite these extensions of SAPS, predicted 
hospital mortality remains generally overestimated.11,12,15–17

Most ICU severity scores rely on a logistic regression 
model. Such models impose stringent constraints on the 
association between explanatory variables and risk of 
death. For instance, main-term logistic regression typically 
relies on a linear and additive relationship between a pre-
specifi ed transformation of the mean outcome and its 
predictors. In view of the complex processes underlying 
death in patients in ICU, such an assumption might be 
unrealistic, and predictive power might be low if an 
incorrect parametric model is used as opposed to a more 
fl exible option. On the contrary, if the assumed parametric 
model is correct, it will generally provide the best 
prediction, at least in large samples. Hence, the poor 
calibration of present severity scores might be, to a large 
extent, a consequence of the misspecifi cation of the 
underlying statistical model rather than to the choice of 
variables included in this model. We aimed to assess 
whether a more fl exible statistical approach, namely the 
Super Learner, could improve ICU mortality prediction 
compared with conventional methods without needing to 
include additional variables in the scoring procedure.

Methods
Study design and participants
The MIMIC-II study18–20 includes all patients admitted to 
an ICU at the Beth Israel Deaconess Medical Centre 
(BIDMC), Boston, MA, USA, since 2001. Patient 
recruitment is still in progress. In this study, we only 
included data from MIMIC-II version 26 (2001–08) for 
adult patients (aged >15 years) in ICU.

The BIDMC is a 620-bed tertiary academic medical 
centre and a level one trauma centre with 77 critical care 
beds. The ICUs at the BIDMC are closed (ie, the 
intensivists are responsible for patient care, not the 
physician referring the patient to the ICU), with 
continuous in-house supervision of patient care by an 
intensivist. These ICUs include medical, trauma-
surgical, coronary, cardiac surgery recovery, and 
medicosurgical critical care units.

All consecutive patients were included in the MIMIC-II 
database. Staff  were not involved with data acquisition  
and did not interfere with the clinical care of patients or 
methods of monitoring. We included only patients with 
one ICU admission per hospital stay. We collected two 

categories of data: clinical data, aggregated from ICU 
information systems and hospital archives, and high-
resolution physiological data (waveforms and time series 
of derived physiological measurements), recorded on 
bedside monitors. Clinical data were obtained from the 
CareVue clinical information system (models M2331A 
and M1215A, Philips Healthcare, Andover, MA, USA) 
deployed in all study ICUs, and from hospital electronic 
archives. The data included time-stamped nurse-verifi ed 
physiological measurements (eg, measurements of heart 
rate, arterial blood pressure, and pulmonary artery 
pressure every hour), nurses’ and respiratory therapists’ 
progress notes, continuous intravenous drip drugs, fl uid 
balances, patient demographics, interpretations of 
imaging studies, physician orders, discharge summaries, 
and International Classifi cation of Diseases-9 (ICD-9) 
codes. Comprehensive diagnostic laboratory results (eg, 
blood chemistry, complete blood counts, arterial blood 
gases, and microbiology results) were obtained from the 
patient’s entire hospital stay including periods outside the 
ICU. In the present study, we focused exclusively on 
outcome variables (specifi cally ICU and hospital 
mortality) and variables included in the SAPS-II7 and 
SOFA scores.21

This study was approved by the institutional review 
boards of BIDMC and the Massachusetts Institute of 
Technology (Cambridge, MA, USA). Requirement for 
individual patient consent was waived because the study 
did not aff ect clinical care and all protected health 
information was de-identifi ed. De-identifi cation was 
done in compliance with Health Insurance Portability 
and Accountability Act (HIPAA) standards to facilitate 
public access to MIMIC-II. Deletion of protected health 
information from structured data sources (eg, database 
fi elds that provide patient name or date of birth) was 
direct and systematic. Additionally, protected health 
information was removed from the discharge 
summaries and diagnostic reports and the roughly 
700 000 free-text nursing and respiratory notes in 
MIMIC-II with an automated algorithm previously 
shown to outperform clinicians in detecting protected 
health information.22

Outcomes and procedures
The primary outcome measure was hospital mortality. 
The data recorded within the fi rst 24 h after ICU 
admission were extracted separately from the MIMIC-II 
(version 26) database and used to compute two of the 
most widely used severity scores, namely the SAPS-II7 
and SOFA21 scores. Individual mortality prediction for the 
SAPS-II score was calculated as defi ned by its authors:7

log =
pr(death)

1−pr(death)
−7·7631 + 0·0737 × SAPS-II +
0·9971 × log(1 + SAPS-II)

Additionally, we developed a new version of the SAPS-II 
score, by fi tting a main-term logistic regression model to 
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our data by use of the same explanatory variables as those 
used in the original SAPS-II score.7 The same procedure 
was used to build a new version of the APACHE-II score.5 
Finally, we computed SOFA score for all participants 
because it is sometimes used in clinical practice as a proxy 
for outcome prediction.21 We obtained mortality prediction 
based on the SOFA score by regressing hospital mortality 
on the SOFA score with a main-term logistic regression. 
We compared these two algorithms for mortality 
prediction with our Super Learner-based proposal.

The Super Learner has been proposed as a method for 
selecting via cross-validation the optimum regression 
algorithm among all weighted combinations of a set of 
candidate algorithms (ie, the library; appendix pp 3–4).23–25 
To implement the Super Learner, a user needs to provide 
a customised collection of various data-fi tting algorithms 
and also specify a performance measure (in this study 
the squared diff erence between observed and predicted 
outcomes). The Super Learner then uses V-fold cross-
validation to estimate the mean squared prediction error 

of each algorithm on data not used when building the 
prediction model, and then selects the convex 
combination of algorithms that provides the smallest 
squared prediction error on independent data.

