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Critical illness, regardless of its
etiology, is a highly abnormal
state in physiologic and phys-
ical terms. Our role as inten-

sivists should be to provide a safe and
supportive environment in which an in-
dividual patient’s homeostatic processes
can return to health. There continues to
be a tendency to assume that normalizing
measured numbers and physiologic pa-
rameters will facilitate this process of re-
covery. Certainly, it makes the charts
look “better.” However, the hard evidence
for improved or faster recovery by under-
taking such treatments is lacking. One of
the issues pertaining to examining the
literature is the manner in which re-
search is undertaken and presented. The
nature of a randomized controlled trial is
to have a given hypothesis and to then
choose a patient cohort with strict eligi-
bility criteria. Many of the patients we, as
clinicians, see coming through our care
are often excluded. Furthermore, stan-

dards of care with the area of interest of
the trial product often are not addressed.
So, how should we treat patients who
would have been excluded from such tri-
als? More often than not, it seems that
the desire to undertake something new
and exciting wins and patients are offered
the “new, better management.” The phe-
nomenon of “product/protocol” creep is
observed and outcomes of diverse groups
then are not investigated effectively. Case
series equally have a tendency to report
only positive findings, and thus their sug-
gested treatments should also be viewed
with a degree of suspicion. Another po-
tential issue is that the patient cohort in
the critical care environment is far from
homogeneous. Even within a variety of
subgroups there is marked variability in
the severity of organ failure, physiologic
derangement, and precipitating factors.
Furthermore, the disease, or at least its
phenotype, changes. Thus, the optimal
treatment regimen for an individual in
the first 48 hrs of an acute insult is likely
to differ greatly from that at 7, 14, and 21
days into a period of critical illness.
Should a secondary episode of nosoco-
mial sepsis in the critical care environ-
ment be treated in the same manner as in
someone who has been on a general ward
for the previous week or weeks, or as in
someone presenting de novo to the emer-
gency room? Antibiotic selection will ob-

viously need to vary, depending on the
situation. Maybe other treatment proto-
cols and hemodynamic aims to obtain
optimal outcomes should vary, also. Can
it be appropriate to suggest that a patient
who presents with a fever, tachycardia,
and mean arterial pressure of 60 mm Hg
with a normal urine output and creati-
nine be treated in an identical manner as
someone with a similar picture who is
already 2 wks into critical care and in
established renal failure? We have learned
the lessons with respect to mechanical
ventilation and that striving for normal
levels of PaCO2 is potentially detrimental.
Yet for a variety of other support methods
and interventions, we remain addicted to
making the charts and organ functions
look “normal.” Are we treating our pa-
tients or ourselves?

Standards of Care and
Protocols

At present, a main driver of quality
and consistency in critical care practice,
and medicine as a whole, is the develop-
ment and subsequent application of stan-
dards of care, checklists, protocols, and
integrated care pathways. Having param-
eters is useful in providing consistency of
delivered care, especially in the initial
stages of sepsis or acute illness, or in a
patient undergoing a specific, clearly de-
fined procedure. They allow staff, the pa-
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Patients with critical illness are heterogeneous, with differing
physiologic requirements over time. Goal-directed therapy in the
emergency room demonstrates that protocolized care could result
in improved outcomes. Subsequent studies have confirmed ben-
efit with such a “bundle-based approach” in the emergency room
and in preoperative and postoperative scenarios. However, this
cannot be necessarily extrapolated to the medium-term and long-
term care pathway of the critically ill patient. It is likely that the
development of mitochondrial dysfunction could result in goal-
directed types of approaches being detrimental. Equally, arterial
pressure aims are likely to be considerably different as the
patient’s physiology moves toward “hibernation.” The agents we
utilize as sedative and pressor agents have considerable effects
on immune function and the inflammatory profile, and should be
considered as part of the total clinical picture. The role of gut

failure in driving inflammation is considerable, and the drive to
feed enterally, regardless of aspirate volume, may be detrimental
in those with degrees of ileus, which is often a difficult diagnosis
in the critically ill. The pathogenesis of liver dysfunction may be,
at least in part, related to venous engorgement that will contribute
toward portal hypertension and gut edema. This, in association
with loss of the hepatosplanchnic buffer response, it is likely to
contribute to venous pooling in the abdominal cavity, impaired
venous return, and decreased central blood volumes. Therapies
such as those used in “small-for-size syndrome” may have a role
in the chronic stages of septic vascular failure. (Crit Care Med
2010; 38[Suppl.]:S590–S599)
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tient, and their loved ones to be able to
track an expected clinical course. They
are, by definition, most applicable to a
patient whose clinical course is within
the “normal range” and who has a limited
number of comorbidities (1). However,
some patients are outside the defined
group for which the pathway was de-
signed. In these scenarios, a proscribed
care pathway may result in mediocrity or
impaired outcomes for that individual vs.
the benefit achieved for the majority. A
standard care pathway/protocol is ideal
for many yet should not be viewed as
“tablets of stone.” Instead, one should be
able to say, “this applies to most patients
but is it suitable in this particular setting,
and if not, why not?” Let us encourage
thought because surely this is how we
innovate. Thinking outside the “black
box” of “normal” should be encouraged
and form as much a part of ongoing ed-
ucation as the ability to review and cite
guidelines.

