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 CURRENTOPINION Predicting outcome in critical care: past, present
and future

Jeremy M. Kahna,b

The desire to predict the future is a near universal
human trait. For centuries humans have tried to
forecast future events using both natural [1] and
supernatural [2] means. The field of critical care
medicine is no exception. Indeed, for several reasons
the ICU has led the way in clinical outcome pre-
diction among the medical disciplines. Compared
with other areas of medicine, the ICU is a data-rich
environment, with data on past patients readily
available for use to predict outcomes for future
patients. Additionally, in the ICU, life and death
decisions are made on a daily basis. Accurate out-
come prediction is extremely useful for improving
decision-making under uncertainty, particularly
when the stakes are so high. Because of these factors,
it is no surprise that ICU clinicians helped pioneer
the use of outcomes predictions, applying the tools
of clinical epidemiology to robustly predict out-
comes of critically ill patients [3].

Yet, despite all the work in this area, ICU out-
come prediction has in many ways failed to achieve
its full promise. Efforts to incorporate real-time
prediction to improve decision-making have not
been successful [4], and audits that compare
observed outcomes with predicted outcomes are
generally ineffective for quality improvement [5].
This is not to say that work in this area was without
merit, only that it is incomplete. Outcome predic-
tion remains a powerful tool to inform clinical
decision-making and accelerate quality improve-
ment. We just need new and innovative ways to
apply these tools, taking advantage of advances in
data collection, statistical modeling, and outcomes
measurement in critical care [6].

In this section of Current Opinion in Critical Care,
we are fortunate to have international experts in the
field of critical care outcomes prediction provide a
roadmap for this process. The authors tackle the
past, present, and future of ICU outcomes predic-
tion, discussing where we came from, where we are
now, and where we are going. Each author brings a
unique perspective. Their areas of expertise are
broad and include clinical epidemiology, biostatis-
tics, sociology, and information technology. Yet, all
are also directly involved with the day-to-day

practice of critical care medicine, bringing real-
world, first-hand experience to the discussion.

In the first article, Drs Sarah Power and David
Harrison, statisticians at the United Kingdom Inten-
sive Care National Audit and Research Center, pro-
vide the rationale for why it is valuable to predict
ICU outcomes in the first place. The most important
reason, of course, is to inform clinical decision-
making and quality improvement through bench-
marking – the systematic measurement of out-
comes – which depends on accurate outcome
prediction to ensure apples to apples comparisons.
However, Power and Harrison also discuss some
innovative emerging applications for risk predic-
tion, including increasing the precision of random-
ized controlled trials and informing observational
outcomes studies.

In the second article, Drs Jack Zimmerman and
Andrew Kramer provide a first-hand account of the
history of outcome prediction in the ICU. Dr
Zimmerman was literally present at the birth of
modern ICU outcome prediction. Along with Bill
Knaus, Doug Wagner, and Betty Draper, Dr Zimmer-
man pioneered the use of physiology on presen-
tation to predict patient outcomes in the 1970s
and 1980s, positioning the ICU at the forefront of
risk-measurement in health medicine through the
development of the Acute Physiology and Chronic
Health Evaluation (APACHE) system. Dr Kramer was
the lead biostatistician responsible for stewarding
APACHE into the modern era. Their review discusses
the key decisions made and lessons learned along
the way, and in doing so provides insight into the
future of ICU outcome prediction, including use of
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physiology-based models for national benchmark-
ing and the application of big data to critical care. As
the old adage goes, ‘you can’t know where you are
going until you know where you’ve been’.

In the third article, Drs Jorge Salluh and Márcio
Soares describe the current state of ICU risk predic-
tion systems, outlining the strengths and limitations
of the three most common systems: APACHE, the
Simplified Acute Physiology Score, and the Mortality
Prediction Model (MPM). Drawing on their experi-
ence in a large, nationally representative sample of
Brazilian hospitals, Drs Salluh and Soares highlight
the need to continually update and recalibrate pre-
diction models, and when possible customize them
to local populations. Their review provides ICU clini-
cians with a practical roadmap for implementing
outcome prediction in their clinical practice.

In the fourth article, Dr Christopher Cox et al.
address one of the major limitations of the existing
ICU risk prediction systems: they lack patient-cen-
teredness. APACHE, the Simplified Acute Physiology
Score, and the Mortality Prediction Model predict
short-term mortality after critical illness. However,
patients actually care about so much more than
short-term mortality – they want information on
long-term mortality and functional outcomes.
Thus, the next generation of ICU outcome predic-
tion should answer not only the question ‘will this
patient be alive at hospital discharge?’, but also the
questions ‘will this patient be alive 1 year from now,
and if so, what will be their quality of life?’. In this
review, the authors provide a roadmap for the next
generation of ICU outcome prediction scores, which
will use self-reported outcomes and integrated
electronic health records to provide this important
information.

In the fifth review, Dr Leo Celi from the Massa-
chusetts Institute of Technology discusses another
major limitation of existing ICU risk-prediction sys-
tems: they do not fully take advantage of the multi-
tudes of data available in the modern ICU. Our
capacity to collect, store, manage, and analyze
health data has evolved dramatically in the last
decade. Yet, we have not fully realized the vision
of using these data for risk-prediction at the bedside.
Dr Celi et al. outline the complex issues involving
the smarter use of data, providing a framework for
an optimal data system that can meaningfully

inform decision-making in real time. This in part
is the vision of the United States Institute of Medi-
cine’s ‘learning healthcare system’, in which patient
data are used intelligently to inform evidence-based
yet personalized clinical decisions [7].

Together, these reviews provide a holistic over-
view of ICU outcomes prediction, taking the lessons
learned from past efforts and putting them in the
context of future work. Hopefully, these reviews will
provide practicing clinicians with the knowledge
and insight necessary for intelligent application of
ICU outcome prediction tools. At the same time,
these reviews should inspire future clinicians and
scientists to develop new and better outcome pre-
diction tools. Outcome prediction will always be a
cornerstone of the practice of critical care medicine.
Our task is to build on its strengths, understand its
limitations, and not be satisfied with status quo.
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 CURRENTOPINION A history of outcome prediction in the ICU

Jack E. Zimmermana,b and Andrew A. Kramerb

Purpose of review
There are few first-hand accounts that describe the history of outcome prediction in critical care. This review
summarizes the authors’ personal perspectives about the development and evolution of Acute Physiology
and Chronic Health Evaluation over the past 35 years.

Recent findings
We emphasize what we have learned in the past and more recently our perspectives about the current
status of outcome prediction, and speculate about the future of outcome prediction.

Summary
There is increasing evidence that superior accuracy in outcome prediction requires complex modeling with
detailed adjustment for diagnosis and physiologic abnormalities. Thus, an automated electronic system is
recommended for gathering data and generating predictions. Support, either public or private, is required
to assist users and to update and improve models. Current outcome prediction models have increasingly
focused on benchmarks for resource use, a trend that seems likely to increase in the future.

Keywords
ICU, patient outcome assessment, quality assessment, risk adjustment, severity of illness index

INTRODUCTION
The standardized mortality ratio (SMR), which is the
ratio of observed to predicted mortality, is the most
commonly used measure of ICU quality. In Western
Europe, SMR is mandated by six countries [1]. In the
United States, SMRs are mandatory in all Veterans
Administration ICUs [2], but are used in only
10–15% of other ICUs [3,4]. This article presents a
first-hand description of the history of the Acute
Physiology and Chronic Health Evaluation
(APACHE) system. By focusing on our experiences
and the lessons learned over the past 35 years, we
hope the reader will gain insight about the past,
present, and future of ICU outcome prediction.

THE 1970S: THE INFANCY OF CRITICAL
CARE OUTCOME PREDICTION
Many coronary care units and ICUs were established
in the United States during the 1960s. Because of the
inability to adjust for patient differences, physicians
working in these units found it difficult to demon-
strate improvements in survival. After my residency,
I (J.E.Z.) served as an internist aboard a Navy hos-
pital ship off Vietnam in 1969; my practice there
focused on the 20-bed ICU. This experience led to
my return to Bethesda Naval Hospital to establish a

multidisciplinary ICU. In 1972, I completed my
military obligation and joined the ICU staff at
George Washington University.

In 1977, William ‘Bill’ Knaus, a former internal
medicine resident, became an ICU fellow. Bill was
completing a Robert Wood Johnson fellowship
and believed that ICUs represented a technology
consisting of people and machines and wanted to
study their efficacy. Bill subsequently joined our
ICU staff, obtained a grant to assess severity of
illness, and established an ICU research team: Bill
Knaus, Jack Zimmerman, Douglas ‘Doug’ Wagner,
and Elizabeth ‘Betty’ Draper. Bill’s goal was to min-
imize human judgment and develop an objective,
mathematical measure of severity. From 1979 to
1983, our ICU became the focus of research that
resulted in the basic concepts of the APACHE system
[5].
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Lessons learned are as follows:

(1) ICUs ‘fight fires’ (provide life-supporting
therapy), but they also ‘sell fire insurance’,
receive only technological monitoring and con-
centrated nursing care because of a perceived
risk of needing active therapy [6].

(2) We found that 50% of ICU patients were admit-
ted for monitoring with not only a low risk of
death, but also for receiving life-supporting
therapy [7].

(3) Using therapy to predict mortality leads to the
conclusion – the more you do for patients the
more likely they are to die. Physiological abnor-
malities are the critical determinant of mortality
[8].

(4) It was possible to compare mortality among ICU
patient groups in US hospitals and internation-
ally [9].

THE 1980S: MODELS FOR PREDICTING
ICU OUTCOMES PROLIFERATE
During the 1980s, Jack was ICU director and Bill
headed the ICU research unit, but our relationship
changed: Bill was a junior staff member, but my
mentor in outcomes research and Doug Wagner
dragged me into the world of statistics. We were
encouraged by the positive reaction of the clinical
community to APACHE I, but the system needed
refinement, greater independence from therapy,
and multiinstitutional validation.

Studies by others convinced us that we had
underweighted APACHE I’s measure for neurologi-
cal function [10] and, at a time when data collection
was almost exclusively manual, it required simpli-
fication. With government grant support, we pub-
lished APACHE II in 1985 using data for 5815 ICU
admissions at 13 hospitals [11]. The number of
physiologic measures of severity was reduced from

34 to 12 and mortality prediction was adjusted for
44 diagnoses. By today’s standards, the number of
patients and variables were small, but the main-
frame computer used to develop APACHE II occu-
pied a basement and some analyses required an
entire weekend. A conceptual outline of what we
believed determined mortality for ICU patients
during the 1980s is shown in Table 1.