Comparison of the 12 algorithms relied on ten-fold 
cross-validation. We split data into ten mutually exclusive 
and exhaustive blocks of roughly equal size (appendix 
p 2). Each algorithm was fi tted on nine blocks (the 
training set) and used to predict mortality for patients in 
the remaining block (the validation set). We then 
calculated the mean squared error between predicted and 
recorded outcomes. This procedure was repeated ten 
times, with a diff erent block used as validation set every 
time. Therefore, each fi nding served exactly once in the 
validation set and was included in the training set for all 
other rounds. We aggregated performance measures over 
all ten iterations, yielding a cross-validated estimate of the 
mean-squared error (CV-MSE) for each algorithm. 
A crucial aspect of this approach is that for each iteration, 
no patient appears in both the training and validation 
sets. The potential for overfi tting, wherein the fi t of an 
algorithm is overly tailored to the available data at the 
expense of performance on future data, is thereby 
mitigated because overfi tting is more likely when training 
and validation sets intersect. Candidate algorithms were 
ranked according to their CV-MSE and the algorithm with 
least CV-MSE was identifi ed. We then refi tted the 
algorithm with all available data, leading to a prediction 
rule referred to as the Discrete Super Learner. 
Subsequently, we computed the prediction rule consisting 
of the CV-MSE-minimising weighted convex combination 
of all candidate algorithms and refi tted on all data (ie, the 
Super Learner combination algorithm).25 Finally, we 
assessed the performance of the Super Learner 
combination algorithm with an additional layer of cross 
validation; the entire procedure was run in turn on each 
9/10th of the data, and performance measures described 
below were assessed on the remaining validation set and 
averaged across the ten validation sets.

Theoretical data suggest that, to optimise the 
performance of the resulting algorithm, the inputted 
library should include as many algorithms as possible. In 
this study, the library size was limited to 12 algorithms 
(appendix pp 3–4) for computational reasons. Of these 
12 algorithms, some were parametric, such as logistic 
regression or related methods classically used for ICU 
scoring systems, and some were non-parametric—ie, 
they imposed only minimum constraints on the 
underlying data distribution. In the present study, we 
chose the library to include most of the parametric 
(including regression models with various combinations 
of main and interaction terms as well as splines, and 
fi tted using maximum likelihood with or without 
penalisation) and non-parametric algorithms previously 
assessed for the prediction of mortality in critically ill 
patients in the scientifi c literature. The main-term logistic 
regression is the parametric algorithm that has been used 

See Online for appendix

Overall population 
(n=24 508)

Dead at hospital 
discharge (n=3002)

Alive at hospital 
discharge (n=21 506)

Age (years) 65 (51–77) 74 (59–83) 64 (50–76)

Sex (% women) 13 838 (57%) 1607 (54%) 12 231 (57%)

First SAPS 13 (10–17) 18 (14–22) 13 (9–17)

First SAPS-II 38 (27–51) 53 (43–64) 36 (27–49)

First SOFA 5 (2–8) 8 (5–12) 5 (2–8)

Type of admission

Medical 2453 (10%) 240 (8%) 2213 (10%)

Trauma 7703 (31%) 1055 (35%) 6648 (31%)

Emergency surgery 10 803 (44%) 1583 (53%) 9220 (43%)

Scheduled surgery 3549 (15%) 124 (4%) 3425 (16%)

Type of ICU

Medical 7488 (31%) 1265 (42%) 6223 (29%)

Medicosurgical 2686 (11%) 347 (12%) 2339 (11%)

Coronary 5285 (22%) 633 (21%) 4652 (22%)

Cardiac surgery recovery 8100 (33%) 664 (22%) 7436 (35%)

Trauma surgical 949 (4%) 93 (3%) 856 (4%)

Heart rate (bpm) 87 (75–100) 92 (78–109) 86 (75–99)

Mean arterial pressure (mm Hg) 81 (70–94) 78 (65–94) 82 (71–94)

Respiratory rate (cpm) 14 (12–20) 18 (14–23) 14 (12–18)

Serum sodium (mmol/L) 139 (136–141) 138 (135–141) 139 (136–141)

Serum potassium (mmol/L) 4·2 (3·8–4·6) 4·2 (3·8–4·8) 4·2 (3·8–4·6)

Serum bicarbonates (mmol/L) 26 (22–28) 24 (20–28) 26 (23–28)

White blood cell count (10³/mm³) 10·3 (7·5–14·4) 11·6 (7·9–16·9) 10·2 (7·4–14·1)

Pa02/Fi02 281 (130–447) 174 (90–352) 312 (145–461)

Haematocrit (%) 34·7 (30·4–39) 33·8 (29·8–38) 34·8 (30·5–39·1)

Urea nitrogen (mmol/l) 20 (14–31) 28 (18–46) 19 (13–29)

Bilirubin (μmol/L) 0·6 (0·4–1) 0·7 (0·4–1·5) 0·6 (0·4–0·9)

Hospital length of stay (days) 8 (4–14) 9 (4–17) 8 (4–14)

ICU death (%) 1978 (8%) 1978 (66%) ··

Data are median (IQR) or count (%). SAPS=Simplifi ed Acute Physiology Score. SOFA=Sepsis-related Organ Failure 
Assessment. ICU=intensive care unit. bpm=beats per minute. cpm=counts per minute.