We should recognize that guidance is
frequently developed from controlled tri-
als that excluded patient groups and, also,
may fail to be replicated in the future.
Furthermore, in assessing guidelines,
one should be aware of the evidence that
resulted in their development and to con-
sider that composition of multiple
strands of guidance may or may not re-
sult in a sum benefit.

Treatment protocols should also at-
tempt to recognize the presenting pheno-
type. We no longer try to make the pa-
tient suit the ventilator, having developed
more elegance and understanding in this
area. However, for managing inflamma-
tion and organ dysfunction, we still seem
to insist that the patient has read and
conforms to the textbooks! It is likely that
an individual’s presenting phenotype, de-
termined no doubt by a mixture of envi-
ronment, genetic profile, and microRNA
(2, 3), should result in a variety of possi-
ble treatment options. We recognize the
detrimental effects of activation of the
sympathetic nervous system in many or-
gan systems and the potential detriment
of tachycardia in respect to endothelial
function (4). Similarly, in the critically ill
individual, the role of adrenergic stress
may be modulated by the individual phe-
notype or, in some situations, agents that
modulate these effects may prove benefi-
cial (5, 6). Recognition of individual re-
sponse parameters should result in indi-
vidualized as opposed to generic care. So,
for some, beta-blockade or corticoste-
roids or epinephrine may provide benefit.

In another context, a pressor without al-
pha or beta activity, such as vasopressin,
may be optimal. Recognition of these dif-
ferences may enable improved outcomes
and permit greater understanding of the
observed variance in outcomes after sim-
ilar insults. The development of point-of-
care biomarkers to individualize care
should be an achievable aspiration of crit-
ical care.

Another aspect of protocolized care
and guidance that requires comment is
the manner in which they are subse-
quently applied as assessment tools of the
quality of delivered care. Health care sys-
tems are, quite appropriately, striving to
optimize quality and cost-effectiveness.
In health management terms, guidelines
provide an ideal format with which to
score clinical services; a guideline exists
and, as such, percentage compliance with
said guidance can be presented as a qual-
ity measure. It is essential that clinicians
are actively involved in the design of the
audit tools, allowing divergence and in-
novation to be applied in appropriate
clinical scenarios without the hospital
management presenting an intensive
care unit as providing poor standards of
care based on compliance with guidance
alone. Similarly, we must ensure that our
energies are not focused on gaming audit
results but in educating clinicians in the
physiologic building blocks of critical
care and ensuring they are provided with
appropriate analytical and applied skills.
To illustrate these points, I review differ-
ent systems and highlight a few examples
of what I believe to be inadequacies and
discrepancies in our current thought pro-
cesses and management regimens.

Cardiovascular

Blood pressure, fluid balance, cardiac
index, and, increasingly it seems, the cen-
tral venous oxygen saturation are fre-
quently at the forefront of daily manage-
ment plans within the intensive care
unit. The clarity of thought I used to have
as a junior staff member with regard to
these parameters has declined in parallel
with years of practice and amassed expe-
rience.

The evidence for striving for a given
blood pressure is fraught with difficulty.
What is “normal”? Is “normal” that which
an individual would have when healthy
and walking around in the upright posi-
tion or while asleep? Should we temper
our target to that which is “acceptable” in
the first 48 hrs of sepsis/acute insult vs.

that needed for a later state of established
organ “failure/hibernation” or “incipient
organ dysfunction/hibernation”? Again,
the clinical context and course for the
individual patient is paramount in this
decision paradigm. The pendulum of ex-
pert opinion swings widely from pressure
or flow being the optimal end point of
resuscitation. However, rarely, if ever, do
we define the exact points of clinical care
being examined, even though most stud-
ies relate to de novo admissions as op-
posed to the “long stayer.” We must not
lose sight of the optimal end point,
namely, recovery/regeneration of organ
function. Ironically, in the long-term pa-
tient this requires us to maintain partic-
ular attention to detail. It may be that the
aims and objectives over a given time
course are variable and disparate.

A target mean arterial pressure (MAP)
may be achieved with judicious intravenous
fluid administration and, thereafter, with
various vasoactive agents. The evidence
base for a given blood pressure for physio-
logic functionality has not been deter-
mined; many would aim for an initial MAP
of 70 mm Hg, with increased levels being
striven for in the context of cerebral insults
and attempts to preserve renal function.
However, the data are far from clear.
Within the neurologic literature there is
the concept of the Lund hypothesis (7, 8),
whereas in acute liver failure lack of auto-
regulation to pressure frequently results in
MAP and intracranial pressure increasing
in parallel (9, 10).