APACHE II was widely used and ultimately
received over 3000 citations. The need to simplify
severity measurement and mortality prediction was
also emphasized by the development of the Simpli-
fied Acute Physiology Score (SAPS) [12] and the
Mortality Prediction Model (MPM) [13].

Lessons learned are as follows:

(1) Physiological abnormalities are directly related
to mortality, but ICU admission diagnosis is
also critical for accurate mortality prediction
[11].

(2) Risk-adjusted mortality could be compared
across ICUs in US medical centers and differ-
ences in management were evident at ICUs with
superior vs. inferior performance [14].

(3) Take care with what you share. We were sur-
prised that SAPS used the same physiological
abnormalities and weights as APACHE II [12].

1988: APACHE MEDICAL SYSTEMS
ESTABLISHED
Following APACHE II’s publication, independent
investigators reported important short-comings:
lack of adjustment for patient selection, location
before ICU admission, lead time bias, and concerns
about the timing of data collection [15]. In addition,
requests for user assistance overwhelmed our
research team. We needed funding to expand the

KEY POINTS

! Complex prognostic models predict mortality more
accurately than simplified models.

! Advances in computer technology have enhanced
prognostic science, but there has been a lag in
automated data acquisition.

! Users of ICU performance benchmarks need assistance
from a nonprofit, commercial, or government entity.

! Success in European and Veterans Administration
hospitals suggests that government support may be
required to promote ICU mortality benchmarks.

Table 1. Determinants of hospital mortality for ICU
patients: a conceptual outline from the 1980s

Information available prior to ICU treatment

Patient factor Predictor variables

Type of disease ICU admission diagnosis

Emergency vs. elective
surgery

Physiologic reserve Age

Chronic health status

Severity of illness Physiological abnormalities

Patient information available after treatment

Treatment factors Not used for prediction

Type of therapy available

Use or application of therapy

Timing and process of care

A history of outcome prediction in the ICU Zimmerman and Kramer
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APACHE database, improve accuracy, and develop
software and benchmarks for resource use. Interest
in further analysis of the relationship between
ICU management and performance resulted in
generous government and foundation grant
support, but we were unable to obtain funds to
support patient data collection. In 1988, it did
not seem likely that a third generation of APACHE
could be developed.

Fortunately, a senior radiologist at George
Washington University collaborating with several
venture capitalists helped our research group to
found APACHE Medical Systems Inc. (AMSI). In
1988, transfer of technology and academic–com-
mercial intellectual property agreements was
unusual, although basic scientists often entered
into these arrangements. During 1988–1990, AMSI
was almost exclusively dedicated to collecting the
APACHE III database. Academic appointments
precluded Bill, Jack, and Doug from direct participa-
tion, but Betty Draper resigned from the ICU
research unit to lead AMSI.

Lessons learned are as follows:

(1) Jack learned what it means to believe in your
research, particularly when I discussed obtain-
ing a second home mortgage with my wife to
found AMSI.

(2) We were surprised at the willingness of corpor-
ations to commit venture capital to support
AMSI and the development of APACHE III.

(3) Betty’s position at AMSI provided invaluable
insights to the ICU research team. She became
a focal point for user feedback, which focused
our research on ‘real world’ problems and needs.

THE 1990S: SHOULD PREDICTIVE MODELS
BE SIMPLE OR COMPLEX?
APACHE III was published in 1991 and achieved
greater prognostic accuracy than its predecessor, but
at the expense of increased model complexity [15].
Refinements included assessment of the predictive
impact of measurement timing, missing data, test-
ing of 34 co-morbid and 19 physiological variables,
nonlinear weighting (splines) of physiological
variables, and expanded adjustment for diagnosis.
Increased complexity was incorporated, not only to
increase accuracy, but because the power of desktop
computers exceeded that of basement-sized main-
frames. Technological advances also made it
possible to automate data collection, analyze larger
databases, and use complex models. The first com-
mercial installation of an APACHE system was at
William Beaumont Hospital, Royal Oak, Michigan
in 1991.

SAPS II and MPM II were also developed in
the 1990s [16,17]. Their developers did not use
extensive information about diagnosis and used
terms such as ‘simplified’ and ‘parsimonious’ to
emphasize the need to limit complexity. There were
clearly divergent opinions about whether prognos-
tic models should be simple or complex, and data
collection manual or automated.

Lessons learned are as follows:

(1) Predictions using physiologic data!1 h of
admission were not statistically different from
worst values over 24 h; fewer missing values
and maximum explanatory power favored 24-h
values [15].

(2) Marked variations in adjusted mortality and
ICU stay were found among ICUs in the
APACHE III study [18].

(3) Superior ICU performance was associated with
superior technology, organizational structure,
and managerial practices [19]. ICUs with
superior or inferior SMRs, however, could not
be distinguished by ICU clinicians and organiz-
ational researchers [20].

(4) Daily mortality estimates using ICU day 1–7 data
were found to have a potential role in assessing
individual prognosis [21].

(5) The use of APACHE II, APACHE III, MPM II, and
SAPS II outside the United States resulted in
conflicting conclusions about which model
most accurately predicted mortality. Only later
did we learn that model recalibration was
needed before using prognostic models in a
different healthcare system [22].

(6) Outcome researchers recognized that mortality
is overpredicted when older models are applied
to more contemporary data [23].

Sales of APACHE III, media attention, and
additional private investment resulted in the ability
of AMSI to make a public offering in 1996. The $25
million obtained from stock sales provided the abil-
ity to improve the software system and marketing,
and confirm the accuracy of APACHE III in an
independent US database [24]. Our research team
was no longer located at George Washington, but
the internet allowed us to continue working
together.

Lessons learned are as follows:

(1) Many ICU clinicians and researchers demanded
that APACHE III models, software, and services
be provided free.

(2) Some clinical and academic physicians hated
commercialization and expressed great hostility
toward APACHE.

Critical care outcomes
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(3) Moving from model simplification to complex-
ity in the 1990s represented ‘A bridge too far.’
Computer advances supported the develop-
ment and use of APACHE III, but this was not
accompanied by advances in automated
data collection.

(4) Founding AMSI was not profitable. The ICU
research team were reimbursed for their home
mortgage loans, but none of us became wealthy.

Our research was successful, but AMSI was not.
Its failure was caused by the system’s cost and
skepticism about ICU benchmarking. Purchasing
APACHE III competed with other technologies, for
example, computed tomography and MRI, and
required paying a coordinator because few hospitals
had full automation. By 2000, AMSI had over 100
clients and 75 employees, but was nearly bankrupt.
The intellectual property of AMSI was purchased by
Cerner Corporation in 2002. Further insights about
the history of APACHE are reported in a 2002 review
by Bill Knaus [25].

2000–2010: PROGNOSTIC SYSTEMS
MATURE
When I (A.A.K.) joined Cerner Corp. in 2003, my
first job was to revalidate all 77 APACHE III
equations. Some APACHE III equations had been
revalidated, but most had not. Changes in clinical
practice suggested equations might be poorly cali-
brated, and this was indeed the case. Although
simple recalibration was possible, there was an
opportunity to develop APACHE IV, expand diag-
nostic groups, add and refine predictor variables,
and adjust for the impact of sedation on Glasgow
Coma Score [26,27]. We have recently described
details about the evolution and capabilities of
APACHE IV [28].

Project IMPACT, a database aimed at describing
and measuring the care of ICU patients, was devel-
oped by the Society of Critical Care Medicine
(SCCM) in 1996 [29]. Initially, project IMPACT used
MPM II, SAPS II, and APACHE II, but later focused
on MPM II to provide benchmarks for mortality
and length of stay using weighted hospital days
[30]. SCCM used commercial entities to develop
software and Tri-Analytics Inc. to provide analyses
and reports. In 2004, project IMPACT was sold to
Cerner Corporation; and project IMPACT data were
provided for the development and validation of
MPMO-III [31]. In 2005, European researchers devel-
oped SAPS 3 [32]. These contemporary models
continued to differ fundamentally; APACHE IV
remained complex, whereas MPMo-III and SAPS 3
emphasized simplicity.

Benchmarks using contemporary mortality and
length of stay models have proven useful for assess-
ing ICU performance for patient groups [1,4]. But
predicting mortality and ICU stay for individual
patients requires data for each ICU day and complex
modeling, and is subject to misuse. The use of
APACHE IV data from ICU day 5 has improved
predictive accuracy for patients with prolonged
ICU stays [33], but no contemporary model has
proven suitable for predicting individual patient
outcomes or making end-of-life decisions.

Lessons learned are as follows:

(1) Similarly to our experience with APACHE,
SCCM found that the infrastructure for data
acquisition, analysis, and reporting required
commercial support.

(2) Model revalidation corrects some but not all
time-related mortality overpredictions. Decrea-
ses in mortality over time are associated with
improved disease-specific therapy [34&].

(3) The electronic infrastructure for collecting data
for outcome assessment was available, but not
widely employed in critical care [35&].

(4) The cost of health information technology
remains high and hospital expenditures for sys-
tems to benchmark outcomes continue to fall
behind spending for other technologies.

2011–PRESENT: RISK ADJUSTMENT IN
THE PUBLIC REALM
The use of APACHE as a national core measure of
ICU quality in the United States was recently con-
sidered by The Joint Commission (TJC), but not
acted upon because of insufficient resources for
implementation. In contrast, recalibrated APACHE
mortality and ICU length of stay models were
recently adopted by the Netherlands’ National
Intensive Care Evaluation program for comparing
Dutch ICUs [36&,37]. The Australia and New Zealand
Intensive Care Society uses a recalibrated version of
APACHE III for comparative reporting [38]. In the
UK, the Intensive Care National Audit and Research
Centre uses a simplified model that includes the best
elements of existing models and the characteristics
of their ICU population for comparative data reports
and research [39]. Based on the successful use of
SMRs for quality measurement internationally [1]
and by the US Veterans Administration [2], govern-
ment support or intervention might be required to
implement quality assessment using risk-adjusted
ICU outcomes.

Starting in the early 2000s, there has been an
increased effort to make more hospital data elec-
tronically available. This has been expedited by
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Center for Medicare Services (CMS) mandates that
tie payments to reaching specified levels of
electronic data capture. Further, a scheme of reim-
bursing hospitals resultant on outcomes measures
such as mortality, length of stay, and 30-day read-
mission has begun. Unfortunately, payments to
hospitals for some of these outcomes are withheld
based on unadjusted measures. This could unfairly
penalize teaching hospitals in urban centers that
traditionally treat severely ill patients.

In order to fairly compare hospitals, outcomes
need to be risk-adjusted. This was shown recently for
ICU readmissions [40&]. Although mortality and ICU
stay were worse for ICUs in the highest tertile of
readmission percentage, these differences disap-
peared once outcomes were risk-adjusted using
APACHE IV [41&&]. CMS recently initiated a study
group to investigate the creation of a model to assess
case-mix-adjusted ICU readmission rates.