Table 1: Baseline characteristics and outcome measures
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For the SICULA web interface see 
http://webapps.biostat.berkeley.
edu:8080/sicula/

for constructing both the SAPS-II and APACHE-II 
scores. This algorithm was included in the Super Learner 
library so that revised fi ts of the SAPS-II score based on 
the current data also competed against other algorithms.

The data used in fi tting our prediction algorithm 
included the 17 variables used in the SAPS-II score: 
13 physiological variables (age, Glasgow Coma Scale, 
systolic blood pressure, heart rate, body temperature, 
PaO2/FiO2 ratio, urinary output, serum urea nitrogen 
concentration, white blood cell count, serum bicarbonate 
concentration, sodium concentration, potassium 
concentration, and bilirubin concentration), type of 
admission (scheduled surgical, unscheduled surgical, or 
medical), and three underlying disease variables (acquired 
immunodefi ciency syndrome, metastatic cancer, and 
haematological cancer derived from ICD-9 discharge 
codes). We produced two sets of predictions based on the 
Super Learner; the fi rst based on the 17 variables as they 
appear in the SAPS-II score (SL1), and the second, on the 
original, untransformed variables (SL2).

The SICULA prediction algorithm
We refer to the Super Learner-based prediction algorithm 
using untransformed variables (SL2) as SICULA, an 
acronym for Super ICU Learning Algorithm. An 
implementation of the SICULA in JavaScript and R has 
been made available via a user-friendly web interface. 
With this web application, clinicians and researchers can 
obtain the predicted probability of hospital mortality in 
patients in ICU based on SICULA by inputting patient 
characteristics.

External validation
An external validation of the predictive performance of the 
SICULA was done with the same metrics but an 
independent dataset. For external validation, we used data 
from 200 patients admitted to hospital between Sept 1, 
2013, and June 30, 2014. The patients were randomly 
selected (a random list of patient IDs was generated in all 
patient IDs found in our local ICU database, and 
corresponding patients were recruited into our cohort) 
from the internal anonymous database of patients from 
the medical, surgical, and trauma ICU at Hôpital 
Européen Georges Pompidou, Paris, France, a tertiary 
academic medical centre and level one trauma centre. 

Performance measures
A key objective of this study was to compare the predictive 
performance of scores based on the Super Learner with 
that of the SAPS-II and SOFA scores. This comparison 
depended on various measures of predictive performance. 
First, a mortality prediction algorithm has adequate 
discrimination if it tends to assign higher severity scores 
to patients who died in the hospital than to those who did 
not. We assessed discrimination with the cross-validated 
area under the receiver-operating characteristic curve 
(AUROC), reported with corresponding 95% confi dence 

intervals. Discrimination can be graphically shown with 
the receiver-operating curves (ROC). Additional methods 
for assessment of discrimination include boxplots of 
predicted probabilities of death for survivors and non-
survivors, and corres ponding discrimination slopes, 
defi ned as the diff erence between the mean predicted 
risks in survivors and non-survivors.

Second, a mortality prediction algorithm is adequately 
calibrated if predicted and recorded probabilities of death 
coincide well. We assessed calibration with the Cox 
calibration test.12,26,27 Because of its many shortcomings, 
including poor performance in large samples, we avoided 
the more conventional Hosmer-Lemeshow statistic.28,29 
Under perfect calibration, a prediction algorithm will 
satisfy the logistic regression equation:

Observed log-odds of death = α + β × predicted log-odds 
of death

Where α=0 and β=1. To implement the Cox calibration 
test, a logistic regression is done to estimate α and β; 
these estimates suggest the degree of deviation from 
ideal calibration. The null hypothesis (α, β)=(0,1) is tested 
formally with a U-statistic.30

Third, summary reclassifi cation measures, including 
the continuous Net Reclassifi cation Index (cNRI) and 
the Integrated Discrimination Improvement (IDI), are 
relative metrics that have been devised to overcome the 
limitations of usual discrimination and calibration 
measures.31–33 The cNRI comparing severity score A with 

Figure 1: Receiver-operating characteristics curves
SL1 with categorised variables and SL2 with non-transformed variables. 
Results were obtained with 10-fold cross-validation. We also implemented 
50-fold cross-validation and noted no material change in the estimated 
performance of the SICULA algorithm (cross-validated-AUC for the SICULA 
0·91 [95% CI 0·90–0·92]). AUROC=area under the receiver-operating 
characteristics curve. SOFA=Sepsis-related Organ Failure Assessment. 
SAPS=Simplifi ed Acute Physiology Score. APACHE=Acute Physiology and 
Chronic Health Evaluation. SL1=Super Learner 1. SL2=Super Learner 2. 
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score B is defi ned as twice the diff erence between the 
proportion of non-survivors and of survivors, 
respectively, deemed more severe according to score A 
rather than score B. The IDI comparing severity score 
with score B is the average diff erence in score A between 
survivors and non-survivors minus the average 
diff erence in score B between survivors and non-
survivors. Positive values of the cNRI and IDI suggest 
that score A has better discriminative ability than score 
B, whereas negative values suggest the opposite. We 
computed the reclassifi cation tables and associated 
summary measures to compare each Super Learner 
proposal with the original SAPS-II score and each of the 
revised fi ts of the SAPS-II and APACHE-II scores. All 
analyses were done with statistical software R (version 
2.15.2) for Mac OS X cross-validated AUROC (cv-
AUROC),34 Super Learner,35 and ROCR.36

Role of the funding sources
The funders of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 

the report. The corresponding author had full access to all 
the data in the study and had fi nal responsibility for the 
decision to submit for publication.

