30 Critical Care

30.01 APACHE Score

30.02 APACHE II30.02.01 Generating the APACHE II Score30.02.02 Computing the Predicted Death Rate for Acutely III Patients with APACHE II30.02.03 Sickness Score

30.03 Modifications of APACHE II Score for Organ System Failures 30.03.01 Organ Failure Score 30.03.02 Organ Failure Score Algorithm to Predict Mortality in the ICU

30.04 APACHE III
30.04.01 Introduction to APACHE III
30.04.02 APACHE III Age and Chronic Health Subscore
30.04.03 APACHE III Physiologic Subscore
30.04.04 APACHE III Acid-Base Subscore
30.04.05 APACHE III Neurologic Subscore
30.04.06 Computing the Predicted Death Rate for Acutely III Patients with APACHE III
30.04.07 Daily APACHE III Scores in the Intensive Care Unit

30.05 Logistic Organ Dysfunction System

30.06 Multiple Organ Failure Score of Goris et al

30.07 Multiple Organ Dysfunction Score

30.08 Scores for the Sepsis Syndrome

30.08.01 Systemic Inflammatory Response Syndrome

30.08.02 Septic Shock Score

30.08.03 Sepsis Syndrome

30.08.04 Multiple System Organ Failure Score

30.08.05 Prediction of Mortality from Bacteremic Sepsis in ICU Patients

30.08.06 Septic Severity Score (SSS) of Stevens

30.08.07 Prognostic Classification of Patients with Septic Shock Based on Cortisol Levels and Cortisol Response to Corticotropin

30.08.08 The Baltimore Sepsis Scale

30.09 Organ Dysfunctions and/or Infection (ODIN)

30.10 Therapeutic Intervention Scoring System (TISS) and its Derivatives

30.10.01 Therapeutic Intervention Scoring System (TISS) of 1974

30.10.02 Revised TISS of 1983 (TISS-76)

30.10.03 Neonatal Therapeutic Intervention Scoring System (NTISS)

30.10.04 Intermediate TISS for Non-ICU Patients

30.10.05 TISS-28

30.11 Simplified Acute Physiology Score (SAPS)30.11.01 Original Simplified Acute Physiology Score (SAPS)30.11.02 New Simplified Acute Physiology Score (SAPS II)

30.12 Mortality Probability Models (MPM)30.12.01 MPM at Admission30.12.02 MPM at 24 Hours30.12.03 MPM at 48 hours30.12.04 MPM Over Time

30.13 Mortality Probability Models II (MPM II)30.13.01 MPM II at Admission to the ICU30.13.02 MPM II during Admission30.13.03 Comparison of MPM II Assessments

30.14 The SUPPORT Prognostic Model30.14.01 Calculating the SUPPORT Physiologic Score

30.15 Blood Lactate and Survival

30.16 Physiology Stability Index30.16.01 Physiologic Stability Index (PSI)30.16.02 PSI/TISS Ratio

30.17 PRISM Scores30.17.01 Pediatric Risk of Mortality (PRISM) Score30.17.02 Dynamic Objective Risk Assessment (DORA) Score30.17.03 PRISM III Score

30.18 Score for Neonatal Acute Physiology (SNAP)30.18.01 Score for Neonatal Acute Physiology (SNAP) Determination30.18.02 Score for Neonatal Acute Physiology Perinatal Extension (SNAP-PE)30.18.03 SNAP and Mortality Risk

30.19 Acute Physiologic Score for Children (APSC)

30.20 Prediction of Seizures in ICU Patients with Gram-negative Infections

30.21 A 24 Hour ICU Point System for Prediction of Outcome in Trauma Patients

30.22 Hypotension Score for Predicting Outcome in Critically Ill Patients with Unexplained Hypotension

30.23 Predictors of Early After-Discharge Mortality in ICU Patients

30.24 Multiple Organ System Failure Score of Tran et al

30.25 Nine Equivalents of Nursing Manpower Use Score

30.26 Transfer of Critically Ill Patients

30.26.01 Prediction of Respiratory Deterioration After Transfer in Critically Ill Patients

30.26.02 The Rapid Acute Physiology Score (RAPS)

30.27 Hannover Intensive Score (HIS)

30.28 The Abdominal Compartment Syndrome

30.29 POSSUM Scoring System for Surgical Audit

30.01 APACHE Score

Overview:

The APACHE (acute physiology and chronic health evaluation) is a system for classifying patients in the intensive care unit. Patients are evaluated by physiologic scores and evaluation of chronic health status. Physiologic scores correlate with severity of illness. Results of the evaluation can be used to estimate the mortality rate for patients in the ICU and during the hospitalization.

Physiologic classes of variables (total 8 classes with 34 variables)

- cardiovascular: 7 variables
- respiratory: 3 variables
- renal: 3 variables
- gastrointestinal: 6 variables
- hematologic: 4 variables
- septic: 4 variables
- metabolic: 6 variables
- neurologic: 1 variable

Scoring

- physiologic data is evaluated during the first 32 hours after admission to the ICU
- each variable is assigned a value of 0 to 4, based on significance of deviation from normal, with more severe deviations given higher values

	+4	+3	+2	+1	0	+1	+2	+3	+4
heart rate	>=	141-	111-		70-		56-69	41-55	<=
ventricular	180	179	140		110				40
response									
mean arterial	>=	131-	111-		70-		51-69		<=
pressure in mm Hg	160	159	130		110				50

Cardiovascular

((S+2D)/3)									
R atrial pressure or			>=	16 -	1 - 15	< 1			
CVP in mm Hg			26	25					
evidence of acute	Yes				No				
MI (CPK-MB,									
ECG, other)									
ECG arrhythmias		Α	В					C	D
serum lactate	> 72	30.7 -			0 -				
mg/dL		72			30.6				
arterial pH	>=	7.6 -		7.51-	7.33-		7.25-	7.15-	<
-	7.7	7.69		7.59	7.50		7.32	7.24	7.15

where

- serum lactate expressed in mEq/L, which is no longer used routinely. This was assumed to be equivalent to mmol/L, which is converted to mg/dL by multiplying by 9
- A: atrial arrhythmias and hemodynamic instability
- B: atrial arrhythmias alone
- C: > 6 PVCs per minute
- D: ventricular tachycardia or fibrillation

Respiratory

	+4	+3	+2	+1	0	+1	+2	+3	+4
respiratory rate	>=50	35 -		26 -	12 -	10 -	7 - 9		<= 6
nonventilated		49		34	25	11			
P(A-a)O2	>=	351-		200-	< 200				
(FIO2 1.0)	500	499		350					
PaCO2	>=	61 -	50 -		30 -		25 -	20 -	< 20
	70	69	60		49		29	24	

where:

the P(A-a)O2 for FIO2 is given as ((FIO2 as fraction from 0.21 to 1.00) * 713) - PaCO2
PaO2); however, the decision points for lower FIO2s are not given. These are unlikely to be comparable to those of an FIO2 of 1.00.

Renal

Itellul									
	+4	+3	+2	+1	0	+1	+2	+3	+4
urine output in L			>= 5	> 3.5	0.7 -		0.48-	0.12-	<
per day				- <5	3.5		< 0.7	0.47	0.12
serum BUN in	> 150	101 -	81 -	21 -	10 -		< 10		
mg/dL		150	100	80	20				
serum creatinine in	> 7.0	3.6 -	2.1 -	1.6 -	0.6 -	< 0.6			
mg/dL		7.0	3.5	2.0	1.5				

Gastrointestinal

+4 $+3$ $+2$ $+1$ 0 $+1$ $+2$ $+3$ $+4$	Gustionnestinui									
		+4	+3	+2	+1	0	+1	+2	+3	+4

serum amylase in	>=	501-			<=			
IU	2000	1999			500			
serum albumin in	> 8				3.5 -	2.5 -	< 2.5	
g/dL					8.0	3.4		
total bilirubin in		>=		5.1 -	0 - 5			
mg/dL		15		14.9				
alkaline				> 160	0 -			
phosphatase in IU					160			
SGOT			>=	101 -	0 -			
			1500	1499	100			
anergy by skin test	total		rela-		none			
			tive					

where

- total anergy = no response to all provocative skin tests including mumps and fungal
- relative anergy = reduced response to skin tests indicative of compromised cellular immunity

Hematological

	+4	+3	+2	+1	0	+1	+2	+3	+4
hematocrit	> 60		51 -	47 -	30 -		20 -		< 20
			60	50	46		29		
WBC in	>40		> 20	>15	> 3 -		1 - 3		< 1
thousands/µL			- 40	- 20	15				
platelet count in			>1K	>600	80 -		20 -		< 20
thousands/µL				- 1K	600		< 80		
prothrombin time	> 12	5.1 -	3.1 -		0 - 3				
in seconds >		12	5.0						
control									

where

• prothrombin testing is done without patient anticoagulation

Septic

o • p ··· •									
	+4	+3	+2	+1	0	+1	+2	+3	+4
CSF positive culture	Yes				No				
blood culture positive	Yes				No				
fungal culture positive	А	В		С	No				
rectal temp in C°	>41	39.1-		38.6-	36 -	34 -	32 -	30 -	<=
-		41.0		39.0	38.5	35.9	33.9	31.9	29.9

where

• A: blood and/or CSF positive for fungi

- B: 2 sites other than blood or CSF positive for fungi
- C: 1 site other than blood or CSF positive for fungi

	+4	+3	+2	+1	0	+1	+2	+3	+4
serum calcium in	>=		14 -	11.1-	8.0 -		5.0 -		< 5.0
mg/dL	16		15.9	13.9	11.0		7.9		
serum glucose in	> 800	500 -		251 -	70 -		50 -	30 -	< 30
mg/dL		800		499	250		69	49	
serum sodium in	> 180	161 -	156 -	151 -	130 -		120 -	110 -	< 110
mEq/L		180	160	155	150		129	119	
serum potassium	> 7	6.1 -		5.6 -	3.5 -	3.0 -	2.5 -		< 2.5
in mEq/L		7.0		6.0	5.5	3.4	2.9		
serum bicarbonate		>40		31 -	20 -	10 -		5 - 9	< 5
in mEq/L				40	30	19			
serum osmolarity	> 350	321 -		301 -	260 -		240 -	220 -	< 220
-		350		320	300		259	239	

Metabolic

Neurological

	+4	+3	+2	+1	0	+1	+2	+3	+4
Glasgow Coma	3	4 - 6	7 - 9	10 -	13 -				
Score				12	15				

APACHE score =

= (points for cardiovascular status) + (points for respiratory status) + (points for renal status) + (points for gastrointestinal status) + (points for hematological status) + (points for septic status) + (points for metabolic status) + (points for neurological status)