Recent case series provide some in-
sight, albeit in general terms, with regard
to MAP and eventual outcome. In a co-
hort of 111 cases of septic shock, logistic
regression analysis for 30-day mortality
showed MAP and lactate on arrival were
significantly associated with 30-day mor-
tality (10). Receiver-operator curves were
plotted and the highest area under the
curve value (0.835) was found for MAP
!65 mm Hg, suggesting this cut-off may
be optimal. Many reviews and guidelines
for the management of septic shock tar-
get values of MAP between 60 and 75
mm Hg. The rationale to keep pressures
higher than 60 to 65 mm Hg is that this
is the level for many organs in which
autoregulation ceases and flow becomes
pressure-dependent. However, one of the
risks of setting a given blood pressure as
a sole end point of therapy is the ten-
dency to increase pressure in the face of
an under-resuscitated circulation, lead-
ing to excessive constriction, poor end-
organ perfusion, and impaired microcir-
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culatory flow (11–13). Dubin et al (12)
showed decreased capillary perfusion
density with increasing MAP, albeit with
considerable individual variation. The op-
timization of flow and pressure in the
management paradigm remains uncom-
fortable as the assessment of optimal
fluid loading before the institution of
pressors and inotropes remains generally
inadequate. Use of pressure measures
alone are likely to result in some receiv-
ing fluid who are already fluid-replete,
whereas others will receive vasoconstric-
tor agents who would benefit from fur-
ther volume (14). Equally, it must be
recognized that dynamic measures of vol-
ume responsiveness, such as stroke vol-
ume variation and pulse pressure varia-
tion, are not applicable in the setting of
cardiac arrhythmias and significant respi-
ratory efforts.

Dunser et al (15) also examined arte-
rial blood pressure during early sepsis
and the relationship with eventual out-
come. Interestingly, the area under the
receiver-operator curve for 28-day mor-
tality was greatest for values of MAP !60
mm Hg and mean perfusion pressure
(measured as MAP central venous pres-
sure) !45 mm Hg. A MAP value !60
mm Hg increased the risk of death by
2.96 (95% confidence interval, 1.06 –
10.36), whereas the need for renal re-
placement therapy was best predicted by
MAP values !75 mm Hg. Notably, in
many studies and in clinical practice,
even if the MAP target is set at 65
mm Hg, there is a tendency for “pressure
creep,” with increasing doses being ad-
ministered to drive the MAP higher. A
fundamental question that needs to be
addressed as we examine the psychology
of the workplace, and particularly that of
the critical care area, are the bedside
drivers of resident and nursing staff in
the end points they achieve as opposed to
those suggested.

Care should ideally be tailored to an
individual’s needs. This was demon-
strated in the renal bed by Deruddre et al
(16), who showed that renal blood flow,
as assessed by renal Doppler studies, was
highly variable in response to changes in
MAP achieved by infusion of norepineph-
rine. Optimal flow was achieved at vary-
ing blood pressure for different individu-
als. Bourgoin et al (17) similarly showed
no benefit with regard to renal function
when MAP was increased from 65 to 85
mm Hg. Of interest, in the neonatal in-
tensive care literature, the concept of
permissive hypotension is considered in

those with signs of good perfusion. Out-
comes were similar to those with normo-
tension, whereas worse outcomes were
seen in those in whom hypotension was
treated (18).

The aforementioned studies relate to
the initial stages of management of sepsis
and septic shock. It may be that at this
stage the clinical scenario is that of jeop-
ardized organ function as opposed to fail-
ure/hibernation (19, 20). Thus, the pa-
rameters one may wish to strive for in
conditions of acute reversibility will differ
from those required a few days later when
there is, for example, established renal
failure. Driving pressure through a renal
vascular bed when the kidney has been
oligoanuric for "48 hrs is unlikely to
result in normalization of function.
Would a management protocol address-
ing such parameters result in speedier
recovery of function? There is a lack of
appropriate trials addressing this. Given
the concern that inappropriate vasocon-
striction may be detrimental, MAP values
of 60 to 65 mm Hg may be adequate if
there is adequate perfusion and end-
organ function is stable. It has been sug-
gested that continuous renal replacement
therapy may favor renal recovery over
intermittent continuous renal replace-
ment therapy. However, studies by Pa-
levsky and Vinsonneou (21–23) suggest
that 60-day outcome is the same. In both
studies the incidence of hypotension was
30% to 39% (defined as systolic blood
pressure !80 mm Hg), yet renal recovery
was seen in "90% of patients regardless
of the mode of continuous renal replace-
ment therapy applied. This may suggest
that hypotension, although not persis-
tent, does not impair renal recovery and
that the assumed safer mode (continuous
renal replacement therapy) in fact had as
many complications as, if not more than,
intermittent continuous renal replace-
ment therapy. Another compounding is-
sue associated with many of the forms of
continuous renal replacement therapy in
patients with sepsis is the lack of defini-
tive data regarding appropriate dosing of
antibiotics and antifungals, especially in
the context of high volumes of distribu-
tion (24, 25).