Results
24 508 patients were included in this study. Table 1 shows 
their baseline characteristics. Figure 1 shows ROCs for 
hospital mortality prediction. The cv-AUROC was 0·71 
(95% CI 0·70–0·72) for the SOFA score, and 0·78 
(0·77–0·78) for the SAPS-II score. When refi tting the 
SAPS-II score on our data, the cv-AUROC reached 0·83 
(95% CI 0·82–0·83), which is similar to the results 
obtained with the revised fi t of the APACHE-II, which 
led to an AUROC of 0·82 (0·81–0·83). The two Super 
Learner (SL1 and SL2) prediction models substantially 
outperformed the SAPS-II and the SOFA scores, showing 
a clear advantage of the Super Learner-based prediction 
algorithms over both the SOFA and SAPS-II scores.

We also investigated discrimination by comparing 
diff erences between the predicted probabilities of death 
in the survivors and the non-survivors with each 
prediction algorithm (appendix p 3). The discrimination 
slope was 0·09 for the SOFA score, 0·26 for the SAPS-II 
score, 0·21 for SL1, and 0·26 for SL2.

Table 2 shows the average predicted probabilities of 
death based on SL1 and SL2. Probability was similar 
when we used the SOFA score, the refi tted version of the 
SAPS-II score, and the APACHE-II score. The average 
probability of death was severely overestimated by the 
original version of the SAPS-II score (0·30; IQR 
0·08–0·48). Figure 2 shows the predicted probabilities of 
death by survivorship status. Calibration plots suggest a 
lack of fi t for the SAPS-II score (appendix pp 5–7), 
although the calibration properties were markedly 
improved by refi tting the SAPS-II score. The prediction 
based on the SOFA and the APACHE-II scores showed 
excellent calibration properties. For the Super Learner-
based predictions, the estimates of α and β were close to 
the null values. The calibration plots suggest that SL1 is 
the only method that provides accurate predictions for the 
entire range of death probability. Indeed, for other 
algorithms, the predicted probabilities fall close to the 
ideal calibration line for low probabilities of death but 
move away from this line as death probabilities increase. 
For SL1, the predicted probabilities stay close to the ideal 
calibration line whatever the death probability.

Figure 3 shows the performance of the 12 candidate 
algorithms, the Discrete Super Learner and the Super 
Learner combination algorithms, as assessed by CV-MSE 
and cv-AUROC. As suggested by theory, when either 
categorised variables (SL1) or untransformed variables 
(SL2) are used, the Super Learner combination algorithm 
achieved the same performance as the best of all 
12 candidates, with an average CV-MSE of 0·084 (SE 0·001) 
and an average AUROC of 0·85 (95% CI 0·84–0·85) for 
SL1 (best algorithm was Bayesian additive regression 
trees, with CV-MSE 0·084 and AUROC 0·85 [95% CI 

Figure 2: Distribution of the predicted probability of death in the survivors and the non-survivors
SOFA=Sepsis-related Organ Failure Assessment. SAPS=Simplifi ed Acute Physiology Score. APACHE=Acute 
Physiology and Chronic Health Evaluation. SL1=Super Learner 1. SL2=Super Learner 2. 
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APACHE-II refi tted 0·12 (0·03–0·16)

SL1 0·12 (0·02–0·16)

SL2 0·13 (0·01–0·19)

Data are mean (IQR). SOFA=Sepsis-related Organ Failure Assessment.
SAPS=Simplifi ed Acute Physiology Score. APACHE=Acute Physiology and 
Chronic Health Evaluation. SL1=Super Learner 1. SL2=Super Learner 2.

Table 2: Recorded (3002 [12%]) versus predicted hospital mortality
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0·84–0·85]). For the SL2, the average CV-MSE was of 
0·076 (SE=0·001) and the average AUROC was 0·88 
(95% CI 0·87–0·89; best algorithm was random forests, 
with CV-MSE 0·076 and AUROC 0·88 [95% CI 
0·87–0·89]). In both cases (SL1 and SL2), the Super 
Learner was better than the main-term logistic regression 
used to develop the SAPS-II or the APACHE-II score 

(main-term logistic regression: CV-MSE=0·087 [SE=0·001] 
and AUROC=0·83 [95% CI 0·82–0·83]).

Table 3 shows reclassifi cation including the SAPS-II 
score in its original and its actualised versions, the revised 
APACHE-II score, and the SL1 and SL2 scores. When 
compared with the classifi cation provided by the original 
SAPS-II, the actualised SAPS II or the revised 

Figure 3: Cross-validated mean-squared error for Super Learner and the 12 candidate algorithms included in the library
(A) SL with categorised variables (Super Learner 1); mean squared error associated with each candidate algorithm. (B) Receiver operating curve (ROC) for each 
candidate algorithm. (C) Super Learner with non-transformed variables (Super Learner 2); mean squared error associated with each candidate algorithm. (D) ROC for 
each candidate algorithm. SL=Super Learner. GAM=generalised additive model. GLM=generalised linear model. RPART=recursive partitioning and regression trees. 
CV=cross-validated. AUROC= area under the receiver-operating characteristics curve.
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APACHE-II score, the Super Learner-based scores 
resulted in a downgrade of most patients to a lower risk 
stratum. We noted this fi nding especially in patients with 
a predicted probability of death higher than 0·5. When 
compared with either the revised SAPS-II or APACHE-II 
scores, both Super Learner proposals resulted in a large 
proportion of patients reclassifi ed, especially from higher 
predicted probability strata to lower ones.

We computed the cNRI and the IDI considering each 
Super Learner proposal (score A) as the updated model 
and the original SAPS-II, the new SAPS-II and the new 
APACHE-II scores (score B) as the initial model. In this 
case, positive values of the cNRI and IDI would suggest 
that score A has better discriminative ability than score 
B, whereas negative values suggest the opposite (table 4). 