Preadmission Health Status

	~	
Qualifying Questions, based on health	Group	Description
status 3-6 months before admission		
Did the patient have weekly visits to a physician?	D	Severe restriction of activity due to disease;
Was the patient unable to work because of		includes patients bedridden
illness?		or institutionalized due to
Was the patient bedriddent or		illness
institutionalized because of illness?		
Had the patient suffered a relapse after		
systemic treatment for carcinoma?		
Was the patient's usual daily activity	С	chronic disease producing
limited?		serious but not
Did symptoms occur with mild exercise?		incapacitating restriction of
Had the patient received treatment for		activity
neoplasm with remission?		
Had the patient received uncomplicated		

hemodialysis?		
Did the patient see a physician monthly?	В	mild to moderate limitation
Did the patient take medication		in activity because of
chronically?		chronic health problem
Was the patient mildly limited in activity		
level due to illness?		
Did the patient have diabetes mellitus,		
chronic renal failure, a bleeding		
disorder, or chronic anemia?		
negative responses to all of the above	А	prior good health with no
questions		functional limitations

Interpretation

- minimum score: 0
- maximum score: 129 (cardiovascular 27; respiratory 12; renal 12; gastrointestinal 18; hematological 16; septic 16; metabolic 24; neurological 4)

Probability of Death in Hospital based on APACHE score

Score	Mortality Rate
0 - 5	2.3%
6 - 10	4.3%
11 - 15	8.6%
16 - 20	16.4%
21 - 25	28.6%
26 - 30	56.4%
31+	70%

data extrapolated from Figure 1, page 595

Relationship between chronic health status and patient outcome

Overall

Preadmission Health Status	Probability of Dying in the ICU	Probability of Dying in the Hospital
A	7.3%	12%
В	5.9%	12%
С	10.5%	16.5%
D	11.7%	25%

Nonoperative

Preadmission Health Status	Probability of Dying in the ICU	Probability of Dying in the Hospital
А	14%	20.9%
В	10.1%	20.2%
С	12.8%	21.7%
D	22.2%	50%

Operative

Preadmission Health Status	Probability of Dying in the ICU	Probability of Dying in the Hospital
А	3%	6.2%
В	2.2%	7.2%
C	8.6%	12.3%
D	3%	6%

References:

Knaus WA, Zimmerman JE, et al. APACHE - acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981; 9: 591-597.

30.02 APACHE II Score

30.02.01 Generating the APACHE II Score

Overview:

The APACHE II score is a general measure of disease severity, based on current physiologic measurements, age and previous health condition. Scores range from 0-71, with an increasing score associated with an increasing risk of hospital death. The score can help in the assessment of patients to determine the level and degree of diagnostic and therapeutic intervention.

APACHE II score =

= (acute physiology score) + (age points) + (chronic health points)

	+4	+3	+2	+1	0	+1	+2	+3	+4
rectal temp in C°	>=	39-		38.5-	36-	34-	32-	30-	<=
_	41	40.9		38.9	38.4	35.9	33.9	31.9	29.9
mean arterial	>=	130-	110-		70-		50-69		<=
pressure mm Hg	160	159	129		109				49
heart rate in	>=	140-	110-		70-		55-69	40-54	<=
beats/minute	180	179	139		109				39
respiratory rate in	>=50	35-49		25-34	12-24	10-11	6-9		<= 5
breaths/min									
oxygen: A-aDO2	>=	350-	200-		< 200				
$(FIO2 \ge 0.5)$	500	499	349						
oxygen: PO2					> 70	61-70		55-60	< 55
(FIO2 < 0.5)									
arterial pH	>=	7.6-		7.5-	7.33-		7.25-	7.15-	<
-	7.7	7.69		7.59	7.49		7.32	7.24	7.15
serum sodium	>=	160-	155-	150-	130-		120-	111-	<=

Acute Physiology Score

	180	179	159	154	149		129	119	110
serum potassium	>= 7	6-6.9		5.5-	3.5-	3-3.4	2.5-		<2.5
				5.9	5.4		2.9		
serum creatinine in	>=	2-3.4	1.5-		0.6-		< 0.6		
mg/dL	3.5		1.9		1.4				
hematocrit in	>=		50-	46-	30-		20-		< 20
percent	60		59.9	49.9	45.9		29.9		
WBC in thousands	>=		20-	15-	3-		1-2.9		< 1
	40		39.9	19.9	14.9				
15 - (Glasgow									
Coma Score)									

where

• The score for serum creatinine is doubled if the patient has acute renal failure.

• mean arterial pressure =

((systolic blood pressure)+ (2 * (diastolic pressure))) / 2

Age Points

Age	Points
<= 44	0
45-54	2
55-64	3
65-74	5
>= 75	6

Chronic Health Points

history of severe organ insufficiency or immunocompromised	Points
nonoperative patients	5
emergency postoperative patients	5
elective postoperative patients	2

where

- organ insufficiency or immunocompromised state must have preceded the current admission
- immunocompromised if: (1) receiving therapy reducing host defenses (immunosuppression, chemotherapy, radiation therapy, long term steroid use, high dose steroid therapy), or (2) has a disease severe enough to interfere with immune function such as malignant lymphoma, leukemia or AIDS
- liver insufficiency if: (1) biopsy proven cirrhosis, (2) portal hypertension, (3) episodes of upper GI bleeding due to portal hypertension, (4) prior episodes of hepatic failure, coma or encephalopathy
- cardiovascular insufficiency if: New York Heart Association Class IV
- respiratory insufficiency if: (1) severe exercise restriction due to chronic restrictive, obstructive or vascular disease, (2) documented chronic hypoxia, hypercapnia, secondary polycythemia, severe pulmonary hypertension, (3) respirator dependency

• renal insufficiency if: on chronic dialysis

Interpretation:

• score range: 0 - 71

References:

Knaus WA, Draper EA, et al. APACHE II: A severity of disease classification system. Critical Care Medicine. 1985; 13:818-829.

30.02.02 Computing the Predicted Death Rate for Acutely III Patients with APACHE II

Overview:

From the APACHE II score and knowledge of primary clinical diagnoses, an estimated risk of death in the hospital can be calculated.

ln ((estimated risk of hospital death) / (1 - (estimated risk of hospital death))) == (-3.517) + (0.146 * (APACHE II score)) + (0.603 if post-emergency surgery, 0 if not) + (diagnostic category weight)

Group	Disorder	Weight
respiratory failure or insufficiency	asthma or allergy	-2.108
	COPD	-0.367
	pulmonary edema,	-0.251
	noncardiogenic	
	post-respiratory arrest	-0.168
	aspiration	-0.142
	poisoning or toxic	-0.142
	pulmonary embolus	-0.128
	infection	0
	neoplasm	0.891
cardiovascular failure or	hypertension	-1.798
insufficency		
	rhythm disturbance	-1.368
	congestive heart failure	-0.424
	hemorrhagic shock or	0.493
	hypovolemia	
	coronary artery disease	-0.191
	sepsis	0.113
	postcardiac arrest	0.393
	cardiogenic shock	-0.259
	dissecting aortic aneurysm	0.731
trauma	multiple trauma	-1.228

Diagnostic Category - Nonoperative

	head trauma	-0.517
neurologic	seizure disorder	-0.584
	ICH/SDH/SAH	0.723
other	drug overdose	-3.353
	diabetic ketoacidosis	-1.507
	GI bleeding	0.334
vital organ affected	metabolic or renal	-0.885
	respiratory	-0.890
	neurologic	-0.759
	cardiovascular	0.470
	gastrointestinal	0.501

Diagnostic Category - Operative

Group	Disorder	Weight
Operation	multiple trauma	-1.684
	chronic cardiovascular	-1.376
	disease	
	peripheral vascular disease	-1.315
	heart valve surgery	-1.261
	craniotomy for neoplasm	-1.245
	renal surgery for neoplasm	-1.204
	renal transplant	-1.042
	head trauma	-0.955
	thoracic surgery for	-0.802
	neoplasm	
	craniotomy for	-0.788
	ICH/SDH/SAH	
	laminectomy or other spinal	-0.699
	cord surgery	
	hemorrhagic shock	-0.682
	GI bleeding	-0.617
	GI surgery for neoplasm	-0.248
	respiratory insufficiency	-0.140
	after surgery	
	GI perforation or	0.060
	obstruction	
postoperative complications	sepsis	0.113
	postcardiac arrest	0.393
	postrespiratory arrest	-0.168
NOS	neurologic	-1.150
	cardiovascular	-0.797
	respiratory	-0.610
	gastrointestinal	-0.613

metabolic renal -	-0.196
-------------------	--------

References:

Knaus WA, Draper EA, et al. APACHE II: A severity of disease classification system. Critical Care Medicine. 1985; 13:818-829. (Appendix pages 828-829)

30.02.03 Sickness Score

Overview

The Sickness Scale is based closely upon the Apache II score and is intended to assess critically ill patients transported between hospitals.

Assessments performed

- before and after resuscitation
- on return to base
- after 24 hours of intensive care

Differences from Apache II

- Measurements are in SIU.
- The FIO2 to PaO2 ratio is calculated rather than A-aDO2 or PaO2 as a measure of oxygenation (FIO2 as percent inspired oxygen, PaO2 in kPa).
- The hemoglobin is used rather than hematocrit, and the breakpoints for each score are slightly different when units are adjusted for, where hemoglobin = ((hematocrit) / 2.94).
- The breakpoints for creatinine differ when units are adjusted for. $(1 \text{ mg/dL} = 88.4 \mu \text{mol/L})$.
- A chronic disease must be sufficiently severe to prevent independent self-care.
- In Apache II, the more extreme (maximum or minimum) value for temperature, mean arterial pressure, heart rate and respiratory rate are used, as opposed to single values in the Sickness Score.

	+4	+3	+2	+1	0	+1	+2	+3	+4
FIO2/PaO2	>=	4.0-	2.1-		<				
	5.0	4.99	3.99		2.09				
hemoglobin in	>=		15.0-	14.0-	9.0-		6.1-		<=
g/dL	18.0		17.9	14.9	13.9		8.9		6.0
creatinine in	>=	300-	180-	130-	50-		<=		
µmol/L	600	599	299	179	129		49		

Interpretation:

- The higher the score the worse the prognosis.
- Scores > 19 are usually associated with subsequent death.
- While the scores for non-survivors may fall after resuscitation, the subsequent outcome is unaffected.

References:

- Bion JF, Edlin SA, et al. Validation of a prognostic score in critically ill patients undergoing transport. Br Med J. 1985; 291: 432-434.
- Bion JF, Logan BK, et al. Sedation in intensive care: morphine and renal function. Intensive Care Med. 1986; 12: 359-365.
- Bion JF, Aitchison TC, et al. Sickness scoring and response to treatment as predictors of outcome from critical illness. Intensive Care Med. 1988; 14: 167-172.

30.03 Modification of the APACHE II Score for Organ System Failures

30.03.01 Organ Failure Score

Overview:

The presence of major organ failures is associated with increased patient mortality. Adjustment of the APACHE II score to reflect the number and duration of major organ failures can allow more accurate prediction of patient mortality in the ICU.