THE ‘BIG DATA’ EXPLOSION
The proliferation of various ‘OMICs’ (genomics,
proteomics, metabolomics, and so on: molecular

aspects of biologic processes) has resulted in tera-
bytes of data being available for modeling; the so-
called ‘Big Data’ phenomenon. However, the use of
such information necessitates that it be available
electronically. Further, the time period between
when a sample is taken and results are generated
must be shortened considerably to be used in pre-
dictive equations. These requirements entail that a
sophisticated, interconnected electronic medical
record system be ubiquitous throughout a hospital.

As shown in Table 2, current knowledge about
the determinants of hospital mortality and resource
use for ICU patients has markedly expanded. The
incorporation of these concepts in addition to the
concept of using ‘Big Data’ for predictive models
runs counter to attempts to provide simplified
models. The latter have been shown to be less effec-
tive for predicting mortality for ICU patient groups
[42&&] and for benchmarking ICU performance [43].
It is inconceivable that simple models could be
effectively used for predicting individual patients’
outcomes.

There have been legitimate concerns about
solely using SMRs for quality assessment [1,44].

Table 2. Determinants of hospital mortality and resource use for ICU patients: A conceptual outline from 2014

Patient information available before ICU treatment

Patient factors Predictor variables

Type of disease Specific ICU admission diagnosis

Emergency vs. elective surgery

Diagnosis specific risk factors (CABG and AMI)

Physiologic reserve Age

Specific comorbid conditions

Severity of illness APS

Patient information available after treatment

Treatment factors Predictor variables

Treatment before ICU admission Location and length of stay before admission

Life support before ICU admission

Treatment status at ICU admission Intensive monitoring vs. active therapy

Life-support that influences physiological measures; includes mechanical ventilation,
vasoactive drug infusion, sedation, paralysis, DNR orders, treatment limitations

Response to treatment Daily physiological measures (APS)

Point in time measures (e.g., day 5 APS, discharge APS)

Institution-based adjustments

Healthcare system Calibration for country or region

Hospital characteristics Hospital bed size, teaching status

Duration of therapy Variations in duration of ICU and hospital stay

Discharge to postacute care facility

ICU-level differences Diagnostic case-mix

Severity of illness

Frequency of mechanical ventilation

Frequency of transfer from other hospitals

AMI, acute myocardial infarction; APS, Acute Physiology Score; CABG, coronary artery bypass graft; DNR, do-not-resuscitate.
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Optimizing the use of ‘Big Data’ for outcome pre-
dictions also requires rethinking of how data are
stored and analyzed. There is a strong movement
toward abandoning typical database management
systems that use a relational design and adopting
the more flexible Hadoop architecture [45]. There is
also much discussion about whether models should
be developed using traditional statistical techniques
that rely on linear or logistic regression. If nonlinear
machine learning methods such as random forests
[46] are used to generate predictions, then parallel
processing needs to be considered.

CONCLUSION
Models for predicting ICU outcomes have already
gone through numerous cycles. The next generation
of predictive models should be more accurate and
timely, and include measures of resource and
financial use.
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 CURRENTOPINION Why try to predict ICU outcomes?

G. Sarah Power and David A. Harrison

Purpose of review
To describe why the prediction of ICU outcomes is essential to underpin critical care quality improvement
programmes.

Recent findings
Recent literature demonstrates that risk-adjusted mortality is a widely used and well-accepted quality
indicator for benchmarking ICU performance. Ongoing research continues to address the best ways to
present the results of benchmarking through either direct comparison among institutions (e.g., by funnel
plots) or indirect comparison against the risk predictions from a risk model (e.g., by process control charts).
There is also ongoing research and debate regarding event-based outcomes (e.g., hospital mortality) versus
time-based outcomes (e.g., 30-day mortality). Beyond benchmarking, ICU outcome prediction models have
a role in risk adjustment and risk stratification in randomized controlled trials, and adjusting for
confounding in nonrandomized, observational research. Recent examples include comparing risk-adjusted
outcomes according to ‘capacity strain’ on the ICU and extending propensity matching methods to evaluate
outcomes of patients managed with a pulmonary artery catheter, among others. Risk models may have a
role in communicating risk, but their utility for individual patient decision-making is limited.

Summary
Risk-adjusted mortality has strong support from the critical care community as a quality indicator for
benchmarking ICU performance but is dependent on up-to-date, accurate risk models. ICU outcome
prediction can also contribute to both randomized and nonrandomized research and potentially contribute
to individual patient management, although generic risk models should not be used to guide individual
treatment decisions.

Keywords
benchmarking, quality improvement, risk adjustment, severity of illness index, statistical models

INTRODUCTION
Quality improvement in healthcare requires assess-
ment of the structure, processes and outcomes of
care. In this review, we describe this framework in
more detail, with particular reference to critical care,
and describe why predicting ICU outcomes is essen-
tial to underpin critical care quality improvement
programmes. We review the recent literature regard-
ing quality improvement in critical care, focusing
on the use of risk-adjusted mortality as a quality
indicator. Finally, we describe other uses for out-
come prediction in critical care, with reference to
recently published papers.

A FRAMEWORK FOR QUALITY
IMPROVEMENT
Healthcare professionals agree that the quality of
care received by a patient should be to the highest
possible standard; however, it has long been recog-
nized that variations in healthcare practice exist [1].

Coupled with this is a pressure for healthcare pro-
viders to reduce resource consumption [2]. In 1999,
the US Institute of Medicine published To Err Is
Human: Building a Safer Health System, which con-
cluded that thousands of Americans experience
preventable medical error each year [3], and a sub-
sequent 2001 report proposed a comprehensive
strategy to improve the quality and delivery of care
in the United States [4]. That said, quality improve-
ment was by no means a new concept at the start
of the new millennium. Some 10 years earlier, the
same organization had defined quality as ‘the degree
to which health services for individuals and
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populations increase the likelihood of desired health
outcomes and are consistent with current pro-
fessional knowledge’ [5]. Much earlier, in 1917, the
American College of Surgeons proposed ‘minimum
standards’ when establishing its Hospital Standard-
ization Programme, which included keeping medical
records that contain the history, physical examin-
ation and laboratory results and limiting staff mem-
bership to well-educated, competent and licensed
physicians and surgeons [6].

Quality improvement in healthcare has clearly
come a long way over the last century. The most
widely used framework for assessing the quality of
healthcare is that proposed by Donabedian. In his
1988 JAMA report, he describes three distinct
categories from which inferences about the quality
of care can be drawn: structure, process and out-
come [7]. Structure describes the attributes of the
setting within which care occurs. Process denotes
what is actually done in giving and receiving care.
Outcome is defined as the effects of care on the
health status of patients and populations. For
example, in a critical care setting, indicators of
structure may include physical design of the ICU
and staffing levels, indicators of process may include
adherence to lung protective ventilation strategies
and appropriate use of stress ulcer prophylaxis, and
indicators of outcome may include mortality and
infection rates.

The domains of structure and process can be
assessed within an individual institution. Indicators
of structure are assessed against professional stand-
ards, regulations and recommendations. They relate
to the institution rather than the patient, and there-
fore require only periodic assessment. Indicators of
process are assessed against national or inter-
national clinical guidelines, based ideally on high-
quality evidence but often on expert consensus. A
process audit involves identifying all patients in a
time period who were eligible for a particular

pathway or protocol, establishing whether the
pathway was correctly followed, and identifying
areas for improvement. The gold standard is 100%
compliance and there is no need to compare per-
formance against other institutions.

Assessing outcomes for a single institution is not
as straightforward and requires comparison against
other institutions – comparative audit – to put the
outcome of the particular institution in context and
to enable benchmarking. However, the quality of
care is only one of many factors that will contribute
to a patient’s outcome and, if crude outcomes were
to be compared between institutions, any effect of
quality would likely be overwhelmed by variation in
the patient demographics, underlying health status,
acute conditions and severity of the acute illness
(collectively termed case mix). When comparing
outcomes between institutions, it is therefore essen-
tial to take the differing case mix of the institutions
into account to be able to make fair comparisons.

ICU OUTCOME PREDICTION FOR QUALITY
IMPROVEMENT
The most widely used ICU outcome measure is
mortality, as it is patient-centered, objective and
easily measured up to the point of hospital discharge
[8]. In a recent review of ICU quality indicators,
Flaatten [9] identified eight sets of ICU quality
indicators developed at a national level. Risk-
adjusted mortality was the most frequently included
indicator, being included in six of the eight quality
indicator sets (from Austria, India, the Netherlands,
Scotland, Sweden and the United Kingdom). The
two quality indicator sets that did not include risk-
adjusted mortality were from Germany, where it was
not considered in the development of the quality
indicator set, as it was already included in a core
national dataset, and Spain (http://www.semicyuc.
org/temas/calidad), where it was included in a
wider list of 120 indicators but not their 20 ‘funda-
mental’ indicators. Using a modified Delphi process
with a group of 18 nominated experts from nine
countries, a European Society of Intensive Care
Medicine Task Force on Quality and Safety ident-
ified nine quality indicators for intensive care
medicine [10]. Risk-adjusted mortality was one of
seven indicators reaching 100% consensus in the
final round of the Delphi process.

The purpose of risk prediction models in inten-
sive care is to take physiological data from early
in the critical illness, ideally prior to intervention
but in practice often over the first 24 h following
admission, coupled with other patient risk factors
such as age and diagnostic coding/reason for admis-
sion to predict the risk of hospital mortality for each

KEY POINTS

! Quality improvement in healthcare requires assessment
of the structure, processes and outcomes of care.

! Comparative audit of outcomes requires risk adjustment
to allow fair comparison of institutions.

! Risk-adjusted mortality is widely used and well
accepted as a quality indicator for benchmarking
ICU performance.

! Beyond benchmarking, ICU outcome prediction models
can contribute to randomized and nonrandomized
research and patient management.
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patient. These predicted risks can be used to evaluate
the outcome of one institution compared with
others either directly, by comparing risk-adjusted
outcomes between the institutions, or indirectly, by
comparing outcomes for the single institution
against those predicted by the model.