Compared with the original SAPS-II, both the cNRI and 
IDI were signifi cantly diff erent from zero for SL1. For 
SL2, the cNRI was signifi cantly diff erent from zero, 
whereas the IDI was close to zero. Compared with the 
classifi cation provided by the actualised SAPS II, the 
cNRI and IDI were signifi cantly diff erent from zero for 
both SL1 and SL2 (ie, actualised SAPS-II is better). When 
compared with the actualised APACHE-II score, the 
cNRI, and IDI were also signifi cantly diff erent from zero 
(actualised APACHE-II is better) for both SL1 and SL2. 

For the patients included in external validation of the 
SICULA, the main reasons for ICU admission were 
emergency surgery in 129 patients (65%), elective surgery 
in 12 patients (6%), and medical (ie, non-surgical) in 
59 patients (30%). The median SAPS-II at ICU admission 
was 40 (18–56). 42 patients (21%) died during their ICU 
stay. The appendix (pp 8–9) shows ROC curve for 
SICULA-based hospital mortality prediction. The 
corresponding AUROC was 0·94 (95% CI 0·90–0·98). 
The estimated values of α and β were –0·43 and 1·88, 
respectively (U statistic –0·01, p=0·48), suggesting good 
calibration properties.

Discussion
The scores developed based on the Super Learner 
algorithm improved the prediction of hospital mortality 
in our sample and in an external validation sample, both 
in terms of discrimination and calibration, compared 
with the SAPS-II or the APACHE-II scoring systems. 
The Super Learner severity score (SL2 or SICULA) is 
based on untransformed versions of the variables used in 
SAPS-II and APACHE-II, and is available online through 
a web application. Table 5 shows mortality prediction 
scores obtained from the SAPS-II, APACHE-II, and 
SICULA algorithms for three diff erent patient profi les. 
Specifi cally, the SAPS-II score is prone to overprediction 
relative to its two other competitors, except in high-risk 
surgical patients.

Acknowledging that the assumptions underlying the 
use of common parametric methods are generally 
unrealistic in this context for predicting ICU mortality 
(eg, logistic regression, because the process leading to 
ICU death is highly complex and therefore unlikely to be 
adequately captured by a linear relationship with 
explanatory variables), various investigators have 
advocated the use of non-parametric techniques for 
predicting ICU mortality. More than 15 years ago, 
Dybowski and colleagues37 assessed neural networks for 
this purpose and reported a signifi cantly improved 
AUROC compared with standard logistic regression 
including second order interactions. However, in a 
similar setting, Clermont and colleagues38 later found 
that logistic regression and neural networks had similar 
results for ICU mortality prediction. Confl icting results 
were reported for other non-parametric techniques as 
well. For instance, Ribas and colleagues39 reported that 
use of support vector machines resulted in increased 

Predicted probability according to initial model Reclassifi ed (%)

0–0·25 0·25–0·5 0·5–0·75 0·75–1

SAPS-II, original

SL1

0–0·25 13 341 134 3 0 1%

0·25–0·5 4529 723 50 0 86%

0·5–0·75 2703 1090 174 2 96%

0·75–1 444 705 473 137 92%

SL2

0–0·25 12 932 490 55 1 4%

0·25–0·5 4062 1087 142 11 79%

0·5–0·75 2531 1165 258 15 93%

0·75–1 485 775 448 51 97%

SAPS-II, refi tted

SL1

0–0·25 20 104 884 30 2 4%

0·25–0·5 894 1426 238 9 44%

0·5–0·75 18 328 361 62 53%

0·75–1 1 14 71 66 57%

SL2

0–0·25 19 221 1667 124 8 9%

0·25–0·5 765 1478 318 6 42%

0·5–0·75 24 346 367 32 52%

0·75–1 0 26 94 32 79%

APACHE-II, refi tted

SL1

0–0·25 19 659 1140 107 6 6%

0·25–0·5 1262 1195 296 34 57%

0·5–0·75 89 298 264 71 63%

0·75–1 7 19 33 28 68%

SL2

0–0·25 18 930 1764 200 18 9%

0·25–0·5 1028 1395 345 19 50%

0·5–0·75 50 333 309 30 57%

0·75–1 2 25 49 11 87%

SL1 with categorised variables. SL2 with non-transformed variables. SAPS=Simplifi ed Acute Physiology Score. 
SL1=Super Learner 1. SL2=Super Learner 2. APACHE=Acute Physiology and Chronic Health Evaluation.

Table 3: Reclassifi cation
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prediction accuracy relative to the APACHE-II score5 and 
various shrinkage methods (including the Lasso and 
ridge regression). Again, these results were tempered 
when Kim  and colleagues40 reported no clear benefi t 
derived from using neural networks and support vector 
machines in their sample compared with APACHE-III.
Rather, in the latter study, optimum performance was 
achieved with a decision tree. Similar results have 
previously been reported with the MIMIC-II dataset.41 

Indeed, a Bayesian ensemble learning algorithm has 
recently been assessed during an ICU mortality 
prediction modelling exercise as part of the PhysioNet/
Computing in Cardiology Challenge and has shown 
substantial improvement in prediction performance 
compared with the SAPS score.41 During the same study, 
diff erent authors achieved improved mortality prediction 
with a method based on support vector machines.42 Such 
contradictory results on the relative performance of 
diff erent prediction methods underscore the fact that no 
one algorithm invariably outperforms all others.