Determination of adequate perfusion
(both at whole body and organ levels) is
problematic as the patient progresses
from insult and precarious organ func-
tion to established organ dysfunction/
hibernation. Several groups utilizing in
vitro microscopy have elegantly exam-
ined the microcirculation (particularly

sublingual) and observed pathologic re-
sponses to certain constrictor therapies
(26). Regarding whether these findings
relate to endothelium activation and in-
flammation, the effects of constrictor
therapy or to altered flow based on
changing cellular requirements in the
face of mitochondrial dysfunction is yet
to be elucidated, as is the relationship to
outcome.

It is also difficult to accurately predict
how microcirculatory flow and oxygen-
ation respond to vasoconstrictors and di-
lators (11, 27). For example, no difference
in microcirculatory flow parameters was
seen with or without nitroglycerine when
a strict resuscitation protocol was uti-
lized (28). Importantly, pressors are likely
to have different effects on different or-
gan beds; for example, the gut may be
particularly sensitive to vasoconstrictor
agents (29, 30). “Aggressive” control of
blood pressure with constrictors after ap-
propriate fluid loading may be optimal in
the short-term but could prove detrimen-
tal over the medium term and longer
term in a manner similar to what we now
recognize for fluids. A fine balance exists
between too much and too little. Perhaps
we should utilize more sophisticated
techniques, e.g., assessing tissue oxygen
content and microcirculatory flow (26),
although we should not lose sight of old-
fashioned clinical skills such as detecting
“warm edges” on the patient.

The type of vasoactive agent should
also be considered. Vasopressin, norepi-
nephrine, and epinephrine are, at
present, the most commonly adminis-
tered pressor agents. However, other ap-
proaches should not be discounted, even
nitric oxide synthase blockade. Perusal of
the major clinical trial investigating ni-
tric oxide synthase blockade in septic
shock suggests that, maybe, the “baby
was thrown out with the bath water” (31),
because many of the negative effects
could have been the result of overzealous
vasoconstriction. The data on vasopressin
use are also unclear with regard to out-
come benefit, although it would seem a
useful adjunct to improve responsiveness
to pressor agents, providing excessive
doses are not administered (32–34). The
risks of overconstriction and end-organ
hypoperfusion holds with every agent,
but perhaps especially in those with iso-
lated pressor activity.

The finding of a relationship between
mean perfusion pressure and 28-day out-
come (15) is physiologically intuitive
given that organ perfusion is determined
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by the pressure gradient across any given
organ. However, it is rare in modern in-
tensive care unit practice to consider this
variable except in the context of abdom-
inal hypertension and abdominal com-
partment syndrome, in which intra-
abdominal pressure may be considered a
vital factor affecting renal and gut perfu-
sion (35). Perhaps these physiologic rela-
tionships, in association with central ve-
nous pressure, should be evaluated in
more detail to consider transmural pres-
sure gradients. The finding of an elevated
central venous pressure and a low perfus-
ing pressure (mean or, more importantly,
diastolic pressure) will significantly im-
pact on coronary perfusion and, hence,
cardiac performance. Especially in the
face of a tachycardia and/or pulmonary
hypertension and right heart dysfunc-
tion, this can result in inadequate sub-
strate delivery to the cardiomyocyte.
Early work by Cunion et al (20) showed
equivalent coronary blood flow but no
myocardial lactate production in those
with and without cardiac dysfunction,
raising the possibility of loss of autoreg-
ulation, disordered microcirculatory
flow, and/or mitochondrial dysfunction.
Investigators have demonstrated in-
creased coronary sinus blood flow, partic-
ularly in those who failed to survive, with
evidence of decreased stroke volume and
ejection fraction despite elevated cardiac
indices. Substrate utilization was altered
with decreased fatty acid utilization and
increased lactate consumption (36–38).
We see little evidence of overt myocardial
ischemia in the critically ill patient; how-
ever, elevated troponin levels are not un-
common. This could be, perhaps, viewed
as a biomarker of myocyte stress, partic-
ularly in the early phases of sepsis and
initial therapy, marking patients at
higher risk for mortality, albeit acknowl-
edging that renal clearance is a con-
founder (39–41).

Measuring and correcting central ve-
nous saturation (ScvO2) now features
strongly in sepsis guidelines (42, 43). The
finding of a low value certainly warrants
investigation and may be multifactorial;
alterations in hemoglobin, oxygenation,
and cardiac output should be considered,
as should potential artifacts such as an
erroneous catheter tip position. Equally,
the finding of an elevated ScvO2 should
not be taken as explicit that the patient is
volume-replete, especially in the setting
of hyperdynamic states and microcircula-
tory failure. A recent study (44) examin-
ing initial management of sepsis in the

emergency department used protocols
that included a central venous pressure
"8 mm Hg; however, reported levels
were between 11 and 16 mm Hg at 0, 24,
48, and 72 hrs after study entry.