Within critical care, the most commonly used
and agreed upon measure for direct comparison is
standardized mortality ratio (SMR). The SMR is cal-
culated for each institution by summing the total
number of deaths over a given time period and
dividing this by the expected number of deaths as
predicted by the risk model, calculated by summing
the predicted risks over the same time period.
Perfect agreement leads to a SMR of one, although
there will of course be variation around this value.
Funnel plots are an application of direct compari-
son; in this case ‘acceptable’ limits of variation from
one will depend on the SMRs of all ICUs being
examined (Fig. 1) [11]. The advantage of funnel
plots is that they take into account the chance
variation in the outcome and therefore avoid
institutions being ranked as the best or worst based
on imprecise estimates. However, care must be taken
when using funnel plots to identify potential out-
liers [12&&]. The power of the funnel plot to detect
whether an institution is an outlier is very depend-
ent on the number of events/patients within that
institution. When the number of events is small, the
probability of an institution being identified as a
potential outlier, even when there is true poor

performance, would be low. Conversely, for a large
institution, even a very small increase in deaths
from that predicted by the risk model may result
in the institution being identified as a potential
outlier. Any inferences about quality of care are
dependent on the risk model being accurate and
up-to-date to avoid the majority of participants
being considered ‘better than average.’ Recently,
Tran et al. [13] showed that the EuroSCORE, devel-
oped in the mid-1990s to predict mortality after
cardiac surgery, ‘significantly underestimated’ the
risk-adjusted mortality for all surgeons prior to reca-
libration. Within a critical care setting, Harrison
et al. [14] demonstrated the importance of recalibra-
tion as well as the need to use models that are
calibrated to the population of interest.

Indirect comparison compares the observed out-
comes for a single institution with the expected
outcomes as predicted by the risk model, that is,
indirectly comparing this institution’s outcomes
against those of the institutions used to develop
or recalibrate the risk model. Process control charts
can be used to make comparisons of the observed
and expected outcomes within an institution.
Koetsier et al. [15] recently reviewed a number of
alternative process control methods in the context
of simulated ICU data. They found that exponen-
tially weighted moving average (EWMA) charts were
the most sensitive to detect an upward shift in the
mortality in an institution. EWMA charts are also
intuitively understandable, as they plot the average
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FIGURE 1. Example of a funnel plot for a fictitious ICU, based on data from the Intensive Care National Audit & Research
Centre (ICNARC) Case Mix Programme with risk adjustment using the ICNARC model, 2013 recalibration.
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observed and predicted mortality rate, updated
after each new patient (Fig. 2). The indirect com-
parison approach may seem appealing, as it requires
only data from a single institution and the risk
model. However, data from multiple institutions
are still required to build or recalibrate a risk model
and any inferences about quality of care are even
more dependent on the risk model being accurate
and up-to-date to avoid false reassurance from com-
paring a single institution against an out-of-date
model.

Regardless of the method applied, it is of great
importance to be able to identify ICUs with higher
than expected risk-adjusted mortality, to enable
investigations into the reasons why to be under-
taken. These investigations should be conducted
with care and consider the quality of the data as
well as the appropriateness of the risk model (e.g.
does it include all the important potential con-
founders) and its statistical performance.

Within critical care, the concept of predicting
outcome has been in use for over three decades and
all of the major models predict event-based out-
comes (mortality at discharge from hospital). It
has been argued that time-based outcomes (such
as 30-day mortality) are less biased than event-
based outcomes [16&]; however, following up ICU
patients to a specific time point, which may often be
after discharge from hospital, is burdensome and
may not be feasible to undertake routinely for the
purpose of auditing ICUs. Many countries are now

establishing more robust systems for patient identi-
fication across routine healthcare datasets permit-
ting linkage to death registrations, which would
address this issue. However, it would be necessary
to ensure any risk models were recalibrated to the
new outcome – otherwise, it is the equivalent of
allowing the predicted number of deaths from the
model to stay the same, while allowing the observed
number of deaths to change in line with the new
outcome being used. Brinkman et al. [17&&] recently
compared event-based and time-based outcomes
using the Acute Physiology And Chronic Health
Evaluation (APACHE) IV model in ICUs in The
Netherlands and recalibrated the model to each of
the outcomes presented prior to undertaking any
comparisons between the model performances.
They found that both SMR and SMR rank were
influenced by which outcome was used and recom-
mended that SMRs based on fixed time points are
preferable for use as a quality indicator.

OTHER USES FOR ICU OUTCOME
PREDICTION
In addition to comparative audit and benchmark-
ing, there are a number of other uses for ICU out-
come predictions to support research and patient
management.

In a research context, risk models can be used in
both randomized and nonrandomized (observatio-
nal) studies. Randomized controlled trials (RCTs)
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FIGURE 2. Example of an exponentially weighted moving average plot for a fictitious ICU, based on data from the Intensive
Care National Audit & Research Centre (ICNARC) Case Mix Programme risk adjustment using the ICNARC model, 2013
recalibration.
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usually report unadjusted patient outcomes for the
different treatment groups. Although randomiz-
ation is the gold standard when one wishes to
investigate a causal relationship between a treat-
ment and an outcome, as it eliminates bias in treat-
ment allocation; trials often adjust for important
predictors of outcome to correct for chance imbal-
ances between treatment groups at baseline [18].
Using simulated datasets, Hernandez et al. [19]
describe how covariate adjustment for a-priori speci-
fied predictors of outcome can increase the statisti-
cal power of a trial, thus reducing the sample size
requirements. This is supported by Roozenbeek et al.
[20] using data from the International Mission for
Prognosis and Analysis of Clinical Trials in traumatic
brain injury (IMPACT) database of RCTs and obser-
vational studies in traumatic brain injury (TBI).
Nevertheless, there is not a general consensus on
the best approach. Turner et al. [21] caution against
using this approach in the planning of RCTs, but do
conclude that ‘moderate gains in power may be
obtained using covariate adjustment from logistic
regression in heterogeneous conditions such as TBI’.

When subgroup analyses of a positive RCT are
unrevealing, such findings are commonly used to
argue that the treatment’s benefits apply to the entire
study population; however, it has been contended
that such analyses are often limited by low statistical
power [22]. Multivariable risk-stratified analyses have
been investigated as an alternative to conventional
subgroup analyses and conclude that, although con-
ventional subgroup analyses can be useful under
some circumstances, clinical trial reporting should
include a multivariable risk-stratified analysis when
an adequate externally developed risk prediction tool
is available. Kent and Hayward [23] argue that risk
stratification in the reporting of RCTs is required to
aid clinicians in their individual patient treatment
decisions, given the ‘average’ patient does not
present in the real world. This is further described
in a second article by Kent et al. [24], which goes on to
explain ‘why risk-stratified analyses should be per-
formed whenever feasible’ and in which a framework
is provided to prioritize the analysis and reporting of
risk-stratified subgroups.

Where randomization is not possible for practical
or ethical reasons, risk adjustment allowsconclusions
to be drawn from observational data. For example, in
a recent article using data from the US Project
IMPACT database, Wagner et al. [25&] compared
risk-adjusted outcomes for patients discharged from
critical care according to the ‘capacity strain’ on the
ICU. They used risk predictions from the Mortality
Probability Model at ICU admission Version III
(MPM0-III) risk model both to contribute to the risk
adjustment at the patient level and also to define

one of the measures of strain – the average predicted
risk of the other patients in the ICU.

Risk models can also contribute to more complex
statistical methods to adjust for confounding in
observational research. For example, Sekhon and
Grieve [26] recently published a new method (termed
Genetic Matching) as an extension to propensity
score matching. They applied their method to a
case study of outcomes from ICU patients managed
with a pulmonary artery catheter, comparing the
results with a contemporaneous RCT. It is important
to remember, however, that such advanced statistical
methods only improve the ability to adjust for
measured confounders and such studies remain sub-
ject to potential bias from unmeasured confounders.

The use of ICU outcome prediction in the man-
agement of individual patients is more contentious.
Risk models and severity scores may provide a tool
for communication between healthcare pro-
fessionals [27], and may assist clinicians in provid-
ing objective estimates of likely outcomes to a
patient’s family [28]. However, it is generally agreed
that they are not appropriate to rely on for decisions
regarding specific treatments [8,29] or for limitation
of life-sustaining therapy [8,30].

CONCLUSION
Risk-adjusted mortality has strong support from the
critical care community as a quality indicator for
benchmarking ICU performance. The utility of risk-
adjusted mortality as a quality indicator is depend-
ent on up-to-date, accurate risk models, and
ongoing research continues to address the best ways
to measure and report this outcome. ICU outcome
prediction can also contribute to both randomized
and nonrandomized research and potentially sup-
port patient management, although generic risk
models should not be used to guide individual treat-
ment decisions.
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 CURRENTOPINION ICU severity of illness scores: APACHE, SAPS
and MPM

Jorge I.F. Salluha,b and Márcio Soaresa,b

Purpose of review
This review aims to evaluate the latest versions of the Acute Physiology and Chronic Health Evaluation,
Simplified Acute Physiology Score and Mortality Probability Model scores, make comparisons and describe
their strengths and limitations. Additionally, we provide critical analysis and recommendations for the use
of these scoring systems in different scenarios.

Recent findings
The last generation of ICU scoring systems (Acute Physiology and Chronic Health Evaluation IV, Mortality
Probability Model 0–III (MPM0-III) and Simplified Acute Physiology Score 3) was widely validated in
different regions of the world and in distinct settings comprising general ICU patients as well as specific
subgroups such as critically ill cancer patients, cardiovascular, surgical, acute kidney injury requiring renal
replacement therapy and those in need of extra-corporeal membrane oxygen. Conflicting results are
reported, and in general the scores presented a good discrimination despite a worse calibration as
compared with the ones described in the original studies that generated them. Nonetheless, such
calibration is often improved when customizations are performed both at ICU and region or country level.

Summary
ICU scoring systems provide a valuable framework to characterize patients’ severity of illness for the
evaluation of ICU performance, for quality improvement initiatives and for benchmarking purposes.
However, to ensure the best accuracy, constant updates as well as regional customizations are required.

Keywords
Acute Physiology and Chronic Health Evaluation, benchmarking, MPM0-III, Simplified Acute Physiology
Score, scoring systems

INTRODUCTION
The Acute Physiology and Chronic Health Evalu-
ation (APACHE), the Mortality Probability Model
(MPM) and the Simplified Acute Physiology Score
(SAPS) are the three most frequently used general
severity-of-illness scores in adult ICU. The first
generations of these scoring systems were intro-
duced in critical care during the 1980s and were
quickly incorporated into medical practice by inten-
sivists [1–4]. They encompass clinical data regarding
previous health status and the main acute diagnosis
as well as physiologic and laboratory data by the
ICU admission to estimate patients’ outcomes, most
invariably the vital status at hospital discharge.
Although such instruments are of little assistance
to the management of individual patients, they
have been used by clinicians, researchers and
administrators in the field of critical care to charac-
terize patients in terms of severity of illness in
clinical studies, for the evaluation of ICU perform-
ance, in quality improvement initiatives and for

benchmarking purposes, among other potential
uses.