In any given setting, according to the outcome of 
interest, the set of explanatory variables available and the 
underlying population to which it will be applied, the 
best predictive model might be achieved by a parametric 
or any of various non-parametric methods. For example, 
in a situation in which some knowledge about the true 
shape of the association between the outcome and the 
explanatory variables is available, a parametric model 
refl ecting this knowledge is likely to outperform any non-
parametric technique. The crucial advantage of the Super 
Learner is that it can include as many candidate 
algorithms as inputted by investigators, including 
algorithms that use available scientifi c knowledge, and in 
fact borrows strength from diversity in its library. Indeed, 
established theory suggests that in large samples the 
Super Learner did at least as well as the (unknown) 
optimum choice among the library of candidate 
algorithms.25 SL1 achieves similar performance as BART, 
the best candidate when using transformed variables, 
whereas SL2 achieves similar performance as random 
forest, which outperformed all other candidates when 
using untransformed variables (fi gure 3). Hence, the 
Super Learner off ers a much more fl exible alternative to 
other non-parametric methods.

Our results show that various measures should be 
considered when assessing the predictive performance 
of a given severity score (panel). Although the discrepancy 
between average predicted probability of death and actual 
recorded in-sample mortality rate was substantial for the 
original SAPS-II score, it was very small and nearly equal 
to each of SL1, SL2, the SOFA score and the refi tted 
version of the SAPS-II and APACHE-II scores. However, 
these fi ndings do not imply that the latter are equally 
good mortality scores. Indeed, prediction might very well 
be accurate on average, but still poor at the individual 
level. Moreover, the accurate average mortality prediction 
seen with the refi tted SAPS-II and APACHE-II scores 

might be indicative of a certain level of overfi tting. A 
broader assessment of these scores’ performance should 
be considered, namely by carefully studying their 
discrimination and calibration properties. On one hand, 
the fi rst SOFA score exhibited very good calibration, yet 
had very poor discrimination, as shown by the large 
overlap in predicted probabilities of death between 
survivors and non-survivors. On the other hand, the 

SL 1 SL2

SAPS-II, original

cNRI 0·088 (0·050 to 0·126) 0·247 (0·209 to 0·285)

IDI –0·048 (–0·055 to –0·041) –0·001 (–0·010 to –0·008)

SAPS-II, refi tted

cNRI 0·295 (0·257 to 0·333) 0·528 (0·415 to 0·565)

IDI 0·012 (0·008 to 0·017) 0·060 (0·054 to 0·065)

APACHE-II, refi tted

cNRI 0·336 (0·298 to 0·374) 0·561 (0·524 to 0·598)

IDI 0·029 (0·023 to 0·035) 0·076 (0·069 to 0·082)

Data are mean (IQR). SL1 with categorised variables. SL2 with non-transformed 
variables. SL1=Super Learner 1. SL2=Super Learner 2. SAPS=Simplifi ed Acute 
Physiology Score. cNRI=continuous Net Reclassifi cation Index. IDI=Integrated 
Discrimination Improvement. APACHE=Acute Physiology and Chronic Health 
Evaluation.  

Table 4: Reclassifi cation statistics

Patient one: 
haemorrhagic shock

Patient two: 
medical sepsis

Patient three: scheduled 
high-risk surgery

Age (years) 40 80 80

Heart rate (bpm) 120 100 100

Systolic blood pressure 
(mm Hg)

95 85 100

Glasgow Coma Scale score 8 14 15

Temperature (°C) 36 38 35

Urine output (mL) 700 700 1200

Pa02/Fi02 300 200 300

Serum urea (mmol/L) 7 10 7

White blood cell count (103 /
mm3)

9 19 14

Serum potassium (mmol/L) 4·0 4·8 4·0

Serum sodium (mmol/L) 142 142 142

Serum bicarbonates (µmol/L) 18 18 22

Haematocrit (%) 25% 35% 35%

Bilirubin (µmol/L) 0·8 0·8 0·8

Chronic diseases None None Metastatic cancer

Type of admission Unscheduled surgery 
(trauma)

Medical Scheduled surgery

Mortality prediction

SAPS-II 46·1% 41·5% 21·3%

APACHE-II 32·2% 23·5% 26·2%

SICULA 29·4% 29·9% 28·7%

SAPS=Simplifi ed Acute Physiology Score. APACHE=Acute Physiology and Chronic Health Evaluation. SICULA=Super 
ICU Learner Algorithm.

 Table 5: mortality prediction scores obtained from the SAPS-II, APACHE-II, and SICULA algorithms for 
three diff erent patient profi les
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SAPS-II score had high discrimination, but was 
inadequately calibrated in our sample. These results are 
consistent with previous studies that evaluated the 
calibration of the SAPS-II score.15

The Super Learner off ered an appealing tradeoff  with 
good calibration properties and far better discrimination 
than either the SAPS-II and SOFA scores. Nonetheless, a 
disclaimer should accompany a criticism of the SOFA 
score on this basis: in reality, this score was not initially 
developed for mortality prediction. However, many 
intensivists use the SOFA score as a surrogate for organ 
failure quantifi cation and follow-up to assess patients’ 
response to ICU care, and thereby adjust their own 
perception of likely patient outcomes. For this reason, we 
chose to assess the performance of SOFA for ICU 
mortality prediction. In view of the similarity in 
calibration of the two Super Learner-based scores (SL1 
and SL2), we recommend using the Super Learner with 
untransformed explanatory variables (SL2) in view of its 
greater discrimination. When considering risk reclassi-
fi cation, the two Super Learner prediction algo rithms had 
similar cNRI, but SL2 clearly had a better IDI. When 
considering the IDI, the SL1 seemed to perform worse 
that the SAPS II score. Nonetheless, the IDI should be 
used carefully because it has similar drawbacks as the 
AUROC—ie, it summarises prediction characteristics 
uniformly over all possible classifi cation thresholds even 
though many of these are unacceptable and would never 
be considered in practice.43

We externally validated the performance of the SICULA 
with a small dataset obtained from a French ICU. 
Discrimination performance was excellent. Calibration 
results were slightly worse than those obtained internally. 
However, this is mitigated by the fact that the validation 

sample substantially diff ered from the training sample, 
with more severely ill patients, very few patients admitted 
to hospital for coronary care, and thus a consistently 
higher hospital mortality rate. Refi tting the SICULA with 
a wider spectrum of ICU patients would probably 
improve its external validity, which is one of the main 
goals of the second phase of the SICULA project.