Immune Status

The immune effects of the agents we
administer equally should not be ignored
(45–47). Epinephrine, as an example, has
significant effects on leukocyte mobiliza-
tion and demargination (48), whereas
catecholamines in general induce an in-
flammatory response in hepatocytes (49).
This may be physiologically beneficial in
the early stages of sepsis, facilitating pro-
tection from invading pathogens; how-
ever, in the later stages of disease pro-
gression, they may be highly detrimental.
Persistent stimulation with cat-
echolamines (exogenous and/or endoge-
nous) and circulating cytokines may con-
tribute to transformation of monocytes to
an endotoxin-tolerant, anti-inflammatory
phenotype that may have implications in
patients requiring prolonged critical care
(50–52). Neutrophil function is also ab-
normal with disparity between opsoniza-
tion and respiratory burst, and this also
varies over time (53–56). Other agents
commonly used in the critically ill also
have significant effects on immune func-
tion. Etomidate is known to decrease ad-
renal function, whereas agents such as
ketamine may be potentially beneficial
through modulating the nitric oxide, car-
bon monoxide, and hydrogen oxide path-
ways (57–59). After endotoxin adminis-
tration to rats, ketamine resulted in
hepatic protection mediated, at least in
part, through heme oxygenase-1 and car-
bon monoxide (59).

The clinical tendency to date has been
an attempt to manipulate patients toward
immunologic normality, with early
dampening followed, potentially, by sub-
sequent stimulation. Is either of these
endeavors appropriate? If the hypothesis
of “hibernation” is a clinical reality at
certain time points during the clinical
course, then being in a state of relative
anergy could even be beneficial. Thus,
immunostimulatory interventions may
potentially prove detrimental. Many of
our trial interventions in sepsis have been
excessive and have also failed to impact
positively on outcomes, e.g., (60, 61). In
alcoholic hepatitis, the use of a tumor
necrosis factor monoclonal antibody in
combination with steroids resulted in in-
creased mortality, even though studies

using tumor necrosis factor monoclonal
antibody alone did not show harm (62,
63). Equally, in the animal literature,
stimulatory agents such as granulocyte-
macrophage colony-stimulating factor
and granulocyte colony-stimulating fac-
tor did not inevitably result in improved
outcomes, albeit in patients there are
some data suggesting decreased duration
of mechanical ventilation and intensive
care unit stay (64–66).

Finally, we should recognize that our
decisions are based on levels of circulat-
ing cells and not those causing effects at
sites of inflammation. This may be highly
pertinent because some of the so-called
states of functional immunoparesis we
encounter may actually represent an ef-
fect of inflammation and resolution of
inflammation at the primary site. As
such, peripheral stimulation of immune
functionality may have the potential to
worsen organ function and delay healing
(67, 68).

Renal, Intra-Abdominal
Pressure, and Fluids

Perfusion pressure within the abdom-
inal cavity may impact significantly on
organ function. For example, pressure in
the renal vein is similar to that in the
abdominal cavity. Work in patients with
cirrhosis has shown that, in the presence
of ascites, renal vein pressure is fre-
quently !20 mm Hg (69). However,
drainage of large volumes of ascites has
been associated with increased markers
of renal dysfunction and sympathetic ner-
vous system activation. The rationale
probably relates to the marked reduction
in intra-abdominal pressure being associ-
ated initially with improved venous re-
turn and cardiovascular stability,
followed, over time, by splanchnic vaso-
dilation, venous pooling, and, hence, vol-
ume depletion (70). These effects can be
countered with appropriate volume load-
ing or maintaining a given intra-abdom-
inal pressure, possibly by administering a
splanchnic vasoconstrictor. Similar phys-
iologic changes are also likely to be seen
in a critically ill patient. This may be of
particular concern given that fluid ther-
apy may be detrimental in intra-abdomi-
nal hypertension, hence propagating the
tendency to overconstrict to achieve a
given MAP or abdominal perfusion pres-
sure. That high intra-abdominal pressure
("25–30 mm Hg) is detrimental is
clearly established (71–74). There is,
however, less clarity regarding the opti-
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mal management of increased pressures
below these levels. Ascitic drainage easily
can be undertaken under ultrasound
guidance and ileus diminished with na-
sogastric drainage. Whether decompres-
sive laparostomy is appropriate in the
context of a nonsurgical abdomen is con-
siderably less clear. In those in whom
laparostomy is undertaken, consideration
should be given to the fluid and nitrogen
losses that can occur (75).