Organ System	Criteria for Failure
Organ System	
cardiovascular	heart rate <= 54 beats per minute
	mean arterial blood pressure <= 49 mm Hg
	occurrence of ventricular tachycardia and/or
	ventricular fibrillation
	serum pH <= 7.24 with PaCO2 <= 49 mm Hg
respiratory	respiratory rate <= 5 per minute, or >= 49 per minute
	PaCO2 > 50 mm Hg
	AaDO2 > 350 mm Hg
	dependent on ventilator on 4th day of organ system
	failure (do not apply for first 72 hours of organ system
	failure)
renal	(urine output <= 479 mL per day, OR <= 159 mL
	during an 8 hour period) AND serum urea >= 214
	mg/dL
	(urine output <= 479 mL per day, OR <= 159 mL
	during an 8 hour period) AND serum creatinine >=
	3.5 mg/dL
hematological	WBC count <= 1000 per μL
	platelet count <= 20000 per μL
	hematocrit <= 20% AND not chronic renal failure
neurological	Glasgow coma score <= 6, in absence of sedation, at
	any one point in day
liver	clinical acute liver failure and P < 0.66 (see below)

where:

- mean arterial blood pressure = ((systolic blood pressure) + (2 * (diastolic blood pressure))) / 3
- AaDO2 = ((713 * FIO2) PaCO2 PaO2)

liver failure

- LN (P / (1-P)) = X = 10 (4.3 * (prothrombin ratio)) (0.03 * (creatinine in mg/dL) * 88.4) (0.85 * (1 if hepatic encephalopathy present, -1 if hepatic encephalopathy absent))
- prothrombin ratio = (patient's prothrombin time in seconds) / (mean prothrombin time for normal plasma)
- 88.4 is conversion for creatinine in mg/dL to SI units
- P = (EXP(X)) / (1 + (EXP(X)))

day of failure	1 OFs	2 OFs	3+OFs
1	0.022	0.052	0.08
2	0.031	0.067	0.095
3	0.034	0.066	0.093
4	0.035	0.062	0.096
5	0.04	0.056	0.1
6	0.042	0.064	0.1
7	0.041	0.068	0.1

Organ Failure Coefficients

organ failure score =

= ((APACHE II score) * (1 + (organ failure coefficient)))

References

- Chang RWS, Jacobs S, Lee B. Predicting outcome among intensive care unit patients using computerised trend analysis of daily Apache II scores corrected for organ system failure. Intensive Care Med. 1988; 14: 558-566.
- Garden OJ, Motyl H, et al. Prediction of outcome following acute variceal hemorrhage. Br J Surg. 1985; 72: 91.
- Thomson JN. Chapter 9: Laboratory control of anticoagulant therapy. pages 279-329. (page 318). IN: Thomson JN (editor). Blood Coagulation and Haemostasis, Second Edition. Churchill-Livingstone. 1980.

30.03.02 Organ Failure Score Algorithm to Predict Mortality in the ICU

Overview:

The pattern of organ failure scores for patients in the ICU can be used to predict mortality.

Day in ICU	Findings	Pattern
Day 1	OFS > 35	high scorer
Day 2	AND	fuzzy bander

Patterns of Change in Organ Failure Score (OFS) Associated with Patient Death

	((OFS day 1 > 27), (OFS day 1 <=35), ((OFS day 1) - (OFS day 2) < 2.5))	
Subsequent	AND	leaper
Day n	((OFS day n > 27)	-
-	((OFS day n) - (OFS day n-1) > 2.5))	
	gradual increase in OFS to > 35	creeper

where:

• increases in OFS are unexplained by surgery or major iatrogenic complications

Performance analysis at the Riyadh Intensive Care Program (Western Infirmary, Glasgow) showed that the mortality prediction algorithm has the a sensitivity equivalent to APACHE II (68%), but provides better specificity (95% vs 85%).

References

- Chang RWS, Jacobs S, Lee B. Predicting outcome among intensive care unit patients using computerised trend analysis of daily Apache II scores corrected for organ system failure. Intensive Care Med. 1988; 14: 558-566.
- Hope AT, Plenderleith JL. The Riyadh Intensive Care Program mortality prediction algorithm assessed in 617 intensive care patients in Glasgow. Anaesthesia. 1995; 50: 103-107.
- Jacobs S, Arnold A, et al. The Riyadh Intensive Care Program applied to a mortality analysis of a teaching hospital intensive care unit. Anaesthesia. 1992; 47: 775-780.

30.04 APACHE III

30.04.01 Introduction to APACHE III

Overview:

APACHE III is a further refinement to the APACHE (Acute Physiology, Age, Chronic Health Evaluation) system intended to provide more accurate predictions of hospital mortality risk for the critically-ill hospitalized adult.

The calculations required for the prediction are somewhat complex, involving the combination of the following into a risk equation:

• the APACHE III score, composed of several subscores for age, chronic health, physiologic, acid-base and neurologic status

- a value reflecting admission status
- a value reflecting the major disease category.

From the risk equation, the risk of hospital mortality is calculated.

References:

- Knaus WA, Wagner DP, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991; 100: 1619-1636.
- Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.
- Wagner DP, Knaus WA, et al. Daily prognostic estimates for critically ill adults in intensive care units: Results from a prospective, multicenter, inception cohort analysis. Crit Care Med. 1994; 22: 1359-1372.

30.04.02 APACHE III Age and Chronic Health Subscore

Overview:

The APACHE III subscore for age and chronic health gives points based on age and comorbid conditions.

Age in years	Points
<= 44	0
45 - 59	5
60 - 64	11
65 - 69	13
70 - 74	16
75 - 84	17
>= 85	24

Comorbid Condition	Points
AIDS	23
hepatic failure	16
malignant lymphoma	13
metastatic cancer	11
leukemia or multiple myeloma	10
immunosuppression	10
cirrhosis	4

where:

- points for the comorbid condition are excluded if the surgery is elective
- if 2 or more comorbid conditions are present, then the condition with the higher/highest point assignment is used

Interpretation

- minimum subscore for age: 0
- minimum subscore for comorbid condition: 0
- maximum subscore for age: 24
- maximum subscore for comorbid condition: 23

References:

- Knaus WA, Wagner DP, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991; 100: 1619-1636.
- Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.
- Wagner DP, Knaus WA, et al. Daily prognostic estimates for critically ill adults in intensive care units: Results from a prospective, multicenter, inception cohort analysis. Crit Care Med. 1994; 22: 1359-1372.

30.04.03 APACHE III Physiologic Subscore

Overview:

The physiologic subscore is based a number of physiologic and biochemical parameters, with points awarded according to the severity of any abnormality present.

Scoring

- the points are assigned for the most abnormal (worst) value in a 24 hour period
- if a value is not available, then score as if normal

Pulse in beats/minute	Points
<= 39	8
40 - 49	5
50 - 99	0
100 - 109	1
110 - 119	5
120 - 139	7
140 - 154	13
>= 155	17

Mean blood pressure	Points
<= 39	23
40 - 59	15
60 - 69	7
70 - 79	6
80 - 99	0
100 - 119	4
120-129	7
130 - 139	9
>= 140	10

where

• mean blood pressure = ((systolic blood pressure) + (2 * (diastolic blood pressure))) / 3

temperature in °C	Points
-------------------	--------

<= 32.9	20
33 - 33.4	16
33.5 - 33.9	13
34 - 34.9	8
35 - 35.9	2
36 - 39.9	0
>= 40	4

respiratory rate in breaths per minute	Points
<= 5	17
6 - 11	8 if not on mechanical ventilation; 0 if on
12-13	mechanical ventilation 7 (0 points if rate 12 and patient on mechanical ventilation)
14 - 24	0
25 - 34	6
35 - 39	9
40 - 49	11
>= 50	18

PaO2 in mm Hg	Points
<= 49	15
50 - 69	5
70 - 79	2
>= 80	0

where

• points for PaO2 not given for intubated patients with FIO2 >= 0.5 (see A-a DO2)

A-a DO2	Points
< 100	0
100 - 249	7
250 - 349	9
350 - 499	11
>= 500	14

where:

• A-a DO2 only used for intubated patients with FIO2 >= 0.5

Hematocrit as percent	Points
<= 40.9	3
41 - 49	0

>= 50 3

WBC per microliter	Points
< 1000	19
1000 - 2900	5
3000 - 19900	0
20000 - 24999	1
>= 25000	5

Creatinine in mg/dL,	Points
without acute renal	
failure	
<= 0.4 mg/dL	3
0.5 - 1.4	0
1.5 - 1.94	4
>= 1.95	7

Creatinine in mg/dL, with acute renal failure	Points
0 - 1.4	0
>= 1.5	10

where

• acute renal failure = creatinine >= 1.5 mg/dL, urine output < 410 mL/day and no chronic dialysis

urine output in mL per	Points
day	
<= 399	15
400 - 599	8
600 - 899	7
900 - 1499	5
1500 - 1999	4
2000 - 3999	0
>= 4000	1

BUN in mg/dL	Points
<= 16.9	0
17 - 19	2
20 - 39	7
40 - 79	11
>= 80	12

sodium in mEq/L	Points
<= 119	3

120 - 134	2
135 - 154	0
>= 155	4

albumin in g/dL	Points
<= 1.9	11
2.0 - 2.4	6
2.5 - 4.4	0
>= 4.5	4

bilirubin in mg/dL	Points
<= 1.9	0
2.0 - 2.9	5
3.0 - 4.9	6
5.0 - 7.9	8
>= 8.0	16

glucose in mg/dL	Points
<= 39	8
40 - 59	9
60 - 199	0
200 - 349	3
>= 350	5

physiologic score =

= (points for pulse) + (points for mean blood pressure) + (points for temperature) + (points for respiratory rate) + (points for PaO2 or A-a DO2) + (points for hematocrit) + (points for WBC count) + (points for creatinine +/- renal failure) + (points for urine output) + (points for BUN) + (points for sodium) + (points for albumin) + (points for bilirubin) + (points for glucose)

Interpretation

• minimum score: 0

• maximum score: 192 (due to PaO2 & A-aDO2, creatinine restrictions)

References:

Knaus WA, Wagner DP, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991; 100: 1619-1636.

Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.

Wagner DP, Knaus WA, et al. Daily prognostic estimates for critically ill adults in intensive care units: Results from a prospective, multicenter, inception cohort analysis. Crit Care Med. 1994; 22: 1359-1372.

30.04.04 APACHE III Acid-Base Subscore

Overview:

The acid-base abnormality subscore is based on the patient's arterial pCO2 and pH.

Scoring

- the points are assigned for the most abnormal (worst) value in a 24 hour period
- if a value is not available, then score as if normal

pН					pCO2				
	< 25	25 -	30 -	35 -	40 -	45 -	50 -	55 -	>= 60
		< 30	< 35	< 40	< 45	< 50	< 55	< 60	
< 7.15	12	12	12	12	12	12	4	4	4
7.15 -	12	12	12	12	12	12	4	4	4
< 7.2									
7.20 -	9	9	6	6	3	3	2	2	2
< 7.25									
7.25 -	9	9	6	6	3	3	2	2	2
< 7.30									
7.30 -	9	9	0	0	0	1	1	1	1
< 7.35									
7.35 -	5	5	0	0	0	1	1	1	1
< 7.40									
7.40-	5	5	0	0	0	1	1	1	1
< 7.45									
7.45 -	5	5	0	2	2	12	12	12	12
< 7.50									
7.50 -	3	3	3	3	12	12	12	12	12
< 7.55									
7.55 -	3	3	3	3	12	12	12	12	12
< 7.60									
7.60 -	0	3	3	3	12	12	12	12	12
< 7.65									
>=	0	3	3	3	12	12	12	12	12
7.65									

Interpretation

• minimum subscore 0

• maximum subscore 12

References:

Knaus WA, Wagner DP, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991; 100: 1619-1636.

Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.

Wagner DP, Knaus WA, et al. Daily prognostic estimates for critically ill adults in intensive care units: Results from a prospective, multicenter, inception cohort analysis. Crit Care Med. 1994; 22: 1359-1372.

30.04.05 APACHE III Neurologic Subscore

Overview:

The neurologic subscore is based on whether the patient's eyes open or not, the verbal response and the motor response.

Scoring

• the points are assigned for the most abnormal (worst) value in a 24 hour period

• if a value is not available, then score as if normal

		verbal	response	
motor response	oriented and converses	confused conversation	inappropriate words and incomprehen- sible sounds	no response
obeys verbal command	0	3	10	15
localizes pain	3	8	13	15
flexion withdrawal or decorticate rigidity	3	13	24	24
decerebrate rigidity or no response	3	13	29	29

Eyes open spontaneously or to painful/verbal stimuli

Eyes do not open spontaneously or to painful/verbal stimuli

	verbal response			
motor response	oriented and converses	confused conversation	inappropriate words and incomprehen- sible sounds	no response
obeys verbal command	unlikely	unlikely	unlikely	16
localizes pain	unlikely	unlikely	unlikely	16
flexion withdrawal or decorticate	unlikely	unlikely	24	33

rigidity				
decerebrate	unlikely	unlikely	29	48
rigidity or no				
response				

where:

• unlikely indicates the combination of findings would not be expected to occur clinically

Interpretation

• minimum subscore: 0

• maximum subscore: 48

References:

- Knaus WA, Wagner DP, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991; 100: 1619-1636.
- Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.
- Wagner DP, Knaus WA, et al. Daily prognostic estimates for critically ill adults in intensive care units: Results from a prospective, multicenter, inception cohort analysis. Crit Care Med. 1994; 22: 1359-1372.
- 30.04.06 Computing the Predicted Death Rate for Acutely III Patients with APACHE III

Overview:

Once the APACHE III points are tabulated, the risk equation can be calculated and the risk of hospital mortality estimated.

Data Requirements

- (1) beta value for admission status to ICU
 - if nonoperative patient, select location prior to admission to ICU
 - if operative patient, select emergency or non-emergency surgery
- (2) beta value for major disease category
 - if nonoperative patient, the major nonoperative disorder at admission to ICU
 - if operative patient, the major noperative disorder at admission to ICU

(3) total APACHE III points

total APACHE III points =

= (age subscore) + (chronic health subscore) + (physiologic subscore) + (acid-base subscore) + (neurologic subscore)

where

- minimum total APACHE III score = 0
- maximum total APACHE III score = 299 (24 + 23 + 192 + 12 + 48)

APACHE III risk equation =

= (beta value for admission status) + (beta value for major disease category) + (0.0537 * (total APACHE III points))

risk of hospital mortality =

= (EXP(APACHE III risk equation)) / ((EXP(APACHE III risk equation)) + 1)

NOTE: Since APACHE III is a proprietary system, the beta values for admission status and disease categories listed below are not published in the literature and are available by subscribing to the commercial system.

Admission - Nonoperative

Location prior to Current ICU Admission	beta
emergency room	
hospital floor	0.2744
transfer from another hospital	
other ICU	
readmission to same ICU	
operating or recovery room	

Admission - Operative

Surgery Prior to Current ICU Admission	beta
emergency surgery	0.0752
nonemergency surgery	

Major Disease Categories - Nonoperative

Class	Operation	beta
Cardiovascular or	cardiogenic shock	
vascular		
	cardiac arrest	
	aortic aneurysm	
	congestive heart failure	
	peripheral vascular disease	
	rhythm disturbance	
	acute myocardial infarction	
	hypertension	
	other cardiovascular disease	
Respiratory	parasitic pneumonia	
	aspiration pneumonia	-4.5575
	respiratory neoplasm, including larynx	
	and trachea	

	respiratory arrest	
	pulmonary edema, non-cardiogenic	
	bacterial or viral pneumonia	
	chronic obstructive pulmonary disease	
	pulmonary embolism	
	mechanical airway obstruction	
	asthma	
	other respiratory diseases	
Gastrointestinal	hepatic failure	
	GI perforation or obstruction	
	GI bleeding due to varices	
	GI inflammatory disease (ulcerative	
	colitis, Crohn's, pancreatitis, etc)	
	GI bleeding due to ulcer or laceration	
	GI bledding due to diverticulosis	
	other GI disease	
Neurologic	intracerebral hemorrhage	
0	subarachnoid hemorrhage	
	stroke	
	neurologic infection	
	neurologic neoplasm	
	neuromuscular disease	
	seizure	
	other neurologic disease	
Sepsis	sepsis (other than urinary tract)	
-	sepsis of urinary tract origin	
Trauma	head trauma with or without multiple	
	trauma	
	Multiple trauma without head trauma	
Metabolic	metabolic coma	
	diabetic ketoacidosis	
	drug overdose	
	other metabolic diseases	
Hematologic	coagulopathy, neutropenia or	
	thrombocytopenia	
	other hemtologic diseases	
Renal diseases		
Other medical diseases		

Major Disease Categories - Postoperative

Class	Operation	beta
Vascular or	dissecting or ruptured aorta	

Cardiovascular		
	peripheral vascular disease (no bypass graft)	
	valvular heart surgery	
	elective abdomnal aneurysm repair	
	peripheral artery bypass graft	
	carotid endarterectomy	
Respiratory	respiratory infection	
	lung neoplasm	
	upper respiratory neoplasm (mouth,	
	sinus, larynx, trachea)	
	other respiratory disease	
Gastrointestinal	GI perforation or rupture	
	GI inflammatory disease	
	GI obstruction	-4.6974
	GI bleeding	
	liver transplant	
	GI neoplasm	
	GI cholecystitis or cholangitis	
	other GI disease	
Neurologic	intracerebral hemorrhage	
	subdural or epidural hematoma	
	subarachnoid hemorrhage	
	laminectomy or other spinal cord	
	surgery	
	craniotomy for neoplasm	
	other neurologic diseases	
Trauma	head trauma (with or without multiple	
	trauma)	
	multiple trauma without head trauma	
Renal	renal neoplasm	
	other renal diseases	
Gynecologic	hysterectomy	
Orthopedic	hip or extremity fracture	

References:

Knaus WA, Wagner DP, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991; 100: 1619-1636.

Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.

Wagner DP, Knaus WA, et al. Daily prognostic estimates for critically ill adults in intensive care units: Results from a prospective, multicenter, inception cohort analysis. Crit Care Med. 1994; 22: 1359-1372.

30.04.07 Daily APACHE III Scores in the Intensive Care Unit

Overview:

APACHE III scores for a patient in the Intensive Care Unit (ICU) can be used during the course of the hospitalization to predict the patient's mortality risk.

Protocol

- For every day in the ICU an APACHE III score is recorded.
- Multivariate equations were developed to use these daily APACHE III scores to generate a daily risk prediction.

daily risk =

= (acute physiology score from day 1) + (acute physiology score for current day) + (change in acute physiology score since day before)

The multivariate equations are copyrighted. They are not published in the literature but are available to subscribers of the commercial system.

References:

- Knaus WA, Wagner DP, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991; 100: 1619-1636.
- Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.
- Wagner DP, Knaus WA, et al. Daily prognostic estimates for critically ill adults in intensive care units: Results from a prospective, multicenter, inception cohort analysis. Crit Care Med. 1994; 22: 1359-1372.

30.05 Logistic Organ Dysfunction System

Overview:

The Logistic Organ Dysfunction (LOD) System provides a means to assess patients in the intensive care unit (ICU) for severity of critical organ dysfunction. From this information it is possible to predict the probability of death for the patient.

Data Collection:

All data elements ideally should be collected at least once during the first 24 hours in the ICU.

- If an element is not measured, then it is assumed to be normal for scoring purposes.
- If an element is tested more than once during the first 24 hours, then the most severe value is used.

LOD score = (neurologic score) + (cardiovascular score) + (renal score) + (pulmonary score) + (hematologic score) + (hepatic score)

Glasgow Coma Score	Points
14-15	0
9-13	1
6-8	3
< 6	5

Neurologic Score

Note: Use the lowest value. If the patient is sedated, estimate the score prior to sedation.

heart rate per operator systolic blood pressure in **Points** minute mm Hg 90-239 30-139 AND 0 240-269 >=140 OR 1 70-89 1 3 >= 270 40-69 3 <30 OR < 40 5

Cardiovascular Score

Note: Use the most abnormal value for heart rate or systolic blood pressure, either minimum or maximum.

Renal Score

serum urea nitrogen in mg/dL	oper- ator	creatinine in mg/dL	oper- ator	urine output in liters per day	Points
< 17	AND	< 1.20	AND	0.75 - 9.99	0
17 - 27.99	OR	1.2 - 1.59			1
28 - 55.99	OR	>= 1.60	OR	>= 10	3
				0.5 - 0.74	3
>= 56					5
				< 0.5	5

Notes:

- Use the highest value for SUN and for creatinine.
- If the only data for urine output is for a period less than 24 hour period, adjust that value to 24 hours assuming the same rate of excretion.

• If the patient is on hemodialysis, use the value of urine output prior to initiating hemodialysis.

Pulmonary Score

On ventilation or CPAP?	operator	ratio (PaO2 in mm Hg) / (FIO2)	Points
No			0
Yes	AND	>= 150	1
Yes	AND	< 150	3

Note: If the patient is receiving respiratory support, use the lowest ratio of PaO2 to FIO2.

Hematologic Score

white blood cell	operator	platelet count	Points
count			
2,500 to 49,900 /µL	AND	>= 50,000 /µL	0
>= 50,000 /µL			1
1,000 to 2,499 /µL	OR	< 50,000 /µL	1
< 1,000 /µL			3

Note:

- Use the most abnormal value for the white cell count, either minimum or maximum.
- Use the minimum platelet count if several values are available.
- In applying the rules, the OR for the platelet count < 50,000 per μL can be problematic if the WBC is < 1,000 per μL.

Hepatic Score

bilirubin	operator	prothrombin time	Points
< 2.0 mg/dL (< 34.2	AND	<= 3 seconds above	0
μmol/L)		standard (>= 25% of	
		standard)	
>= 2.0 mg/dL (>=	OR	> 3 seconds above	1
34.2 μmol/L)		standard (< 25% of	
		standard)	

Note:

- Use the highest value for bilirubin available.
- Use the highest value for prothrombin time in seconds.