Over the early 1990s, updated versions of the
three scores were developed using data from a larger
number of patients and employing more sophisti-
cated statistical analyses [5–7]. Scoring system
updates are often required, as it was demonstrated
that the performances of these instruments suffer
deterioration over time, as characterized by the
worsening of discrimination (i.e., the capacity to
discriminate survivors and nonsurvivors) and
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calibration (i.e., the agreement between the
observed and expected numbers of survivors and
nonsurvivors across all of the strata of probabilities
of death) [8,9]. Such deteriorations in terms of
model performance (more importantly, of calib-
ration) can be ascribed mainly to changes in case-
mix and advances in both patients’ management
and science [10]. Over the last decade, the third or
fourth generation of these scores, namely the
APACHE IV, MPM0-III and SAPS 3, was developed
using very large databases [9,11–13]. In the present
article, we review the recent literature about these
third or fourth-generation scoring systems. Readers
can refer to an accompanying article in the present
issue of the journal [14] and to an other three
comprehensive reviews addressing aspects related
to the development, validation and potential
strengths and limitations of severity scoring systems
in critical care [15–18].

THE ACUTE PHYSIOLOGY AND CHRONIC
HEALTH EVALUATION IV, MPM0-III AND
SIMPLIFIED ACUTE PHYSIOLOGY SCORE
3 SCORING SYSTEMS
There are several common characteristics among the
APACHE IV, MPM0-III and SAPS 3 scores, partly
because they were updated due to similar concerns.
These scores were developed using prospectively
collected data from a large number of patients
and more sophisticated statistical analyses, and used
information at the beginning of ICU stay to estimate
the probability of hospital mortality. Nevertheless,
they present several different characteristics. The
development of APACHE IV and MPM0-III used data
exclusively or predominantly [because four (3%) of
the ICUs in the MPM0-III study were from Canada
and Brazil] from the United States, respectively
[9,13]. Both scores are proprietary tools owned by
Cerner Corporation (Kansas City, Missouri, United
States), although the company has made the scores
and prediction algorithms publicly available.

Conversely, the SAPS 3 score resulted from a multi-
center study carried out in 35 countries worldwide,
and this initiative was endorsed by the European
Society of Intensive Care Medicine [11,12]. Table 1
summarizes the main characteristics of each scoring
system.

The APACHE IV uses a large amount of data
from the first day of ICU admission, including 116
specific acute diagnoses. SAPS 3 and MPM0-III use
data exclusively obtained at the time of ICU admis-
sion (! 1 h) as their proponents have focused on the
simplicity and feasibility of their routine use. There-
fore, the abstraction burden of APACHE IV is sub-
stantially greater than that of SAPS II and MPM0-III
scores [19], making these scores more suitable for
ICUs where data collection is manual. Nonetheless,
as systems and device interfaces are progressively
being adopted in ICUs, automatic data extraction
should minimize the data abstraction burden. Con-
cerns regarding the labor-intensive taskof calculating
scores led investigators to create an automated ICU
score, on the basis of the SAPS 3, exclusively using
data available in the electronic medical record. In this
study involving 67 889 ICU admissions at 21 hospi-
tals between 2007 and 2011 the customized eSAPS 3
score demonstrated good discrimination [area under
the receiver operator curve (AROC)¼0.82] and
calibration (Hosmer-Lemeshow, P¼0.57) [20]. More-
over, by using data at ICU admission, MPM0-III and
SAPS 3 estimates are less prone to influences related to
in-ICU interventions. Interrater (interobserver) vari-
ability has been a source of concern in computing
the scores, and investigators claim the APACHE
scores are more prone to it [21]. Conversely, the
interobserver variability seems to be adequate for
SAPS scores [22]. Although there are no specific
studies on this topic, we believe that the same must
be true for MPM0-III. The main advantages and short-
comings for each model are shown in Table 2.

The evaluation of resource use is paramount for
assessing quality in ICU, and the ICU length of stay
(LOS) has been used as a proxy of resource use in
ICU. The APACHE IV provides prediction equations
to estimate the ICU LOS [9]. Although not present in
its original scope, the SAPS 3 has also been used to
examine variability in resource use between ICUs
[1–4,23]. The investigators used a different approach
to assess the standardized severity-adjusted resource
use for each individual ICU. In this case, severity-
adjusted resource use estimates the average amount
of resources used per surviving patient in a specific
ICU. More recently, investigators from the California
Intensive Care Outcomes project developed a
customized MPM0-III model to estimate ICU LOS
[5–7,19]. However, it should be reinforced that, anal-
ogously to mortality prediction, ICU LOS estimates

KEY POINTS

# APACHE-IV, MPM0-III and SAPS 3 scores are useful to
evaluate the outcomes and characterize disease
severity of ICU patients.

# To ensure the best calibration, updates and regional
customizations are required for ICU scoring systems.

# Studies demonstrate that such instruments are useful for
the evaluation of ICU performance, in quality
improvement initiatives and for benchmarking purposes.
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Table 1. Main characteristics of the developmental studies for the Acute Physiology and Chronic Health Evaluation-IV, MPM0-III and Simplified Acute Physiology Score 3
scores

Scoring system Patients and setting Required variables
Time of data
collection

Estimated
parameters

Performance in the original
validation set

APACHE-IV [9] 110 518 patients admitted to
104 ICUs from the United States
between January 2002 and
December 2003

Physiologic data (n¼17), ICU admission
diagnosis (n¼116), chronic health
variables (n¼6), age, hospital location
and LOS before admission, emergency
surgery, thrombolytic therapy,
mechanical ventilation

First ICU day APACHE-IV score and
predicted hospital mortality
and ICU LOS

AROC: 0.880
H-LGOF C statistics: 16.8

(P¼0.08)

MPM0-III [13] 124 885 patients admitted to
135 ICUs predominantly from
the United States between
October 2001 and March 2004$

Physiologic data (n¼3), acute (n¼5) and
chronic (n¼3) diagnoses, age, hospital
location and LOS before admission,
vasopressors use before ICU admission,
type of admission, infection at ICU
admission

At ICU admission
(! 1h)

Predicted hospital mortality
and ICU LOS$$

AROC: 0.823 (95% CI,
0.818–0.828)

H-LGOF statistics: 11.62
(P¼0.31)

SAPS 3 [11,12] 19 577 patients admitted to 307
ICUs from 35 countries in five
continents over a two-month
period in 2002

Physiologic data (n¼10), acute diagnosis
and anatomical site of surgeries (n¼15),
chronic diagnoses (n¼6), age, hospital
location and LOS before admission,
vasopressors use before ICU admission,
type of admission, infection at ICU
admission

At ICU admission
(! 1h)

SAPS 3 score and respective
predicted hospital mortality

Customized equations for seven
different geographic regions

AROC: 0.848 (95% CI,
0.841–0.854)

H-LGOF C statistics: 14.29
(P¼0.16); H-LGOF C
statistics:10.56 (P¼0.39)

APACHE, Acute Physiology and Chronic Health Evaluation; AROC, area under the receiver operator curve; CI, confidence interval; H-LGOF, Hosmer-Lemeshow goodness-of-fit; LOS, length of stay; MPM, Mortality
Probability Model; SAPS, Simplified Acute Physiology Score.
$In the MPM0-III study, three ICUs were Canadian and one was Brazilian [13].
$$Although there is no general standardized equation to estimate ICU LOS, MPM0-III was demonstrated to predict it by some investigators [19].
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should not be used on an individual basis but as a
measure to assist in the evaluation of ICU perform-
ance.

VALIDATION STUDIES IN GENERAL
INTENSIVE CARE UNIT PATIENTS AND
REGIONAL VALIDATIONS
Over the past decade, investigators evaluated the
validation of these scores in different geographic
regions and specific settings. Additionally, a com-
parison with the ‘older generation’ scores (e.g., SAPS
II, APACHE II and III) was often performed. Several
validation studies of the APACHE IV, SAPS 3 and
MPM0-III scores were reported over the last years
with conflicting results, as expected. As a con-
sequence, some proposed not only their validation
but also customizations aiming to improve their
performance. These customized versions were made
either at institutional or region or country level. The
vast majority of customizations occur at first level
(i.e., to compute a new logit in the regression
equations) and refer to the SAPS 3 score. Of note,
customized equations for seven different geographic
regions worldwide were developed and made avail-
able in the original SAPS 3 report [8,9,11,12]. In this
section of the article, we focus on validation studies
in general ICU patients. Validation studies in
specific patient subgroups and population are dis-
cussed in the next section.

As stated before in this article, the original
calibration in the third or fourth-generation scores
was good, as well as its discrimination, ranging from
0.82 to 0.88 [9–13]. One of the first validation
studies was performed in a single ICU in Belgium
where Ledoux et al. evaluated the performance of
SAPS 3 as compared with APACHE II and SAPS II
[9,11–13,24]. In this study, 851 consecutive patients
were enrolled and the authors observed that AROC
of the APACHE II model was significantly lower
than for the SAPS II and SAPS 3 models. A good
calibration was observed only for SAPS II and the
SAPS 3 model customized for Central and Western
Europe [14,24]. There are several studies that per-
formed an external validation of the SAPS 3 and
APACHE IV scores from different countries; how-
ever, most of these data are restricted to a small
number of ICUs or small sample size and limited
patient case-mix [15–18,24–32]. Auspiciously, data
from multicenter studies involving a large number
of patients are available. A study in 28 357 patients
from 147 Italian ICUs demonstrated that SAPS 3 had
a good discrimination but poor calibration, poten-
tially limiting its use for benchmarking of ICUs
in Italy [9,13,33]. Additionally, a subsequent multi-
center Austrian study confirmed these findings
[11,12,34]. In this study, the authors performed a
regional customization of the score and concluded
that region-specific or country-specific equations
may be helpful to improve its use for benchmarking

Table 2. Main advantages and disadvantages for the Acute Physiology and Chronic Health Evaluation-IV, MPM0-III and
Simplified Acute Physiology Score 3 scores

Scoring system Advantages Disadvantages

APACHE-IV [9] Coefficients regularly updated Developmental sample restricted to one country

Provides algorithms for LOS prediction More complex data collection

Specific algorithm to predict mortality in
CABG surgery patients

High abstraction burden
Proprietary scoring system$

Less prone to be affected by the case-mix

MPM0-III [13] Lowest abstraction burden Developmental sample mostly restricted to one country

Less prone to interobserver variability More susceptible to case-mix effects

By using less physiologic data, may be
preferred when laboratory resources are constrained

SAPS 3 [11,12] Low abstraction burden Does not provide estimation for LOS

Less prone to interobserver variability
Developmental sample from 35 countries in five continents

Some regional equations were developed using relatively
low sample size

Customized equations to predict hospital mortality
according to seven different geographic regions