Renal outcome has been examined
with regard to MAP in several studies.
Again, optimal renal perfusion pressure
has yet to be established, but it is unlikely
that therapeutic manipulations will have
an effect on anything other than the
acute stages of the renal insult. So, at
what time point is it acceptable to drive
the target mean arterial pressure to, for
example, 75 mm Hg? Perhaps only for the
first 48 hrs of presentation or oliguria
would seem logical. Oliguria seems to
prompt clinicians to reach for fluids and
pressor agents, but it should perhaps be
viewed with a degree of equanimity. Ini-
tially, it should be viewed as a “red flag”
to ensure there is no reversible cause. If
the oliguria persists, then instead of
pouring in fluids—of dubious quality and
effect—or potentially excessively vaso-
constricting with pressor agents, oliguria
could be viewed as an appropriate physi-
ologic response to an insult. The desire to
generate urine, regardless of quality, is
then normally addressed through the lib-
eral administration of diuretics. Even in
those relatively rare cases in which a re-
sponse is seen, the quality is usually poor
and the metabolic side effects, which are
significant, are largely ignored. A major
failing is the tendency to provide inade-
quate hydration with crystalloid solutions
while avoiding the detrimental effects of
hyperchloremia (76). The excessive ad-
ministration of colloid has rightly re-
ceived poor press, with several studies
showing that both starch and gelatin so-
lutions are associated with increased
rates of acute renal injury (77–79), and
that a positive fluid balance is associated
with increased mortality (80, 81). How-
ever, the large, blinded, multicenter
study of Finfer et al (82) showed overall
no difference between groups random-
ized to crystalloid or 4.5% human albu-
min solution. Nevertheless, subgroup
analysis did suggest a potential benefit of
albumin in the sepsis group but harm in
patients after trauma, particularly head
injury. Hepatology studies (83–86) attest
to the beneficial effects of albumin, albeit

20% solutions, in both bacterial peritoni-
tis and hepatorenal failure. However, the
SOAP study found that albumin therapy
was associated with increased mortality
(87). Perhaps the role of albumin should
be addressed as a potential drug rather
than as a simple fluid. It is an antioxidant
and a binder of various vasoactive sub-
stances (88, 89); the hemodynamic ben-
efits observed during molecular adsor-
bents recirculation system treatment
may, at least in part, be attributable to
“cleansing “ of native circulating albumin
and thus improving its binding capacity
(90). Importantly, all commercial albu-
min solutions contain preservatives. A
study examining stimulation of periph-
eral monocytes in the presence of albu-
min solutions with and without the pres-
ence of preservatives suggests that, at
least in vitro, the preservative-treated al-
bumin has anti-inflammatory properties
(91). Thus, in the setting of an acute
systemic inflammatory response and a
hyperactive immune response, it could be
postulated that infused albumin may act
as both a volume expander and an anti-
inflammatory agent and have potential
benefit. By contrast, infusion of albumin
later in the clinical course when the im-
mune status is anti-inflammatory may be
detrimental to outcome.

Goal-Directed Therapy, Lactate,
and Glucose

The role of protocolized care may be
suitable for the initial stages of sepsis (43,
92); however, its benefits may be more
dubious and potentially even detrimental
in patients with established organ dys-
function. The original work of Rivers et al
(93) has been repeated in different con-
texts and does appear to be beneficial in
the emergency department setting (94).
Contextually, this is logical and similar to
the “golden hour” of trauma, i.e., early
flow-driven resuscitation is beneficial. In
many aspects the care pathway is similar
to that of the preoperative and perioper-
ative surgical patient at high risk in
whom optimization of fluid status and
flow improved outcomes with decreased
morbidity and shortened length of stay
(95–98).

It should be noted that the care bun-
dles and protocols recommended for
managing sepsis utilize many of the sup-
port systems that are now being ques-
tioned, such as steroids for vasopressor
dependence (99). By contrast, protocol-
ized optimization of the patient with es-

tablished critical illness (addressing oxy-
gen delivery, uptake, and cardiac indices)
has failed to improve outcome and may
actually increase mortality (100). Caution
thus should be addressed in extrapolating
data from one clearly defined clinical
context to the whole management pro-
cess of the critically ill patient with es-
tablished organ failure/dysfunction. Tar-
gets of ScvO2 and central venous pressure
are contentious end points for resuscita-
tion in this context. Venous pressure
needs to be addressed as a dynamic re-
sponse variable with intra-abdominal
pressure taken into account. ScvO2 is
likely to be influenced by the high-output
states that are often the standard in es-
tablished organ failure. In this case, a
high ScvO2 may not be reflective of ade-
quate volume status but more a reflection
of cellular dysfunction and limited oxy-
gen uptake—cytopathic dysoxia. Studies
demonstrate that high and low ScvO2 lev-
els are associated with poor outcome
(101). Recent work has also suggested
that lactate is a powerful prognosticator
in patients with sepsis independent of or-
gan failure and shock (102). Clarity in
regard to what is optimal remains elu-
sive, so one of the great potential benefits
for adopting protocols, at least in the
short term to medium term, may be at-
tention to detail with improved outcomes
in a manner similar to that observed
when enrolled into a clinical trial.