Calculating the Probability of Mortality

probability of mortality = = ((EXP(-3.4043 + (0.4173 * (LOD score)))) / (1 + (EXP (-3.4043 + (0.4173 * (LOD score)))))) score)))))

where:

- lowest LOD score is 0, associated with a 3.2% chance of mortality
- highest LOD score is 22, associated with 99.7% chance of mortality

References:

Le Gall J, Klar J, et al. The Logistic Organ Dysfunction System. JAMA. 1996; 276: 802-810.

30.06 Multiple Organ Failure Score of Goris et al

Overview:

Multi-organ failure is associated with the sepsis syndrome. Goris et al developed a simple system for quantifying multi-organ failure. This score is related to the scoring systems used for the sepsis syndrome (below).

Organ systems

- (1) pulmonary
- (2) cardiac
- (3) renal
- (4) hepatic
- (5) hematologic
- (6) gastrointestinal
- (7) central nervous system

Organ	Findings	Points
pulmonary	no mechanical ventilation	0
	mechanical ventilation with a positive end	1
	expiratory pressure (PEEP) of <= 10 cm H2O	
	and an FIO2 <= 0.4	
	mechanical ventilation with PEEP > 10 cm	2
	H2O and/or FIO2 > 0.4	
cardiac	normal blood pressure with no vasoactive	0
	substances necessary	
	periods with hypotension necessitating	1
	manipulations such as volume loading to keep	
	blood pressure above 100 mm Hg, dopamine	
	HCl infusion <= 10 μg/kg/min, or	
	nitroglycerin <= 20 µg/min	
	periods with hypotension below 100 mm Hg,	2
	dopamine HCl infusion > 10 µg/kg/min, or	
	nitroglycerin > 20 μg/min	
renal	serum creatinine < 2 mg/dL	0

	serum creatinine >= 2 mg/dL	1
	hemodialysis or peritoneal dialysis required	2
hepatic	SGOT < 25 U/L and total bilirubin < 2 mg/dL	0
	SGOT >= 25 U/L and < 50 U/L, and/or total	1
	bilirubin >= 2 mg/dL and < 6 mg/dL	
	SGOT >= 50 U/L and/or bilirubin >= 6 mg/dL	2
hematologic	normal WBC and platelet counts	0
	platelet count <= 50,000 per µL and/or WBC	1
	count >=30,000 and < 60,000 per μL	
	hemorrhagic diathesis and/or a WBC count <	2
	2,500 per μL or >= 60,000 per μL	
gastrointestinal	normal functioning	0
tract		
	acalculous cholecystitis or stress ulcer	1
	bleeding from stress ulcer necessitating	2
	transfusion of more than 2 units of blood per	
	24 hours, necrotizing enterocolitis,	
	pancreatitis, and/or spontaneous perforation	
	of the gallbladder	
central nervous	normal functioning	0
system		
	clearly diminished responsiveness	1
	severely disturbed responsiveness and/or	2
	diffuse neuropathy	

multiple organ failure score =

= SUM(points for all 7 organ systems)

Interpretation

- minimum score 0
- maximum score 14
- The higher the score the more serious the patient's condition.

References:

Goris RJA, te Boekhorst TPA, et al. Multiple-organ failure. Arch Surg. 1985; 120" 1109-1115.

30.07 Multiple Organ Dysfunction Score

Overview:

Multiple Organ Dysfunction Score is intended to offer an objective measure for the severity of multiple organ disorders. Six key organ systems commonly affected in systemic disorders are assessed. A cumulative score correlates with mortality rate seen for the seriously ill patient.

Organ System N	Measure	Finding	Score
----------------	---------	---------	-------

Respiratory	PO2/FIO2 ratio	> 300	0
		226-300	1
		151-225	2
		76-150	3
		<= 75	4
Renal	serum creatinine	<= 100 µmol/L	0
		(<=1.1 mg/dL)	
		101-200 µmol/L	1
		(1.1-2.3 mg/dL)	
		201-350 µmol/L	2
		(2.3-4.0 mg/dL)	
		351-500 μmol/L	3
		(4.0-5.7 mg/dL)	
		> 500 µmol/L	4
		(>5.7 mg/dL)	
Hepatic	serum bilirbuin	<= 20 µmol/L	0
-		(<= 1.2 mg/dL)	
		21-60 µmol/L	1
		(1.2-3.5 mg/dL)	
		61-120 μmol/L	2
		(3.5-7.0 mg/dL)	
		121-240 μmol/L	3
		(7.0-14.0 mg/dL)	
		> 240 μmol/L	4
		(>14.0 mg/dL)	
Cardiovascular	pressure adjusted heart	<= 10.0	0
	rate (see below)		
		10.1-15.0	1
		15.1-20.0	2
		20.1-30.0	3
		> 30.0	4
Hematologic	platelet count	>120,000 /µL	0
		81,000-120,000 /µL	1
		51,000-80,000 /µL	2
		21,000-50,000 /µL	3
		<= 20,000 /μL	4
Neurologic	Glasgow coma score	15	0
		13-14	1
		10-12	2
		7-9	3
		<=6	4

where:

conversion factor for creatinine μmol/L to mg/dL is 0.011312
conversion factor for bilirubin μmol/L to mg/dL is 0.05848

Cardiovascular Calculations

pressure adjusted heart rate =

= (heart rate in beats per minute) * (right atrial pressure in mm Hg) / (mean arterial pressure in mm Hg)

mean arterial pressure = = ((systolic arterial pressure in mm Hg) + (2 * (diastolic arterial pressure in mm Hg))) / 3

Calculation and Interpretation

Multiple Organ Dysfunction Score = = (respiratory points) + (renal points) + (hepatic points) + (cardiovascular points) + (hematologic points) + (neurologic points)

Interpretation:

• minimum score: 0

• maximum score: 24

Score	ICU Mortality	Hospital Mortality
0	0%	0%
1-4	1-2%	7%
5-8	3-5%	16%
9-12	25%	50%
13-16	50%	70%
17-20	75%	82%
21-24	100%	100%

References:

Marshall JC, Cook DJ, et al. Multiple Organ Dysfunction Score: A reliable descriptor of a complex clinical outcome. Crit Care Med. 1995; 23: 1638-1652.

30.08 Scores for the Sepsis Syndrome

30.08.01 Systemic Inflammatory Response Syndrome

Overview:

The Systemic Inflammatory Response Syndrome (SIRS) is the biologic host response to real or perceived infection which may occur in response to several severe clinical conditions.

Definitions

- infection: Microbial phenomenon characterized by an inflammatory response to the presence of microorganisms or the invasion of normally sterile host tissue by those organisms.
- bacteremia: The presence of viable bacteria in the blood.
- septicemia: It is recommended that the term not be used to clinically describe patients.

The stages in response to infection may be viewed as a continuum

- SIRS
- sepsis
- severe sepsis
- septic shock
- end-organ dysfunction, often manifested as the multiple organ dysfunction syndrome
- death

Criteria for diagnosis of SIRS:

Two or more of the following conditions

- temperature > 38° C or < 36° C
- heart rate > 90 beats per minute
- respiratory rate > 20 breaths per minute OR PaCO2 < 32 mm Hg
- WBC > 12,000 per μL OR < 4,000 per μL OR > 10% immature forms

where

• factor for converting PaCO2 to kPa is 0.133

Syndrome	Cultures	Features
sepsis	• positive	• SIRS
	-	
severe sepsis	• positive	• SIRS
		• organ dysfunction,
		hypoperfusion abnormalities,
		or hypotension
septic shock	• positive	• SIRS
		 sepsis-induced hypotension
		despite fluid resuscitation
		• hypoperfusion abnormalities
culture negative	• negative	• SIRS
sepsis	• empirical antibiotic	
	therapy for a clinically	
	suspected infection	
culture negative	• negative	• SIRS
severe sepsis	• empirical antibiotic	• organ dysfunction,
L L	therapy for a clinically	hypoperfusion abnormalities,
	suspected infection	or hypotension
culture negative	• negative	• SIRS
septic shock	• empirical antibiotic	 sepsis-induced hypotension

therapy for a clinically	despite fluid resuscitation
suspected infection	 hypoperfusion abnormalities

where:

- Hypoperfusion abnormalities may include lactic acidosis, oliguria, or an acute alteration in mental status.
- Hypotension indicates a systolic blood pressure of < 90 mm Hg or a reduction of > 40 mm Hg from baseline in the absence of other causes for hypotension.
- Patients with septic shock receiving inotropic or vasopressor agents may not be hypotensive at the time that perfusion abnormalities are measured.

Mortality rates shows a stepwise increase paralleling the increased severity of the reaction:

- SIRS: 7%
- sepsis: 16%
- severe sepsis: 20%
- septic shock: 46%

References

- Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine consensus conference: Definitions of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992; 20: 864-874.
- Nightingale P, Edwards JD. Chapter 66: Critical Care. pages 1309-1345. IN: Healy TEJ, Cohen PJ (editors). Wylie and Churchill-Davidson's A Practice of Anaesthesia, Sixth Edition. Edward Arnold. 1995.
- Rangel-Frausto MS, Pittet D, et al. The natural history of the systemic inflammatory response (SIRS). JAMA. 1995; 273: 117-123.

30.08.02 Septic Shock Score

Overview:

Patients with septic shock have an increased mortality rate. The Simplified and Complete Septic Shock Scores are derived from clinical variables and correlate with the mortality rates seen. The Simplified Score can be derived early in the patient course. The Complete Score is more specific but requires culture results, which may take a day or more to collect. This system can be used for septic shock patients in lieu of the APACHE or SAPS scoring systems.

Score Basics

Variables having prognostic significance are identified and graded 0, 1 or 2, with higher points indicating a more significant abnormality.

Simplified Septic Shock Score

Variable	Finding	Points
age in years	< 65	0
	65-69	1
	>= 70	2
sex (male or female)	female	0
	male	1
mechanical ventilation	no	0
	yes	1
Glasgow Coma Scale	>= 13	0
	<13	2
diuresis (mL/hr)	>= 20	0
	< 20	1
body temperature °C	< 37	2
	37 - 39.5	0
	>= 39.5	1
hematocrit as a percent	>= 25	0
	< 25	2
WBC count per μL, in thousands	< 1.5	1
	1.5 - 24.9	0
	25-39.9	1
	>= 40	2
рН	< 7.10	2
	7.10-7.24	1
	7.25-7.49	0
	>= 7.50	2
prothrombin time in seconds	>= 23	0
	< 23	1
heart rate in beats per minute	< 80	2
	80 - 169	0
	>= 170	2
mean arterial pressure	>= 70	0
	50 - 69	1
	< 50	2
mean pulmonary artery pressure	< 35	0
	>= 35	1
cardiac index in L/min per meter squared	< 3.5	2
	3.5 - 6.4	0
	6.5 - 7.4	1
	>= 7.5	2

Points for Calculating the Simplified Septic Shock Score

where:

• prothrombin time is measured with a thromboplastin having an ISI (International Sensitivity Index) of 1.16.