Potential use for international benchmarking

APACHE, Acute Physiology and Chronic Health Evaluation; CABG, coronary artery by-pass graft; LOS, length of stay; MPM, Mortality Probability Model; SAPS,
Simplified Acute Physiology Score.
$Cerner Corporation has recently made the score algorithms publicly available.
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purposes. Poole et al., evaluating 2 661 patients from
103 Italian ICUs, also demonstrated that SAPS 3
overpredicted mortality even when compared
with SAPS II [19,35]. Clearly, the role of SAPS 3
for benchmarking purposes has a patent geographic
variation. For instance, in Brazil, the SAPS 3 has
been recommended as the preferential severity of
illness score by the Brazilian Association of Intensive
Care (AMIB) since 2009. Data from approximately
200 000 patients, who were admitted during 2013 to
482 ICUs (1/3 of all adult ICU beds in Brazil) using
the largest local ICU database for benchmark pur-
poses, indicated a standardized mortality ratio of
1.03 [95% confidence interval (CI), 1.01 – 1.05]
using the customized equation for South America
and Caribbean countries of the SAPS 3 score [20,36].
Good discrimination and calibration were also
shown for APACHE IV and MPM0-III in a large
database of ICU patients in 21 North American
hospitals [20,21]. APACHE IV and MPM0-III were
validated in a multicenter study of 11 300 ICU
patients from the United States and APACHE IV
had better discrimination as compared with
MPM0-III [19,22]. MPM0-III was also validated in
another large database (of 55 459 patients) from 103
North American ICUs [9,37]. Brinkman et al. [38]
performed an external validation of the APACHE IV
and compared it with APACHE II and SAPS II in
62 737 patients from 59 Dutch ICUs. In a similar way
to the studies performed with the SAPS 3 score, the
authors demonstrated that, although the APACHE
IV presented a good discrimination (AROC¼0.87),
calibration was poor but significantly improved

after customization. Studies comparing APACHE-
IV, MPM0-III and SAPS 3 scores are summarized in
Table 3.

Taken together, these studies are important as
they reflect that, although the last generation of
scoring system may consistently be applied in most
ICUs, there is nonetheless room for improvement,
customization or update in the current scores. Cer-
tainly, several aspects may help explain the diver-
gence in discrimination and calibration from the
original studies to those found in subsequent vali-
dations, namely differences in case-mix, process of
care and resuscitation status (lead time bias), fre-
quencies of do-not-resuscitate orders, source and
type of data entry (administrative, software or man-
ual) as well as ICU admission and discharge policies.
Another aspect that is always to be considered is the
potential deterioration of the system performance
over time, indicating its need to be recalibrated.

VALIDATION STUDIES IN SPECIFIC
SUBGROUPS OF PATIENTS
In the past years, several studies were performed
evaluating the performance of APACHE IV,
MPM0-III and SAPS 3 in specific subgroups of
critically ill patients. In the sections below, we
describe studies on cancer and solid-organ trans-
plant patients as well as those requiring renal
replacement therapy or extra-corporeal membrane
oxygen (ECMO), patients with acute coronary syn-
dromes, postcardiac surgery and those that had a
cardiac arrest.

Table 3. Selected external studies comparing the Acute Physiology and Chronic Health Evaluation-IV, MPM0-III and Simplified
Acute Physiology Score 3 scores in predicting hospital mortality

References Patients (n) Design and setting Main findings

Keegan et al. [15] 2596 Retrospective; three ICUs at one
hospital in the United States

Discrimination was better for APACHE IV (AROC¼0.868)
than SAPS 3 (AROC¼0.801) and MPM0-III (AROC¼0.721).
However, calibration was poor for all models.

Juneja et al. [39] 653 Retrospective; one medical ICU
in India

Discrimination was excellent (AROC>0.9) and calibration was
appropriate for all models. Predicted mortality provided by the
APACHE IV was closer to the observed mortality, whereas both
SAPS 3 and MPM0-III overestimated mortality.

Nassar Jr. et al. [30] 5780 Retrospective; three ICUs in Brazil Discrimination was very good for all models (APACHE IV,
AROC¼0.883; SAPS 3, AROC¼0.855; MPM0-III,
AROC¼0.840), but superior to APACHE IV. However, all
models calibrated poorly and overestimated hospital mortality.

Kuzniewicz et al. [19] 11 300 Retrospective; ICUs from
35 hospitals in
the United States

Discrimination was very good for all models; APACHE IV had
the best discrimination (AROC¼0.892) compared with
MPM0-III (AROC¼0.809) and SAPS II (AROC¼0.873).
Calibration was good for MPM0-III, but not for APACHE IV.
Abstraction time was three times longer for APACHE IV than
for MPM0-III.

APACHE, Acute Physiology and Chronic Health Evaluation; AROC, area under the receiver operator curve; MPM, Mortality Probability Model; SAPS, Simplified
Acute Physiology Score.
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Patients with cancer and solid-organ
transplant
The first external validation of the SAPS 3 score was
performed by our group in a retrospective single-
center study with 952 patients [40]. In that study,
the customized equation for Caribbean and South
America had the best performance and accurately
predicted hospital mortality, even when scheduled
surgical patients were excluded. Some years later,
our group performed a new validation in a pros-
pective study including patients admitted to 28
Brazilian ICUs and comparable results for the SAPS
3 were observed [41]. In this latter study, the
MPM0-III score had a poor performance and tended
to underestimate mortality in critically ill cancer
patients.

The SAPS 3 was also evaluated along with the
APACHE II in 501 patients who had undergone
different solid-organ transplants and its perform-
ance was considered inadequate [42].

Patients requiring renal replacement therapy
and extra-corporeal membrane oxygen
Three studies from Taiwan and two from Brazil
evaluated the scores in patients requiring ECMO
and/or renal replacement therapy [43–47]. Of note,
the performance of APACHE IV and customized
equations of SAPS 3 scores at ECMO or renal replace-
ment therapy start was better than at ICU admis-
sion. These findings, however, were not present
when using the MPM0-III score [45,48]. Moreover,
all scoring systems performed poorly when esti-
mated at ICU admission in this subgroup of patients.

Postcardiac arrest, coronary and cardiac
surgical patients
Three validation studies were performed in cardiac
patients. In a recent study by Doerr et al. [49], SAPS II
and 3 scores had average discrimination and poor
calibration. Two studies from Thailand and Brazil
demonstrated that the SAPS 3 score is inaccurate in
patients with acute coronary syndromes [50,51].
The APACHE IV score had both good performance
and calibration, comparable to the more specific
Global Registry of Acute Coronary Events (GRACE)
score, despite a trend to overestimate mortality [51].
Two studies found a poor performance for the SAPS
3 score in postcardiac arrest patients [52,53].

MAIN RECOMMENDATIONS AND FUTURE
DIRECTIONS
Considering the above-mentioned strengths and
limitations of the scoring systems, one can conclude

that, for both outcome prediction and benchmark-
ing, the best option would be to use a score that was
developed and validated recently in the country (or
geographic region) where it will be employed (as is
the case of the Intensive Care National Audit and
Research Centre (ICNARC) case-mix program model
[54]). Even in this case, periodic update of the score
should be performed to reflect changes in medical
care, as well as the changes in case-mix over time
[15]. Although this provides a score with excellent
local use, the downside to this approach relates to
the lack of potential use for international compari-
sons and even for risk assessment in international
clinical studies (where a common score would have
to be used). An interesting approach that potentially
mitigates this limitation is the use of a scoring
system that is developed and validated using data
from several international sites and that adjusts
for the significant differences by using singular
equations for each of the geographic regions (as in
the case of SAPS 3).

At ICU or hospital level, when choosing a scor-
ing system, other aspects that should be taken into
account are as follows: feasibility (e.g., time to cal-
culate the score, open versus copyright-protected
scores), interobserver variability and the perform-
ance of the score in the case of specific populations.
In our opinion, because of the fact that the present
scores have heterogeneous performance in specific
populations (Table 4), the choice of the scoring
system should be based on its characteristics when
applied to general ICU patients. In this case, special-
ized scoring systems (e.g., GRACE for acute coronary
syndromes, European System for Cardiac Operative
Risk Evaluation (EUROSCORE) 2 for cardiac surgery,
among others) should be employed for specific popu-
lations when deemed necessary (e.g., when these
patients represent a high volume of ICU admissions
or there are ongoing disease-specific quality improve-
ment programs). Also, at present, as reliance on scor-
ing systems alone may not be sufficient to provide
solid data on the performance of the ICU, collecting
data on adherence to process of care measures has
been increasingly recommended.

Finally, we believe that future versions of cur-
rent scoring systems as well as new scoring systems
to be developed should assess outcomes other than
hospital mortality and integrate data on resource
utilization, LOS, readmission and potentially long-
term outcomes. Also, new scores should benefit
from the huge amount of individual patient data
that is now available in electronic medical records,
ICU monitors and other medical devices. This
should allow better individual profiling and perhaps
hopefully improving individual patients’ outcomes
assessment.
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CONCLUSION
ICU scoring systems, such as APACHE IV, MPM0-III
and SAPS 3, represent significant advances in com-
parison with the earlier generation of scores. The
scoring systems have been thoroughly studied and
validated and currently provide a valuable frame-
work to characterize patients’ severity of illness for
the evaluation of ICU performance, for quality
improvement initiatives and for benchmarking
purposes. However, to ensure the best accuracy,
constant updates as well as regional customizations
are required.
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 CURRENTOPINION Optimal data systems: the future of clinical
predictions and decision support

Leo A. Celi a,!, Marie Cseteb,!, and David Stonec,!

Purpose of review
The purpose of the review is to describe the evolving concept and role of data as it relates to clinical
predictions and decision-making.

Recent findings
Critical care medicine is, as an especially data-rich specialty, becoming acutely cognizant not only of its
historic deficits in data utilization but also of its enormous potential for capturing, mining, and leveraging
such data into well-designed decision support modalities as well as the formulation of robust best practices.

Summary
Modern electronic medical records create an opportunity to design complete and functional data systems
that can support clinical care to a degree never seen before. Such systems are often referred to as ‘data-
driven,’ but a better term is ‘optimal data systems’ (ODS). Here we discuss basic features of an ODS and
its benefits, including the potential to transform clinical prediction and decision support.