The elevated ScvO2 seen in many pa-
tients with organ failure and critical ill-
ness may be driven by the hyperdynamic
state with shunting through the micro-
circulation and/or cellular dysoxia. Previ-
ously, a high ScvO2 and low oxygen ex-
traction ratio were thought to represent
inadequate nutritive flow. The assump-
tion that increasing oxygen uptake would
result in improved outcome resulted in a
series of studies driving cardiac output
with pressors and inotropes; such studies
resulted in increased mortality (100) or
no benefit (103). Elevated lactate levels
were also thought to be the result of
tissue hypoxia, although various studies
have now demonstrated that this is
largely a result of aerobic glycolysis and
increased Na#/K#ATPase activity in skel-
etal muscle (104–106) with normal tissue
oxygen levels. This should not suggest
that lactate is not a useful biomarker; it
remains a strong prognostic marker and
represents a balance between cellular
production driven by aerobic glycloysis
and the capacity of organs, particularly
the liver, to metabolize the available lac-
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tate. It is frequently responsive to fluid
loading, at least at initial presentation.
The finding of normal tissue oxygen lev-
els has resulted in the suggestion that
much of the organ dysfunction in critical
illness is related to mitochondrial dys-
function, although not all the literature
supports this view (20, 107–109). Mito-
chondrial function is reported in various
articles to be unchanged or decreased,
with decreased activity being seen more
frequently in established sepsis (110).
Furthermore, this dysfunction is revers-
ible and offers the opportunity for novel
therapeutic intervention (108, 111–113).

Tight blood glucose control has been
shown in some studies to be either ben-
eficial or harmful, especially in relation
to hypoglycemia (77, 114–116). Of inter-
est, however, were the findings from the
initial study of Van de Berghe et al (117)
that postmortem liver biopsy results of
those receiving tight blood glucose con-
trol showed significantly less mitochon-
drial ultrastructural damage and disrup-
tion with preserved mitochondrial
respiratory chain complex I. These con-
flicting data should not prevent clinical
care striving for reasonable levels of glu-
cose while avoiding low levels.

Liver and Gastrointestinal
Function

Liver dysfunction in sepsis is multifac-
torial in nature (118) but is most preva-
lent in Gram-negative and intra-abdomi-
nal sepsis (119, 120). It is also more likely
to be seen in those with abnormal under-
lying liver function. The observed hyper-
bilrubinemia is the most easily recog-
nized marker of liver dysfunction, but
this does not normally present until some
days after the initial insult. Any interven-
tion designed solely to decrease bilirubin
is, however, unlikely to be fruitful; bili-
rubin is a marker of dysfunction rather
than an etiological factor.

The splanchnic bed is a large vascular
bed with a potentially significant role to
play in the cardiovascular and gut failure
of sepsis/inflammation. After initial vaso-
dilatation and central volume depletion,
there is activation of the sympathetic and
renin-angiotensin-aldosterone systems.
The vascular supply to the liver is from
the hepatic artery and portal vein. Blood
flows through a sinusoidal bed, passing
down an oxygen gradient from zone one
to three. Venous drainage is via the he-
patic veins directly into the inferior vena
cava and back to the right atrium. Thus,

elevated right atrial pressures are likely
to result in liver congestion and may also
elevate portal pressures. Resistance then
increases in the organs draining into the
portal venous system—the intestine,
stomach, and spleen. Significant in-
creases in right atrial pressure will also
result in exuduative interstitial edema,
with a potential cycle of impaired hepatic
venular flow, endothelial inflammation,
increased intrahepatic resistance, and, in
the longer-term, fibrosis. As portal pres-
sure increases, bowel edema will develop;
as portal pressure increases to "12
mm Hg, there is the potential for varices
to develop with portosystemic shunting.
This allows delivery of endotoxin and bac-
terial toxins from the gut to enter the
systemic circulation with further inflam-
mation and increased risk of further liver
involvement.

One of the vascular hypotheses of liver
injury promoted by Wanless (121–123) is
aligned with the observation of parenchy-
mal extinction and collapse associated
with hepatic venous outflow occlusion
and is potentially equally applicable to
the liver injury seen in sepsis and inflam-
mation. It may be that some of the hy-
perbilirubinemia observed in the sepsis
literature pertains to aberrant vascular
flow and parenchymal obliteration in ad-
dition to the recognized and more greatly
studied changes in hepatocyte transport-
ers and bile flow (124). Animal studies
support these hypotheses (125–127). End
points of resuscitation should consider
the relationship between right atrial and
portal pressure; dynamic assessment of
liver function should be considered as a
potentially important end point. The liver
is, especially in this milieu, a highly met-
abolically active organ, being an intrinsic
part of the fixed reticulo-endothelial sys-
tem and contributing to cytokine produc-
tion, acute phase response, and drug me-
tabolism, among others. As such,
appropriate delivery of both nutritive flow
and adequate venous drainage should be
viewed as an essential component of
management of the critically ill patient.
Thus, thoracic but not lumbar epidural
anesthesia results in increased indocya-
nine green clearance after major abdom-
inal surgery (128). Increased intrahepatic
resistance plus an increased splanchnic
inflow have the potential to result in a
pattern of disease similar to that seen
after liver resection and living related
transplantation, i.e., small-for-size syn-
drome (129–131). This model may offer
alternative treatments for hepatic dys-

function of sepsis, ensuring that portal
inflow does not become excessive as liver
resistance increases, and considering
modulatory agents such as beta-blockers,
vasopressin/terlipressin, and other agents
that decrease intrahepatic resistance.