Simplified Septic Shock Score = = SUM (points for each of the 14 variables)

Complete Septic Shock Score

Туре	Condition	Points
Underlying Disease	liver cirrhosis	2
	pre-existing heart failure NYHA	2
	functional class III or IV	
	chronic pulmonary failure	2
	chronic renal failure	2
	immunocompromising condition	1
Type of Infection	polymicrobic blood culture	2
	infection due to Pseudomonas aeruginosa	2
	pneumonia as primary focus of infection	1

Additional Points for Calculating the Complete Septic Shock Score

Immunocomprising condition involves either

- the patient has received therapy that suppresses resistance to infection, such as immunosuppression, chemotherapy, radiation, long-term or recent high dose steroids
- the patient has an underlying disease that is sufficiently advanced to suppress resistance to infection such as leukemia, lymphoma, or acquired immunodeficiency syndrome

additional point score =

= SUM (points for each of the 8 variables)

Complete Septic Shock Score =

= (simplified septic shock score) + (sum of additional points)

Interpretation

Scores

- maximum simplified septic shock score: 23
- maximum complete septic shock score: 23 + 14 = 37
- minimum scores: 0

Mortality rate from Scores

Score	Simplified	Complete
0	0	0
1	4	1

2	10	4
3	22	9
4	42	21
5	66	42
6	82	65
7	92	85
8	97	93
9	99	97
10	100	99
11	100	100

extrapolated from Figure 1, page 958 (Baumgartner, 1992)

According to the data Figure 1, mortality rate can be determined from the score by use of the following equation:

mortality rate for simplified score = = EXP(a + (b * (score))) / (1 + EXP(a + (b * (score))))

	a	b
simplified score	1.01	-5.33
complete score	0.94	-4.01

Unfortunately, when these equations are used, the output does not correlate with the data shown in Figure 1. Reversing the assignments for a and b give more credible results, but do not match the data in Figure 1.

References:

Baumgartner JD, Bula C, et al. A novel score for predicting mortality of septic shock patients. Crit Care Med. 1992; 20: 953-960.

30.08.03 Sepsis Syndrome

Overview:

The Sepsis Syndrome is a systemic response to infection resulting in altered organ perfusion. It is a common condition in hospitalized patients and is associated with a high morbidity and mortality. This is viewed as a stage in the continuum of the Systemic Inflammatory Response Syndrome (SIRS, discussed under "Critical Care".)

Screening Criteria: at least one of the following

(1) all 4 of the following

- temperature > 38.3 ° C or < 35.6° C rectally
- respirations > 20 per minute or on mechanical ventilation
- heart rate > 90 beats per minute
- clinical evidence of infection

(2) one or more positive blood cultures positive for pathogen at 48 hours.

Confirmatory Criteria: at least one of the following, without alternative explanation

- PaO2/FIO2 < 280 (intubated) or 40% face mask in use (nonintubated)
- arterial pH < 7.30
- urine output < 30 mL/h
- systolic blood pressure < 90 mm Hg or fall in systolic blood pressure > 40 mm Hg sustained for 2 hours despite fluid challenge
- systemic vascular resistance < 800 dynes•s•cm(-5)
- prothrombin time or partial thromboplastin time greater than normal or platelet count < 100,000 per μ L or platelets decreased to < 50% of most recent measurement before current day
- documentation of deterioration in mental status within 24 hours

Mortality rate

- 34% at 28 days
- 45% at 5 months

References:

Sands KE, Bates DW, et al. Epidemiology of Sepsis Syndrome in 8 academic medical centers. JAMA. 1997; 278: 234-240.

30.08.04 Multiple System Organ Failure Score

Overview:

The multiple organ dysfunction syndrome is defined as the presence of altered organ function in an acutely ill patient such that homeostasis cannot be maintained without intervention. The Multiple System Organ Failure Scoring system assesses seven key organ systems for failure on the first day of the sepsis syndrome. From the number of severely affected organs it is possible to predict the mortality of patients with the sepsis syndrome.

Diagnostic Criteria for Sepsis Syndrome

Patient must have a suspected or known site of infection.

Patient must have all 3 of the following:

(1) a core temperature > 101 °F (38.3°C) or < 96°F (35.5°C)

(2) a heart rate of 90 beats per minute in the absence of beta blockers

(3) respiratory rate of > 20 breaths per minute, or a minute ventilation > 10 L/min Patient must have at least 1 of the following:

Patient must have at least 1 of the following:

- cardiovascular system: hypotension <= 90 mm Hg or a fall in systolic blood pressure > 40 mm Hg for more than 1 hour, with filling pressures adequate or the patient unresponsive to at least 500 mL of saline solution infused over 1 hour
- (2) renal system: urine output <= 0.5 mL/kg/hr for at least 1 hour
- (3) pulmonary system: PaO2 <= 70 mm Hg on room air, or a PaO2/FIO2 ratio <= 333. If the primary diagnosis is pneumonia and if the lung is the only one of

these 4 systems to fail, then the patient must meet established ARDS criteria: (a) PaO2/FIO2 < 200; (b) diffuse bilateral infiltrates on chest X-ray; (c) pulmonary atery wedge pressure < 19 mm Hg.

(4) central nervous system: significant alteration in mental status, with at least a decrease of 2 points in the Glasgow Coma Score

Organ System	Finding on the 1st day of sepsis syndrome
Respiratory	ventilation dependent with an A-a gradient of > 250 mm Hg, or a pulmonary shunt > 20%
Cardiovascular	adrenergic agents required to maintain the mean arterial pressure above 55 mm Hg in the absence of hypovolemia (pulmonary artery wedge pressure > 6 mm Hg)
Renal	creatinine > 300 μmol/L (3.4 mg/dL)
Hepatic	bilirubin > 60 μmol/L (3.4 mg/dL), or alkaline phosphatase > 350 U/L
Gastrointestinal	fresh blood from nasogastric tube, or melena or fresh blood per rectum, and a fall of hemoglobin of at least 2 g/dL and requiring transfusion of at least 2 units of packed red cells in 24 hours
Hematologic	WBC < 2000/μL or platelet count < 40,000 /μL or evidence of DIC (INR > 2 plus PTT more than 2 times normal control plus fibrin degradation products > 10 mg/L)
Central nervous system	Glasgow coma score < 10, or a decrease in GCS of 3 or more if primary CNS injury is present

Multiple Organ Failure Scoring System

where:

• conversion factor for creatinine µmol/L to mg/dL is 0.011312

• conversion factor for bilirubin µmol/L to mg/dL is 0.05848

Interpretation:

• minimum score 0

• maximum score 7

Score	Estimated Mortality
0	< 10%
1-2	25%
3-4	60-70%
>=5	100%

References:

Fry DE, Pearlstein L, et al. Multiple system organ failure. Arch Surg. 1980; 115: 136-140.

- Hebert PC, Drummond AJ, et al. A simple Multiple System Organ Failure Scoring System predicts mortality of patients who have sepsis syndrome. Chest. 1993; 104: 230-235.
- Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine consensus conference: Definitions of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992; 20: 864-874.

30.08.05 Prediction of Mortality from Bacteremic Sepsis in ICU Patients

Overview"

The risk of death during hospitalization can be 5-fold higher in septic Intensive Care Unit (ICU) patients as compared to nonseptic ICU patients. The prognosis for patients in the ICU with sepsis and positive blood cultures can be assessed from the severity of the acute illness, complications secondary to the infection, and underlying chronic disease.

Definitions

- sepsis: systemic inflammatory response syndrome associated with positive blood cultures with either viable bacteria or Candida species
- septic shock: sepsis with prolonged hypotension (2 or more hours) despite adequate fluid resuscitation, together with presence of perfusion abnormalities such as lactic acidosis, oliguria or acute alteration in mental status
- hypotension is systolic blood pressure < 90 mm Hg in the absence of other causes for hypotension
- initial organ dysfunction: presence of one or more organ dysfunction at the time of sepsis
- evolving organ dysfunction: either the persistence of an initial organ dysfunction, or the development of a new organ dysfunction more than 24 hours after the onset of sepsis and persisting for at least 24 hours.

Independent predictors of mortality if present at the onset of sepsis

- previous antibiotic therapy (odds ratio 2.40)
- hypothermia with temperature <= 36.5°C (odds ratio 1.43)
- requirement for mechanical ventilation (odds ratio 2.97)
- APACHE II score at the onset of sepsis >= 20 (odds ratio 1.21)

The best 2 independent prognostic factors

- APACHE II score at the onset of sepsis
- number of organ dysfunction developing after onset of sepsis

Organ Dysfunction	Defining Criteria
acute cardiac dysfunction	elevated right (>= 15 mm Hg) or left (>= 18 mm
	Hg) ventricular filling pressure with a low
	cardiac index (< 2.2 L/min/m^2) in the absence

	of cardiac tamponade or pulmonary embolism
	left or right ventricular failure
	myocardial infarction
	severe arrhythmias
pulmonary dysfunction	mechanical ventilation with an inspired oxygen
	fraction (FIO2) > 0.4
adult respiratory distress	severe pulmonary failure requiring ventilatory
syndrome	support with PEEP of at least 5 cm H2O and a
	lung injury score > 2.5
acute renal dysfunction	serum creatinine > 2 mg/dL (175 mmol/L)
	doubling of admission creatinine level in the
	case of pre-existing renal disease
acute gastrointestinal	bleeding from the upper gastrointestinal tract
dysfunction	confirmed by endoscopy or surgical
	exploration and requiring transfusion of at
	least 2 blood units
	perforated stress ulcer
	acalculous cholecystitis
hepatic dysfunction	total bilirubin > 2 mg/dL (34 mmol/L) with
	LDH, AST and ALT values at least twice the
	upper limit of normal
disseminated intra-	spontaneous bleeding from 2 or more sites
vascular coagulation	associated with a platelet count < 50,000 per
(DIC)	μL, elevated FDP, and fibrinogen < 200 mg/dL
central nervous system	coma with Glasgow coma scale < 7
dysfunction	

Mortality rate and APACHE II score at onset of sepsis

- score 0-9: 0%
- 10-19: 22%
- 20-29: 58%
- >= 30: 90%

Number of Organ Dysfunction	Mortality within 30 days	Mortality during Hospitalization
0	2%	5%
1	6%	13%
2	18%	31%
3	59%	67%
>= 4	80%	90%

(from Figure 3, page 691, Pittet 1996)

References

Pittet D, Thievent B, et al. Bedside prediction of mortality from bacteremic sepsis. Am J Respir Crit Care Med. 1996; 153: 684-693.

30.08.06 Septic Severity Score (SSS) of Stevens

Overview:

The Septic Severity Score was developed by Stevens at the University of Utah in 1983. It is intended to gauge the severity of the multi-organ involvement in a patient with the sepsis syndrome.

Organ systems evaluated

- (1) lung
- (2) kidney
- (3) coagulation
- (4) cardiovascular
- (5) liver
- (6) gastrointestinal tract
- (7) neurologic

Point scoring

• Abnormal findings assigned a score from 1 to 5 accodring to the severity of the dysfunction.