Keywords
clinical, data mining, decision support systems, electronic health records, information systems

INTRODUCTION: SYSTEMS OF DATA
The ‘age of information’ combined with ubiquitous
electronic medical records (EMRs) means, in theory,
that all data necessary for optimal diagnosis, treat-
ment, and prognostication can be available to clini-
cians. The EMR interfaced to scientific information
creates both opportunity and considerable chal-
lenges in acquisition and presentation of the clini-
cally relevant data, in ways that best inform
decision-making. Within a single patient EMR,
myriad data types are captured, identified and cate-
gorized, filtered, summarized and then employed to
construct a dynamic and revisable assessment and
treatment plan. The amount of data generated by
a single patient in a single hospital admission,
particularly in the ICU, is enormous. Currently,
the way vast data are captured and entered into
medical records, leveraged, and fed back to clini-
cians is far from optimal. Despite application of
computational tools to support decision-making
in similarly data-rich complex systems outside
medicine, application of computational tools to
clinical data is in its infancy. Care must be taken
to design such systems strategically, with sufficient
modifiability to accommodate innovative advances
as novel data elements and underlying decisional
principles are added, changed and deleted from the

canon. The organization of clinical data systems,
then, requires a framework architecture on which
data at all levels of resolution can be logically
arranged. Highly functional complex systems (both
engineered and evolved) share common design fea-
tures that should be considered in the rational
design of clinical data systems. Such meticulously
designed systems will usher in a new era in clinical
predictions: the interest will expand from predicting
outcomes at the patient level either for prognosti-
cation or to inform decisions, to predicting infor-
mation gain from diagnostic tests and response to
various treatment options for individual patients.

Arguably, data from outside the EMR can and
should inform clinical decision-making. For
example, continuous local pollution levels play a
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role in health, but it is impractical to feed these
back to physicians because no one knows what to do
with them. In the future, one could envision a huge
amount of information used for clinical purposes –
various ‘omics’ databases, large longitudinal epide-
miologic studies, clinical trials, basic and preclinical
research – all (automatically) interfaced with the
EMR and exploited for minute-to-minute predic-
tions and decision support. But such a goal remains
distant for now, and physicians continue to use
clinical data items in much the way they did during
the unconnected, paper-based world of the 20th
century.

Here it is critical to note that, though the
amount of data (collected but) hidden from clinical
records is problematic, more data do not necessarily
yield better predictions, decisions, or outcomes.
Data organization around design principles is the
key. For example, a list of every component of an
airplane does not automatically yield a robust flying
machine without engineering principles and con-
trols. Similarly, future clinical record systems must
be engineered with standardization at the core,
customizability at the edges, the agility to accom-
modate changes in healthcare environment, and
a software architecture that is robust and current
yet modifiable without undue difficulties. Thus,
although an optimized data-based care system is

an ideal goal, its benefits are limited by the data
available to the system, but more importantly by
how the data are organized. For this reason, we focus
on some near-term approaches to restructuring
clinical data, as a system, from content that is cur-
rently available but not optimally employed in the
context of decision-making.

Clinical care is based on data acquisition and
analysis, but is not yet ‘data-driven’ in the stricter
sense of being objective, systematic, structured, and
replicable with the same best outcomes. In fact, the
data deluge of clinical practice (and the medical
literature) has made it progressively more difficult
to be aware of all applicable data. Unpredictable
outcomes – specifically those relating to interven-
tions providing no value added to the patient, or,
worse, adverse consequences – are far too common
and do not lend themselves easily to medicine as an
applied data science. Here we describe the current
state of clinical data in an attempt to clarify and
enhance the concept of what has often been referred
to as a data-driven care system to leverage comput-
ing power to cope with, manage, and properly ana-
lyze just the right patient data in the context of
the population. The ultimate goal is to improve
decision-making for physicians and patients by pro-
viding predictions and individualized recommen-
dations to reliably optimize patient outcomes.

ARCHITECTURE OF A CLINICAL DATA
SYSTEM
A system is an interconnected and interacting
assembly of components (a.k.a. modules, parts) that
can perform functions not possible with just the
individual components. The rules (or protocols) that
dictate the range of behaviors of a system are
designed in engineered systems, and evolved in
biological systems. A system accepts inputs and
processes them into outputs. The details of a con-
trolled system’s sensing, computation, and actua-
tion are dictated by the particular architecture of
that system.

Clinical data tend to consist mainly of modular
elements. (Note that modular elements can be
descriptive or diagnostic in nature, as well as thera-
peutic or interventional.) Clinical data format,
however, is (increasingly) highly varied (single
nucleotide polymorphisms, transcriptomes of a
tumor biopsy, functional imaging, raw vs. trans-
formed EEG signals, results of a diagnostic nerve
block) and therefore difficult to integrate without
new collection and analytic tools. For inpatients,
data are collated in a per-stay medical record along
with varying degrees of accompanying interpret-
ation. For outpatients, data are often dispersed, less

KEY POINTS

! The use of data in clinical decision-making can be
thought of as a clinical data system in which the
responsible clinician functions as the controller.

! The current era in which EMRs are nearly universally
implemented provides an opportunity for optimizing
data system design to capture and leverage data in
ways not available to individual practitioners in a
traditional article-based environment.

! An example of such design is real-time incorporation of
vast data sources into the course of clinical workflow
and decision-making.

! The data optimized system has the potential to improve
outcomes by a variety of means, such as providing
useful and reliable predictions, supporting standardized
approaches to clinical problems, and leveraging the
data available in both population clinical databases
and information resources.

! Such meticulously designed systems will usher in a new
era in clinical predictions: the interest will expand from
predicting outcomes at the patient level either for
prognostication or to inform decisions, to predicting
information gain from diagnostic tests and response to
various treatment options for individual patients.
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well organized, and often functionally unavailable.
For clinical data generally, no framework architec-
ture is used for organizing data in the context of a
physiologic system (e.g., neurologic) or a medical
condition (e.g., sepsis).

The advent of enterprise EMRs that incorporate
outpatient and inpatient functions has begun to
address the issue of integrating the patient’s entire
data history. Nonetheless, in every encounter with a
patient, the clinician’s data view axis is restricted to
the prior and current data of an individual patient,
as well as to the education, experience, efficiency,
and memory of the clinician (or clinical team). To a
large and unacceptable degree, clinicians ‘re-invent
the wheel’ with every patient encounter.

The clinician is the controller of a clinical data
system, and the patient is – in engineering terms –
the ‘plant’ (Fig. 1). Thinking of the clinician as con-
troller highlights the need to structure the input data
for optimal output (diagnosis, intervention, collec-
tion of more data, and prediction). For the most part,
the controller is the cerebral ‘wetware’ of the clini-
cian, but expert analysis will be increasingly supple-
mented by automated clinical decision support
modalities (http://www-03.ibm.com/innovation/
us/watson/watson_in_healthcare.shtml; accessed 24
April 2014). Further sensing of the patient state (the
plant) in response to actuation is fed back to the
clinician. In engineered control systems (such as a
thermostat), controllers are designed to iteratively
re-examine and re-apply solutions to the ‘plant,’ a
design that is also used by the clinician with feedback

from treatment response incorporated back to close
the loop.

Understanding clinical data (not just clinical
care in the larger sense) in terms of optimized
controllers is a fundamentally important concept
for clinical data utility, as (healthy) physiology is
dependent on well-studied physiologic control sys-
tems. Given the gap between a well-controlled
system and current clinical practice, we propose
the term ‘optimal data system’ (ODS) to distinguish
current data-driven approaches from those that
are purposefully designed. We envision ODS as an
enhanced type of data-driven system, which selec-
tively employs appropriate data elements to support
formulation of the best possible decisions, including
outcome prediction. These data do not only include
the patient’s own historical and current data, but
will eventually incorporate pertinent population
data findings, as well as decision support resources
such as guidelines, preferably formulated without
undue industrial or financial influence [1]. The
idealized ODS would continuously assess and cata-
logue the resultant outcomes of clinical decisions to
determine what are the best data and decisions that
can be recommended in the future.

The ideal data system would also be organized in
modules representing particular organs or disease
states with these modules nested in the global data
set reflecting system pathophysiology. Such organ-
ization and presentation are now in the hands of
software developers, both a challenge and an oppor-
tunity. The ideal data system organization will

Information flow Actuation

Computer

Sensor

PlantDisturbance

Material energy flow

Clinical practice

Clinical issue
Database
decision
support

State of patient

Feed back

Feed forward

FIGURE 1. Control loop depicting a data-driven care system. A clinical issue such as an infection or vascular occlusion affects
the state of the patient. Subsequently, the system sensor detects this change and submits the relevant data to the computer for
storage and analysis. This results in actuation (or not) of a clinical practice intervention that further affects the state of the
patient, which feeds back into the system for further analysis. Feed forward control involves the transmission of disturbances
directly to the sensor without first affecting the state of the patient. The detection of a risk factor for venous thromboembolism
that triggers prophylaxis in a protocol-based manner represents a clinical example of feed-forward control.
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require intense feedback between these computer
scientists and clinicians for the next generation of
health information systems.

CONSTRAINTS AND TRADEOFFS IN THE
UTILIZATION OF CLINICAL DATA
Medical care systems provide caregivers with various
levels of opportunity to identify and acquire the
data perceived as necessary at any given time for a
given patient, but data identification is highly con-
strained. First, the data must be conceived and
recognized as such, that is, identified as a clinical
data element. Until the element has been estab-
lished to be relevant to clinical care, the element
will remain in the area of the Venn diagram that lies
outside the clinical data area (Fig. 2). This may seem
trivial, but once-essential data can become obsolete
and completely new and unexpected forms of data
become essential (e.g., troponins for myocardial
infarction diagnosis today versus !1978). Data
may also simply be unknown to the user because
of educational, experiential, or communication
issues. Second, it must be recognized as valuable,
that is, worthy of the cost of the acquisition and
storage. Ideally, this value is established by studies
that examine information gain of this particular

element – does it lead to a better understanding
of the disease process on top of what is already
known and/or does it inform decision regarding a
possible intervention that will alter patient out-
come? Third, the data must be obtainable. The data
may not be technically available because of a lack of
equipment or because science has not yet estab-
lished a method of examining the real-time func-
tion of a given gene or signal transduction pathway.
Fourth, the data must be presented and formatted to
the user in a timely manner (based on clinical
acuity) and stored for future clinical and research
utilization; these functions are facilitated and sup-
ported by EMRs. Much information is simply lost
because it is not archived with the patient record
(e.g., waveform signals, hemodialysis parameters)
or functionally inaccessible in mounds of paper or
microfilm.

Currently, the predominance of free text entry
in physician notes makes the reliable cataloguing of
data for future analysis for prediction and decision
support rather difficult, but at least theoretically
possible via tools such as natural language process-
ing. The seamless integration of structured data
capture in EMR workflow is still in early develop-
ment. Medical research continues to identify novel
and previously unrecognized elements from the

Current
data state of 

the patient

Stored data previously, but
not currently, associated
with the patient, e.g., vital

sign recordings
in an ICU

All possible data

The data universe

                                                    Database of all p
atie

nts

                                                    All possible clinical d
ata

FIGURE 2. The Data Universe (not drawn to scale). Data move from the realm of ‘all possible data’ to that of ‘all possible
clinical data’ as they are identified as having clinical value. Figure courtesy of Kai-ou Tang.
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general universe of data, which become relevant to
clinical care. Entirely new types of data may be
developed in this fashion, for example, genetic test-
ing for disease risk.