The balance between intestinal isch-
emia and avoidance of splanchnic hyper-
emia is likely a fine balance. The moni-
toring tools available at the present time
do not readily address these issues. One
could perhaps reconsider the use of
tonometry when an increase in gastric
end-tidal (or gastric arterial) CO2 gap was
classically considered representative of
intestinal ischemia, and when those pa-
tients whose gap was either normal or
resolved with resuscitation were found to
have improved outcome (30, 132). One
could hypothesize that an elevated CO2
gap may be representative of impaired
venous return, as could be seen in portal
hypertension and increased liver resis-
tance. Tonometry in patients recovering
from acute liver failure was initially nor-
mal and then deteriorated during their
period of recovery in a time frame that
was associated with the development of
portal hypertension (133).

Is it appropriate to insist on early en-
teral nutrition in all patients in the crit-
ically ill environment? Again, a one-size-
fits-all checklist approach is likely to
benefit perhaps the majority but risks sig-
nificant detriment to a minority. Cer-
tainly, data on early postoperative nutri-
tion appear beneficial. Delivery of food to
the gastrointestinal tract will result in
increased blood flow to the intestine via
the superior mesenteric artery (134). In
health, splanchnic flow will remain con-
stant by virtue of the hepatic buffer re-
sponse; however, in sepsis, this response
is impaired (135), with the potential to
result in splanchnic pooling and central
volume depletion. This, in turn, will re-
sult in increased venous drainage
through the portal vein and, in a situa-
tion of elevated pressures or increased
intrahepatic resistance, there will be fur-
ther venous engorgement with develop-
ment of spontaneous porto-mesenteric
shunts and mucosal edema. In patients
with large nasogastric aspirates, gastric
emptying is promoted with prokinetics
(none of which are without potential side
effects), and when it fails a nasojejunal
tube may be inserted. In some patients
food continues to be delivered to an im-
mobile, poorly functioning gut, and this
may result in ileus with periods of sepsis
and inflammation from the dilated,

S595Crit Care Med 2010 Vol. 38, No. 10 (Suppl.)



edematous intestine. Normal functioning
of a gastrointestinal tract is an excellent
prognostic sign, but the extrapolation of
forcing the gut to work to achieve an
improved outcome is not clear and may
be detrimental. In experimental models
of superior mesenteric venous ligation,
gut edema per se has been shown to ben-
efit from feeding (136). However, this
may not be replicated in clinical scenar-
ios with the compounding effects of liver
resistance and systemic inflammation.
People do not wish to imbibe food in
large volumes when they have a fever or
are otherwise unwell. Although starva-
tion is not an option in the long term, it
is likely that early and aggressive enteral
nutrition is potentially harmful in some
patients, and certainly in those in receipt
of high-dose vasopressors (137). A recent
study (138) examining enteral feeding
with or without probiotics in severe ne-
crotizing pancreatitis and the findings of
ischemic bowel should be viewed with
concern. It may not so much be the ef-
fects of the probiotics that were being
observed in this scenario but the effects
of enteral feeding in unstable patients
with organ failure (139). The effect of
enteral feeding on intestinal function also
may be related to the timing of feeding in
respect to the subsequent insult. Impor-
tantly, total parenteral nutrition (TPN),
instituted before ischemia, resulted in
worsened vascular permeability in distant
organs compared with enteral feeding
(140). By contrast, involuntary feeding
instituted after ischemia reperfusion in-
jury showed worse outcomes (141). Thus,
in the context of shock and severe isch-
emia reperfusion injury, early feeding
may be best avoided, at least in the early
stages of treatment.

The poor reputation of parenteral
feeding dates back many years and is clas-
sically associated with villous atrophy,
cholestasis, and sepsis. Recent studies
from Spain showed that early institution
of artificial nutrition appeared protective.
However, in multivariate analysis, TPN,
sepsis, and excessive calculated energy
requirements were risk factors for liver
dysfunction (142, 143). It may be that in
those with an early liver insult, not yet
associated with measured derangement
in liver biochemistry, there would be an
increase in transhepatic resistance with
decreased sinusoidal flow secondary to
white cell adherence and sinusoidal en-
dothelial constriction, and subsequent el-
evation of portal pressure. This cohort
will likely demonstrate early intolerance

of enteral nutrition and early TPN should
be considered. The causal relationship
between liver dysfunction and TPN is not
clear. The finding of liver dysfunction in
the enterally fed group was still signifi-
cant at 18%, but it was lower than the
30% incidence observed in those who re-
ceived TPN. Perhaps the latter group had
a higher incidence of gut failure and, in
some cases, this may have been attribut-
able to early liver dysfunction as delin-
eated. The splanchnic bed remains, in
clinical terms at least, something of a
“black box.” Predictors of gut failure are
lacking and indocyanine green clearance
has only been taken-up by a small num-
ber of enthusiasts. The reluctance to in-
stitute TPN should be reassessed and po-
tentially addressed sooner in those who
show signs of gastrointestinal intoler-
ance. The risks of TPN-associated liver
dysfunction can be significantly de-
creased by avoidance of overfeeding, ap-
propriate carbohydrate-to-fat ratio, atten-
tion to blood glucose control, and
scrupulous line care.
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