Our study has some limitations. First, we used the 
SAPS-II and the APACHE-II scores as references 
although more recent algorithms are available. This was 
partly because some of the predictors included in the 
most recent version of these scores were not directly 
available in the MIMIC-II database. Nonetheless, these 
scores (eg, SAPS-III and APACHE-III) are associated 
with the same drawbacks as SAPS-II.12,15,44 Moreover, 
those scores are the most widely used scores in practice.45 
Second, our sample comes from one hospital. However, 
patients in our sample come from fi ve diff erent ICUs, 
injecting a certain level of heterogeneity in our patient 
pool. This case-mix heterogeneity might in turn represent 
a limitation when considering the score for a very specifi c 
subpopulation of patients. Moreover, overfi tting was 
mitigated by the use of cross-validation.46 The patients 
included in the MIMIC-II cohort seem representative of 
the overall ICU patient population, as shown by a hospital 
mortality rate in the MIMIC-II cohort that is similar to 
the one reported for ICU patients during the same time.3 
Consequently, our score can be expected to show, in other 
samples, performance characteristics similar to those 
reported here, at least in samples drawn from similar 
patient populations. However, by discarding patients 
with many ICU admissions during the same ICU stay, 
we might have shrunk the study population toward a less 
severely ill one. The second phase of the SICULA project 
will include patients with multiple ICU stays. 
Additionally, information about do not resuscitate orders 
or restricted treatments was missing in our dataset and 
should ideally be taken into account in future work. 
Third, the large representation in our sample of patients 
admitted to coronary or cardiac surgery recovery ICU, 
who often have lower severity scores than medical or 
surgical ICU patients, might have limited our score’s 
applicability to more critically ill patients. However, 
further scrutiny showed that the average SAPS-II score 
in our sample was similar to that reported in similar 
studies.15,44

Of note, results of the discrimination and calibration of 
the SICULA by ICU type (ie, medical, trauma-surgical, 
coronary, cardiac surgery recovery, and medicosurgical) 
showed no substantial diff erence in prediction 
performance between units (appendix pp 10–12). Fourth, 
some variables needed to compute the SAPS-II (eg, elective 
surgery, underlying disease variables or main reason for 
ICU admission) were not directly available in the dataset 
and had to be extrapolated from other data. Finally, a key 
assumption made was that the poor calibration associated 
with present severity scores derives from the use of 

 Panel: Research in context

Systematic review
We searched Pubmed and Google Scholar with the following keywords: “ICU”, “mortality 
prediction”, “severity scores”, “machine lear ning”, “Super Learner”, and “non-parametric”. 
No language or date restriction was applied. All appropriate articles were selected based 
on a careful reading and served as background for our research. Our search showed several 
attempts had been made to use machine learning techniques in the context of intensive 
care unit (ICU) mortality prediction, although to the best of our knowledge, none of the 
reported eff orts used ensemble learning techniques. More importantly, the resulting 
scores are not commonly used or widely available to clinicians and researchers. The most 
common severity scores in practice date back to the early 1980s and are based on classical 
logistic regression models.

Interpretation
Our results show that fl exible modelling approaches might yield signifi cant improvement 
in ICU mortality prediction. Our data suggest that instead of relying on one parametric or 
non-parametric modelling technique, an ensemble machine learning approach should be 
used to model outcomes as complex as ICU mortality. Clinicians should be aware that 
prediction based on classical parametric approaches could be misleading. With regards to 
ICU mortality prediction, the Super ICU Learner Algorithm (SICULA) is a promising 
alternative that could be valuable both in clinical practice and for research purposes.
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!

Linear!Models!and!derivatives:!

A Logistic( regression:! standard! logistic! regression,! including! only! main! terms! for!

each!covariate!and!including!interaction!terms!43!(SL.glm);!

A Stepwise( regression:! logistic! regression! using! a! variable! selection! procedure!

based!on!the!Akaike!Information!Criteria!44!(SL.stepAIC);!

A Generalized( additive(model! 44:! additive!model! including! smoothing! functions! of!

the! predictors,! the! functions! being! choosed! in! order! to! optimize! the! outcome!

prediction!(SL.gam);!

A Generalized( linear( model( with( penalized( maximum( likelihood! 45! :! regression!

models!where!the!coefficients!are!constrained!so!that! the!sum!of! their!absolute!

values! falls! below! some! constant! chosen!by! crossAvalidation,! thereby! achieving!

variable! selection! while! shrinking! some! regression! coefficients! toward! zero!

(SL.glmnet);!

A Multivariate( adaptive( polynomial( spline( regression! 45:! adaptive! regression!

procedure!using!piecewise!linear!splines!to!model!the!response!(SL.polymars);!

A Bayesian(generalized(linear(model!46!:!approach!to!linear!regression!in!which!the!

statistical! analysis! is! undertaken! within! the! context! of! Bayesian! inference!