A need for ‘all the data, all the time’ can be
wasteful, costly, confusing, and time-consuming.
Clinicians who require an MRI for the evaluation
of all back pain or headache cases will struggle to
operate in environments where these are not avail-
able (or allowed), highlighting the important issues
of cost, value, and risk of data. If one can function
safely without such sophisticated diagnostic modal-
ities in most circumstances, what is the appropriate
threshold for using such modalities? At the other
end of the spectrum, patients may suffer con-
sequences from clinicians not performing tests.
Clearly, we have not learned to capture ‘just enough
data,’ which should be the goal of data systems
design and evaluation.

Data may also be erroneous for a variety of
reasons such as mis-entry, machine or human
errors, unduly subjective circumstances, and limita-
tions of medical device precision. Finally, data may

go missing either because it was never entered or was
lost in some quantum mechanical event occurring
in a vast database over long time periods. Clearly,
we, as all too human clinicians, need some help in
identifying and utilizing data optimally.

CREATING AN OPTIMAL DATA SYSTEM
Acquisition of the necessary data elements as well as
their subsequent assembly represents essential pro-
tocols of a data-driven system. The clinical puzzle is
simply not as perfect as jigsaw pieces out of the box.
Instead, pieces are missing and misshapen, and
there may be strange extra pieces (Fig. 3). Even
the final puzzle product can be a moving target.
However, the formulation of some kind of mental
construct built on data pieces is a useful model for
the next steps of assessment, intervention, and re-
assessment. The ODS must be designed to support
and facilitate an increasingly complex, rushed, and
demanding clinical work environment.

We propose an enhancement to the current
process of data incorporation into the decision

Date of
birth

Shortness
of breath

Crackles
halfway up
both lungs

Bilateral
pulmonary

infiltrates on
CXR

Congestive
heart

failure
SpO2 = 78%

Diuresis

40% Oxygen
by

mask

Readmission

Individual clinical data as a puzzle

Objective data,
e.g., demographics

Subjective medical history

Subjective physical exam data

Objective data, e.g., labs,
monitors, imaging

Outcomes

Interventions/therapies

FIGURE 3. Individual clinical data as a puzzle. The puzzle changes as data are added/changed/removed, but the sequence
of changes can be recapitulated by virtue of date/time stamping. Decision support by population database or practice
guidelines could present options for new pieces, assembly suggestions, or deletion of pieces. CXR, chest X-ray. Figure courtesy
of Kai-ou Tang.
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and care process. As the nexus of clinical decisions is
the medical note, the EMR is the logical platform in
this development. An ideal ODS would include the
following:

(1) Automatic collection and display of newly
available data (i.e., data not yet entered in
an EMR) required to complete the clinical pic-
ture. These could include patient-entered data;
data sent by prehospital personnel real-time;
and data from wearable sensors.

(2) Capture and integration of the newly available
and historical data along with real-time phys-
ician entries (notes) to progressively character-
ize the clinical state and query both population
database and clinical decision support modal-
ities. These are represented by our dynamic
clinical data mining (DCDM) concept and
the IBM Watson type of functionality, respect-
ively (http://www-03.ibm.com/innovation/
us/watson/watson_in_healthcare.shtml;
accessed 24 April 2014) [2&&]. This complex
feature requires de-identified data sharing on
a universal basis [2&&].

(3) An innovative additional feature would be
required to integrate the DCDM and Watson
functions and deliver the following: diagnos-
tic, therapeutic, prognostic as well as further
documentation suggestions would be incre-
mentally displayed on the basis of the combi-
nation of the analyzed data provided by these
multiple sources. These might include sugges-
tions to supplement required missing data
with additional testing; clarification of free
text entries for purposes of standard coding;
identification of suggestive but otherwise dif-
ficult-to-identify patterns and constellations of
data; automatic highlighting of diagnoses,
treatments, results and combinations of results
that are incongruous or inconsistent; and pro-
viding population-based but individualized
suggestions for ongoing care decisions and
next steps. This is the stage where the soft-
ware–wetware integration process is continu-
ously enhanced by leveraging information
outside the purview of today’s clinical EMR
(or paper chart) user.

(4) Machine learning would be employed to con-
tinuously improve the quality of the infor-
mation presented to the user as the system
‘learns’ how clinicians employ the system in
heterogeneous ways.

(5) Users are allowed to customize their own
version of the application to the extent that
standardization of data is not violated. In other
words, the application design should be

‘customized at the edges but standardized at
the core’, enabling users to have considerable
but reasonable control over their interactions
with the system [3&]. Customization should
not be permitted to the extent that it is difficult
or near impossible for software engineers to
investigate reported system errors and un-
anticipated events.

(6) Saved system data would then be provided
to both the local and the population databases
for ongoing analysis for real-time care and
the objective formulation of clinical support
modalities, including practice guidelines and
research.

(7) Reports would be generated regarding user
decisions in terms of consistency with best
practices as suggested by the system.

(8) The system should be modifiable so that it can
incorporate new and innovative modalities for
clinical prediction and decision support.

(9) The system should be modifiable so that
important new information can be brought
to the ‘head of the line’ under certain urgent
circumstances such as drug recalls, epidemics,
disasters, and acts of terrorism.

(10) The system should be fully tested in prototype
by expert users in parallel with the current care
system before allowing it to be used in daily
practice by regular clinicians. This testing will
probe usability as well as detect the kinds of
system errors that can only be exposed with
use in a real clinical context.

Experienced clinicians make decisions with
minimal or ‘just enough’ data – they realize that
there are costs to obtaining unnecessary data. These
costs include not only the obvious human, finan-
cial, and clinical risks of further testing, but also the
inevitable distractions of information overload. The
ODS also introduces the opportunity for either sys-
tematic review or random auditing of clinical de-
cisions. These audits would review system as well as
individual human performance. Such analysis is
already starting as organizations incorporate tools
that identify clinicians who obtain insufficient,
excessive, or wrong data, and who make decisions
identified as suboptimal under the care circumstan-
ces. Systems approaches to teaching medicine are
clearly needed to prepare clinicians for optimal use
of data systems.

WILL OPTIMAL DATA SYSTEMS IMPROVE
OUTCOMES?
First, no changes in care based on current data or
processes can transcend the therapeutic limitations
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of current practice: creating an optimally data-
driven care system is a necessary starting point in
re-engineering medicine for the digital age, but it
does not represent a clinical panacea. The limita-
tions in our actuational capabilities put a firm glass
ceiling on the outcome improvements that can be
achieved and measured without the implementa-
tion of truly innovative treatment advances. How-
ever, better use of data does provide the promise of
contributing to future advances in this regard [4],
and, more importantly, cost-effective use of tests
and treatments in the near term. As intensivists,
we recognize that critical care medicine is a particu-
larly data-rich area of medicine, but has not here-
tofore captured or utilized these data to a significant
extent [5&].

The intensive use of data should allow us to
recognize patterns in the administration of care that
may contribute to otherwise undetectable positive
or negative impacts on outcomes. For example, if
clinicians had real-time access to prior outcomes
in comparable patients, they could adjust their care
plans on the basis of previously successful
approaches in large populations [2&&]. Clinicians
could also adjust their practice on the basis of

observations of negative effects that can only be
detected by the study of large populations [6&].
These effects may be subtle or only occur under
circumstances of specific combinations of clinical
context and interventions, and therefore will not
generally be noted in the course of normal practice
or even chart reviews.

More carefully designed data presentation
might speed up the process in which clinicians
review data. This might simply mean better and
smarter graphical displays [7]. For example, a better-
engineered presentation of those data elements
that the clinician needs to know and can actually
act upon could safely eliminate the need to review
all the data entries, all the time (Fig. 4).

Data can provide the basis for more robust and
standardized care decisions, especially in frequently
encountered situations such as acute hypotension
in the ICU [8&]. In addition, we may be able to use
diagnostic testing in a more selective and cost-
effective manner [9]. Workflow should be better
supported – for example, where checklists are
employed, available data could populate the check-
list to some extent. Clinicians could be notified of
the presence of uncompleted checklist items in a

Data set 1 Data set 2

•  Vital signs and
    physical exam
    findings

•  Nursing and/or
    patient reporting

•  Imaging results

•  Laboratory values

Data set 3

Clinical data utilization

•  Other flowsheet entries:

Data set 4

•  Interpolated
    progress notes
    from overnight
    coverage personnel

•  Consultant notes

Net decisional impact, e.g., observations of completely new abnormalities in known
issues, significant changes in known issues, occurrence or possibility of entirely new issues

Data review and
analysis process

Fluids, input and output,
infusions and other

current medications,
ventilation, invasive

monitoring results, etc.

FIGURE 4. Clinical data utilization. The clinician may analyze dozens or hundreds of individual data items in the course of
workflow, but only net a few significant data items that influence the course of decision making. The detection of zero change
also influences the analysis. The issue raised here is how this iterative, detail-oriented process can be accelerated and
supported by technology.
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manner that should improve the accuracy and
diminish the tedium of the task [10,11]. Any
additional provision of time provided by a carefully
designed data-driven system should itself provide an
advantage as clinicians recognize time as a critical
limiting factor in point of care practice [12,13].

Careful and directed use of data may allow us to
discharge patients from the ICU more safely and
efficiently [14]. Data can similarly be employed to
identify patients with extremely poor prognoses
who are receiving inevitably futile care [15]. The
biggest impact of the data re-engineering is a more
standardized decision-making based on predicted
outcomes and retrospective comparative effective-
ness analysis, avoidance of unnecessary testing, and
unloading of provider cognitive workload to free up
time that can be better spent on tasks that add value.

CONCLUSION
There is always a tension between practicing opti-
mally on the basis of current knowledge and advanc-
ing the state of the art of patient care, which requires
insights and interventions not yet in the canon. This
tension is the result of an unnecessary gap between
research and practice; clinicians currently execute
this translational process without adequate data
support. Clinicians also occasionally face decisions
that must be made on an individual, experiential
basis, as opposed to a more standardized approach,
especially when patterns have no apparent pre-
cedent in that clinician’s knowledge and experi-
ence. To complicate matters, new varieties and
forms of data are incrementally added to clinical
databases, as trials of new tests and therapies are
known. The challenge to software designers and
clinicians is incorporating the beneficial elements
of these advances into an established information
system firmly based on the integration of previously
available individual and population data. Such
advances will require algorithmic adjustment of
the information presented to the user so that the
impact of important discoveries is accelerated into
a revisable and dynamically data-driven system of
clinical practice.
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