Organ System	Finding	Points
lung	breathing room air	0
	oxygen by mask	1
	intubated. no PEEP	2
	PEEP, 0-10%	3
	PEEP > 10% with PaO2 > 50 mm Hg	4
	maximal PEEP, with PaO2 <= 50 mm	5
	Hg	
kidney	serum creatinine < 1.5 mg/dL	0
	serum creatinine 1.5 - 2.5 mg/dL	1
	serum creatinine 2.6 - 3.5 mg/dL	2
	serum creatinine > 3.6 mg/dl with good	3
	urine output (> 50 mL per hour)	
	serum creatinine > 3.6 mg/dL with urine	4
	volume 20-50 mL per hour	
	serum creatinine > 3.6 mg/dL with urine	5
	volume < 20 mL per hour	
coagulation	no ecchymoses and normal coagulation	0
	tests	
	ecchymoses and normal coagulation	1
	tests	
	PT 12-14 seconds or PTT 45-65 seconds	2
	platelet count 20,000 - 100,000 per µL,	3
	PT > 14 seconds, PTT > 50 seconds	

	platelet count < 20,000 per µL with PT >	4
	14 seconds and PTT > 50 seconds	
	evidence of DIC, bleeding	5
cardiovascular	normal	0
	slight hypotension	1
	livedo, moderate hypertension	2
	vasopressors required at moderate doses	3
	vasopressors required at large doses	4
	profound hypotension despite maximal	5
	vasopressor doses	
liver	normal liver function tests	0
	LDH and SGOT increased, bilirubin	1
	normal	
	bilitrubin 1.5 - 2.5 mg/dL	2
	bilirubin 2.6 - 4.0 mg/dL	3
	bilirubin 4.1 - 8.0 mg/dL	4
	precoma with bilirubin > 8.0 mg/dL	5
GI tract	normal	0
	mild ileus	1
	moderate ileus	2
	severe ileus	3
	bleeding due to erosive gastritis	4
	mesenteric venous thrombosis	5
neurologic	normal	0
	obtunded	1
	disoriented	2
	irrational	3
	hyporeactive	4
	coma	5

after Table page 1191

where:

- In Table page 1191, the specifications for the coagulation ratings are a bit vague for ratings 2 and 3 (should these be OR or AND). Also the variability between laboratories for normal ranges of PT and aPTT may not be easily accounted for with the absolute values given for PT and PTT.
- In Table page 1191, the bilirubin for liver rating 3 has an upper limit of 4; for liver rating 4 the lower limit is 4.9.

septic severity score =

= ((points for organ with highest score) 2) + ((points for organ with second highest score) 2) + ((points for organ with third highest score) 2)

estimated length of stay in survivors in days = = (0.61 * (septic severity score)) + 12

Interpretation:

- minimum score: 0
- maximum score: 75
- The higher the septic severity score, the more severe the sepsis.
- The mean SSS for nonsurvivors was 49, while the mean SSS for survivors was 29. While survivors showed scores from 0 to 60, nonsurvivors had scores > 30.
- Improvement in the score usually correlates with clinical improvement of the patient.

References:

Stevens LE. Gauging the severity of surgical sepsis. Arch Surg. 1983; 118: 1190-1192.

30.08.07 Prognostic Classification of Patients with Septic Shock Based on Cortisol Levels and Cortisol Response to Corticotropin

Overview:

Annane et al studied the effect of stress from septic shock on the hypothalamicpituitary-adrenal axis. They found that the pattern of serum cortisol levels before and after cortitropin stimulation could identify patients with septic shock who were at high risk for death. These patients might benefit from more aggressive or novel therapies.

Short corticotropin stimulation test:

- (1) 0.25 mg tetracosactrin (corticotropin) injected intravenously
- (2) blood samples were collected just before the injection (baseline), at 30 minutes after injection, and at 60 minutes after injection.

maximum cortisol level in $\mu g/dL =$

= MAX(serum cortisol at 30 minutes in μ g/dL, serum cortisol at 60 minutes in μ g/dL)

change in peak cortisol from baseline levels = = (maximum cortisol level in μg/dL) – (baseline cortisol level in μg/dL)

Baseline Cortisol	Change in Peak Cortisol from	Prognostic Group
	Baseline Levels in Response to	
	Corticotropin	
<= 34 µg/dL	> 9 μg/dL	good
<= 34 µg/dL	<= 9 μg/dL	intermediate
> 34 μg/dL	>9 μg/dL	intermediate
>34 μg/dL	<= 9 µg/dL	poor

Prognostic Group	28 Day Mortality Rate
good	26%
intermediate	67%
poor	82%

References:

Annane D, Sebille V, et al. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA. 2000; 283: 1038-1045.

30.08.08 The Baltimore Sepsis Scale

Overview:

The Baltimore Sepsis Scale provides a daily measure of disease severity in a patient with the sepsis syndrome. It can be used to monitor a patient over time and to evaluate the effectiveness of interventions. It was developed in Baltimore, Maryland.

Parts of the scale

(1) physiologic measures (based on daily findings)

(2) modified Glasgow Coma Scale

Parameter	Point Assignment	Maximum Points per Day
tachycardia	1 point for each 10 beats per minute > 120	none
systolic blood pressure	1 point for each 10 mm Hg < 90, OR 1 point for each cumulative 10 μg pressor	none
body temperature	1 point for each °C > 38.5 OR 1 point for each °C < 36.0	none
base deficit	1 point for each 3 mmol/L > 5	none
platelet count	1 point for each 5,000 < 35,000 per μL	none (7)
white blood cell count	1 point for each 5,000 > 15,000 per μL	none
creatinine	1 point for each 2 mg/dL > 2 mg/dL, OR patient on dialysis	5
systemic vascular resistance	1 point for each 100 < 800 dynes per second per cm^(-5)	none (8)
urine output	1 point for each 50 mL/day < 500 mL/day	none (10)
PEEP	1 point for each 3 mm > 5 mm Hg	none
PaO2 to FIO2 ratio	1 point for each 0.3 < 2.0	none

where:

- systolic blood pressure has 2 possible scoring methods: (a) maximum points for either low pressure or pressor use, or (b) combination of points for each. I will use (b) in the implementation.
- base deficit is the negative of base excess
- an elevated WBC count from leukemia would cause a falsely high value
- FIO2 appears to be from 21 to 100 (percent rather than fraction)
- maximal value: tachycardia, base deficit, WBC count, creatinine, PEEP
- minimal value: systolic blood pressure, platelet count, systemic vascular resistance, PaO2 to FIO2 ratio
- either, whichever is greater from baseline: temperature
- cumulative value: pressor dose, urine output
- it appears as if points are assigned as each milestone is reached, rather than on the continuum

Modified Glasgow Coma Scale

Clinical Finding	Points
oriented to person, place and time (x3) and cooperative	1
occasional confusion but mostly oriented	2
frequent confusion but cooperative, tries to help with dressings, recognizes family and staff	3
semiconscious or delerious most of the time, cannot help with dressings, does not recognize family or friends	4
expresses pain response to stimulation, no other response	5
coma, with no pain response	6

Baltimore sepsis scale =

= (points for physiologic findings) + (points for modified Glasgow Coma Scale)

Interpretation:

- minimum score: 1
- maximum score: 200+
- In practice the highest score observed in patients at any time is 50.

• The higher the score, the more severe the sepsis syndrome.

Sepsis Scale	Interpretation
0 – 10	The patient is injured but doing well.
11 - 20	The patient is having problems.
21 - 30	The patient is gravely ill.
> 30	The patient is in critical condition and
	has multiple organ failure.

References:

Meek M, Munster AM, et al. The Baltimore Sepsis Scale: Measurement of sepsis in patients with burns using a new scoring system. J Burn Care Rehabil. 1991; 12: 564-568.

30.09 Organ Dysfunctions and/or Infection (ODIN)

Overview:

The Organ Dysfunctions and/or Infection (ODIN) model assesses the number and type of organ dysfunctions in the intensive care patient. This information can be used to predict the patient's outcome.

Organ System		Finding
Respiratory		PaO2 < 60 mm Hg on FIO2 0.21
	OR	need for ventilatory support
Cardiovascular (excluding		systolic arterial pressure < 90
patients showing hypovolemia,		mm Hg with signs of peripheral
with CVP < 5 mm Hg)		hypoperfusion
	OR	continuous infusion of
		vasopressor or inotropic agents
		required to maintain systolic
		pressure > 90 mm Hg
Renal (excluding patients on		serum creatinine > 3.4 mg/dL
chronic hemodialysis before		(300 μmol/L)
hospital admission)		
	OR	urine output < 500 mL in 24
		hours or < 180 mL in 8 hours
	OR	need for hemodialysis or
		peritoneal dialysis
Neurologic		Glasgow coma scale <= 6 in the
		absence of sedation at any time
		during day
	OR	sudden onset of confusion or
		psychosis
Hepatic		serum bilirubin > 5.9 mg/dL (100
	0.0	μmol/L)
	OR	alkaline phosphatase > 3 times
		normal
Hematologic		hematocrit <= 20 per cent
	OR	white blood cell count < 2,000 per
		μL
	OR	platelet count < 40,000 per μL
Infection (with clinical evidence		2 or more positive blood cultures
of infection)	-	
	OR	presence of gross pus in a closed
		space

OR	source of infection determined
	during hospitalization, or at
	autopsy in case of death within
	24 hours

where:

- conversion for bilirubin from mg/dL to µmol/L is 17.1; reverse 0.0585
- conversion for creatinine from mg/dL to µmol/L is 88.4; reverse 0.0113

ODIN score =

= (1 if respiratory dysfunction present) + (1 if cardiovascular dysfunction present) + (1 if renal dysfunction present) + (1 if neurologic dysfunction present) + (1 if hepatic dysfunction present) + (1 if hematologic dysfunction present) + (1 if infection present)

Interpretation

- maximum score = 7
- minimum score = 0

ODIN score	mortality
0	2.6%
1	9.7%
2	16.7%
3	32.3%
4	64.9%
5	75.9%
6	94.4%
7	100%

Logistic Regression Analysis

q =

= (-3.59) + (1.09 if respiratory dysfunction) + (1.19 if cardiovascular dysfunction) + (1.18 if renal dysfunction) + (0.86 if hematologic dysfunction) + (0.57 if hepatic dysfunction) + (0.99 if neurologic dysfunction) + (0.53 if infection present)

probability of death =
= (1 / (1 + EXP (-q)))

References:

Fagon JY, Chastre J, et al. Characterization of intensive care unit patients using a model based on the presence or absence of organ dysfunctions and/or infections: the ODIN model. Intensive Care Med. 1993; 19: 137-144.

30.10 Therapeutic Intervention Scoring System (TISS) and its Derivatives

30.10.01 Therapeutic Intervention Scoring System (TISS) of 1974

Overview

The Therapeutic Intervention Scoring System (TISS) can be used to assess the level of care that a patient receives in a critical care unit. It can help in making quantitative comparisons of patient care and can help in allocating resources.

Scoring

- Points are assigned for specific interventions in the critical care unit over a 24 hour period and range from 1 to 4
- Higher values given for more specialized, critical or life-sustaining activities.