(SL.bayesglm);!

A Generalized(boosted(regression(model!50:!machine!learning!method!for!regression!

problems!which!produces!a!prediction!model!in!the!form!of!an!ensemble!of!weak!

prediction!models!(SL.gbm);!

!

Trees!and!Networks:!

A Neural!Networks! 48:!machine! learning! algorithm! inspired! by! animal’s! neuronal!

network!which!is!capable!of!pattern!recognition!(SL.nnet);!

A Classification! trees:! generally! speaking,! trees! are! methods! that! partition! the!

covariate!space!into!disjoint!pieces!and!then!classify!the!observations!according!

to! which! partition! element! they! fall! in.! Bagging,! pruning,! random! forests! and!

BART!are!particular!implementations!of!this!general!principle!!

o Bagging! classification! trees! 49:! ! a! set! a! trees! is! created! from! several!

subsamples!drawn!with!replacement!(SL.ipredbagg);!



o Pruned! Recursive! Partitioning! and! Regression! Trees! 51:! pruning! is! a!

backing!technique!that!avoids!data!overfiiting!(SL.rpartPrune);!

o Random!Forest!47!:!a!set!a!trees!is!created!from!several!bootstrap!samples!

(SL.randomForest);!

o Bayesian! Additive! Regression! Trees! 52:! BART! is! a! sum! of! trees! model!

where! the! growth! of! a! tree! is! constrained! bypriors! and! then! uses! an!

iterative! MarkovAchain! Monte! Carlo! algorithm! to! back! fit! the! model!

(SL.bart);!

!
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1. SAPS!II!(U=0.25,!p<0.0001;!discrimination!slope=0.26)!

!

2. SOFA!(U<0.0001,!p=0.9999;!discrimination!slope=0.09)!

!



3.!New!fit!of!the!SAPS!II!score!(U<0.0001,!p=0.9999;!discrimination!slope=0.20)!

!

!

4.!New!fit!of!the!APACHE!II!score!(U<0.0001,!p=0.9999;!discrimination!slope=0.18)!

!



!

5. Super!Learner!1!(U=0.0007,!p<0.0001;!discrimination!slope=0.21)!

!

6. Super!Learner!2!(U=0.006,!p<0.0001;!discrimination!slope=0.26)!!

!



Appendix(4.((
(
A.(Discrimination(
!

!

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves

1−Specificity (false positives)

Se
ns

iti
vi

ty
 (t

ru
e 

po
si

tiv
es

)

AUC:
0.94 Super Learner



B.(Calibration(
!
!

!
!

!

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted Probability

Ac
tu

al
 P

ro
ba

bi
lity

Ideal
Logistic calibration
Nonparametric

Dxy      
C (ROC)  
R2       
D        
U        
Q        
Brier    
Intercept
Slope    
Emax     
S:z      
S:p      

 0.875
 0.937
 0.585
 0.466
−0.010
 0.476
 0.079
−0.430
 1.898
 0.185
−3.256
 0.001



Appendix(5.((
(

A. Calibration(Plots(

(
(



B. Discrimination(Plots((ROC(curves)(
(
(

(
( ( ( AUC=0.83( ( ( ( ( AUC=0.82(
(

(
( ( ( AUC=0.88( ( ( ( ( AUC=0.86(



(
( ( ( AUC=0.84(
!



Appendix(6.((

 

 
 
The! use! of! the! web! app! requires! entering! patients’! characteristics.! For! continuous! variables,! average!

normal!values!are!proposed!by!default,!but!can!be!readily!entered!by!users.!Missing!values!are!allowed.!

After! inputting! data! in! all! relevant! fields,! the! SICULA! mortality! prediction! score! can! be! obtained! by!

clicking! on! ‘Analyse.’! In! any! given! web! session,! the! first! prediction! requested! may! only! appear! after!

several!minutes,!since!initialization!of!the!system!requires!significant!computational!efforts.!

!

!
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library(SuperLearner) 
 
# User Supplied Library for SuperLearner 
 
SL.library = 
c("SL.glmnet","SL.bayesglm","SL.glm","SL.stepAIC","SL.nnet","S
L.polymars","SL.randomForest","SL.gam","SL.ipredbagg","SL.gbm"
,"SL.bart","SL.svm","SL.rpartPrune") 
 
# Define Outcome Y and Predictor Set X 
 
Y = my.database$outcome 
 
X= 
my.database[,c("admissionSAPS","chronicSAPS","glasgowSAPS","ag
eSAPS","SBPSAPS","HRSAPS","TempSAPS","PF_SAPS","diuresis_SAPS"
,"ureaSAPS","WBC_SAPS","K_SAPS","Na_SAPS","Bicarbonates_SAPS",
"Bilirubin_SAPS")] 
 
# Run CV.SuperLearner (arguments : methods : non-negative 
least-squares loss function ; 10-fold cross-validation for 
algorithm comparison and for SuperLearner convex combination) 
 
fitSL<-CV.SuperLearner(Y=Y, X=X, V=10, family = binomial(), 
SL.library=SL.library, method = "method.NNLS", id = NULL, 
verbose = TRUE, cvControl=list(stratifyCV=TRUE, shuffle=TRUE, 
V=10)) 
 
# Retrieve SuperLearner-based predictions as well as 
predictions from all candidate algorithms included in the SL 
library 
 
predictions <- cbind(fitSL$SL.predict,fitSL$library.predict) 
 
# CV risk estimation for each candidate and SL 
 
labels <- fitSL$Y 
folds <- fitSL$folds 
plot(fitSL,package="ggplot2",constant=qnorm(0.975),sort=TRUE)  
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