Points
1
1
1
1
1
1
1
1
1
2
2
3
3
3
4
4
4

Patient Care and Monitoring

Interventions	Points
GI decompression	1
tracheostomy care	2
new tracheostomy (< 48 hours)	2
hemodialysis, stable patient [3]	2
hypothermia blanket [4]	3
chest tube	3
emergency thora-, para- or pericardiocentesis	3
nasotracheal or orotracheal intubation	3

emergency endoscopy or bronchoscopy	4
lavage of acute GI bleeding	4
emergency operative procedure (within	4
24 hours)	
induced hypothermia [4]	4
peritoneal dialysis [3]	4
hemodialysis in unstable patient [3]	4
balloon tamponade of varices	4

Infusions and Medications

Interventions	Points
IV antibiotics, 1 or 2 [5]	1
intermittent scheduled IV medications	1
chronic anticoagulation	1
1 peripheral IV catheter [6]	1
parenteral chemotherapy	2
replacement of excess fluid loss	2
> 2 IV lines [6]	2
active anticoagulation	3
IV antibiotics, more than 2 [5]	3
phlebotomy for fluid overload	3
acute treatment for metabolic acidosis	3
or alkalosis	
bolus IV medications	3
central intravenous hyperalimentation	3
multiple (3+) parenteral lines [6]	3
treatment of seizures or metabolic	3
encephalopathy (within 48 hours of	
onset)	
active diuresis for fluid overload or	3
cerebral edema	
frequent infusions of blood products (>=	3
20 mL/kg)	
concentrated potassium infusion	3
pressure activated blood transfusion	4
continuous arterial infusions	4
platelet transfusion	4

Cardiopulmonary Support

Interventions	Points
supplemental oxygen [7]	1
spontaneous ventilation via	2
tracheostomy tube [7]	
pacemaker on standby [8]	3
cardioversion for arrhythmias	3

continuous antiarrhythmia infusions	3
vasoactive drug infusions	3
blind intra-tracheal suctioning (non-	3
intubated)	
acute digitalization (within 48 hours)	3
continuous positive airway pressure	3
(CPAP) [7]	
intermittent mandatory ventilation or	3
assisted ventilation [7]	
membrane oxygenation	4
intra-aortic balloon assist	4
G-suit	4
atrial and/or ventricular pacing [8]	4
cardiac resuscitation and/or	4
countershock within past 48 hours	
controlled ventilation with/without	4
PEEP [7]	
controlled ventilation with intermittent	4
or continuous muscle paralyis/relaxants	
[7]	

where:

• items in brackets ("[]") indicate mutually exclusive items

therapeutic intervention score =

= SUMMATION (all interventions made for the patient for a 24 hour period)

Interpretation

- a higher TISS score tends to be associated with a higher mortality rate
- the TISS score from sequential days can be compared for the difference in magnitude between scores and the general trends shown by the values

Pediatric Population

TISS scores have been used in pediatric intensive care units, often performed in conjunction with the Physiologic Stability Index (PSI).

TISS score	mortality rate (in
	1985)
>= 50	75%
40-49	35%
30-39	20%
20-29	13%
10-19	6%

References:

- Cullen DJ, Civetta JM, et al. Therapeutic intervention scoring system: a method for quantitative comparison of patient care. Crit Care Med. 1974; 2: 57-60.
- Pollack MM, Ruttimann UE, et al. Monitoring patient in pediatric intensive care. Pediatrics. 1985; 76: 719-725.
- Rothstein P, Johnson P. Pediatric intensive care: Factors that influence outcome. Crit Care Med. 1982; 10: 34-37.
- Yeh TS, Pollack MM, et al. Assessment of pediatric intensive care application of the Therapeutic Intervention Scoring System. Crit Care Med. 1982; 10: 497-500.

30.10.02 Revised TISS of 1983 (TISS-76)

Overview:

A revision of the original Therapeutic Intervention Scoring System was proposed in 1983. It itemizes 76 clinical activities, and so it is sometimes referred to as the TISS-76.

Activity	Points
cardiac arrest and/or countershock within past 48 hours	4
controlled ventilation with or without PEEP [1]	4
controlled ventilation with intermittent or continuous muscle	4
relaxants [1]	
balloon tamponade of varices	4
continuous arterial infusion	4
pulmonary artery catheter	4
atrial and/or ventricular pacing [12]	4
hemodialysis in unstable patient [2]	4
peritoneal dialysis [2]	4
induced hypothermia	4
pressure-activated blood infusion	4
G-suit	4
intracranial pressure monitoring	4
platelet transfusion	4
intra-aortic balloon assist	4
emergency operative procedure within past 24 hours	4
lavage of acute GI bleeding	4
emergency endoscopy or bronchoscopy	4
vasoactive drug infusion (> 1 drug) [3]	4
central IV hyperalimentation (includes renal, cardiac, hepatic	3
failure fluid) [11]	
pacemaker on standby [12]	3
chest tubes	3
intermittent mandatory ventilation or assisted ventilation [1]	3
continuous positive airway pressure (CPAP) [1]	3

concentrated notacsium influsion via control estheter	2
concentrated potassium infusion via central catheter	3
nasotracheal or orotracheal intubation [6]	
blind intratracheal suctioning	3
complex metabolic balance (frequent intake and output) [8]	3
multiple ABG, bleeding and/or STAT studies (> 4 per shift) [9]	3
frequent infusions of blood products (> 5 units in 24 hours)	3
bolus IV medication (nonscheduled)	3
vasoactive drug infusion (1 drug) [3]	3
continuous antiarrhythmia infusion	3
cardioversion for arrhythmia (not defibrillation)	3
hypothermia blanket	3
arterial line	3
acute digitalization within 48 hours	3
measurement of cardiac output by any method	3
active diuresis for fluid overload or cerebral edema	3
active therapy for metabolic alkalosis	3
active therapy for metabolic acidosis	3
emergency thora-, para- or pericardio-centesis	3
active anticoagulation (initial 48 hours) [7]	3
phlebotomy for volume overload	3
coverage with more than 2 IV antibiotics [4]	3
therapy of seizures or metabolic encephalopathy (within 48 hours	3
of onset)	
complicated orthopedic traction [10]	3
central venous pressure monitoring	2
2 peripheral IV catheters [5]	2
hemodialysis in a stable patient [2]	2
fresh tracheostomy (less than 48 hours) [6]	2
spontaneous ventilation via endotracheal tube or tracheostomy (T	2
piece or trach mask) [1]	
GI feedings	2
replacement of excess fluid loss	2
parenteral chemotherapy	2
hourly neuro vital signs	2
multiple dressing changes	2
pitressin infusion IV	2
ECG monitoring	1
hourly vital signs	1
1 peripheral IV catheter [5]	1
chronic anticoagulation [7]	1
standard intake and output, daily [8]	1
STAT blood tests [9]	1
intermittent scheduled medications	1
	1
routine dressing changes standard orthopedic traction [10]	1
	1

tracheostomy care [6]	1
decubitus ulcer (treatment but not preventive care)	1
urinary catheter	1
supplemental oxygen (nasal or mask) [1]	1
antibiotics (2 or less) [4]	1
chest physiotherapy	1
extensive irrigations, packings or debridement of wound, fistula	1
or colostomy	
GI decompression	1
peripheral hyperalimentation, intralipid therapy [11]	1

where:

• items in brackets "[]" appear to be mutually exclusive to each other

TISS 76 =

= SUM(points for activities performed)

Interpretation

- minimum score = 1
- maximum score = about 164
- Most patients in the intensive care unit have scores from 10 to 60.

Limitations of the TISS-76 (Miranda, 1996, page 65)

- (1) It is time consuming.
- (2) It can be rather cumbersome and boring to use.
- (3) The items listed do not always adequately reflect the patient care activities of nurses in the ICU.
- (4) Other aspects of nurse activities which are important to the organization or nursing profession are not accounted for.

References:

Keene AR, Cullen DJ. Therapeutic Intervention Scoring System: Update 1983. Crit Care Med. 1983; 11: 1-3.

Miranda DR, de Rijk A, Schaufeli W. Simplified Therapeutic Intervention Scoring System: The TISS-28 items - Results from a multicenter study. Crit Care Med. 1996; 24: 64-73.

30.10.03 Neonatal Therapeutic Intervention Scoring System (NTISS)

Overview:

The Neonatal Therapeutic Intervention Scoring System (NTISS) can be used to assess the severity of illness for a neonate in the Intensive Care Unit (ICU). The NTISS on the day of admission to the ICU correlates with length of stay, total hospital charges and resource utilization.

Parameter	Item	Subscore
respiratory	supplemental oxygen [1]	1
	surfactant administration	1
	tracheostomy care [2]	1
	tracheostomy placement [2]	1
	continuous positive airway pressure	2
	administration [1]	
	endotracheal intubation	2
	mechanical ventilation [1]	3
	mechanical ventilation with muscle	4
	relaxation [1]	
	high-frequence ventilation [1]	4
	extracorporeal membrane oxygenation	4
cardiovascular	indomethacin administration	1
	volume expansion (<= 15 mL/kg) [3]	1
	vasopressor administration (1 agent) [4]	2
	volume expansion (> 15 mL/kg) [3]	3
	vasopressor administration (> 1 agent) [4]	3
	pacemaker on standby [5]	3
	pacemaker used [5]	4
	cardiopulmonary resuscitation	4
drug therapy	antibiotic administration (<= 2 agents) [6]	1
~ ••	diuretic administration (enteral) [7]	1
	steroid administration (postnatal)	1
	anticonvulsant administration	1
	aminophylline administration	1
	other unscheduled medication	1
	antibiotic administration (> 2 agents) [6]	2
	diuretic administration (parenteral) [7]	2
	treatment of metabolic acidosis	3
	potassium binding resin administration	3
monitoring	frequent vital signs	1
	cardiorespiratory monitoring	1
	phlebotomy (5-10 blood draws) [8]	1
	thermoregularted environment	1
	noninvasive oxygen monitoring	1
	arterial pressure monitoring	1
	central venous pressure monitoring	1
	urinary catheters	1
	quantitative intake and output	1
	extensive phlebotomy (> 10 blood draws) [8]	2
metabolic/nutrition	gavage feeding	<u> </u>
metabolie/nutritioli	intravenous fat emulsion	1

	intravenous amino acid solution	1
	phototherapy	1
	insulin administration	2
	potassium infusion	3
transfusion	intravenous gamma globulin	1
	red blood cell transfusion (<= 15 mL/kg) [9]	2
	partial volume exchange transfusion	2
	red blood cell transfusion (> 15 mL/kg) [9]	3
	platelet transfusion	3
	white blood cell transfusion	3
	double volume exchange transfusion	3
procedural	transport of patient	2
	single chest tube in place [11]	2
	minor operation [12]	2
	multiple chest tubes in place [11]	3
	thoracentesis	3
	major operation [12]	4
	pericardiocentesis [13]	4
	pericardial tube in place [13]	4
	dialysis	4
vascular access	peripheral intravenous line	1
	arterial line	2
	central venous line	2

where:

- items in brackets ("[]") are mutually exclusive
- partial and double volume exchange transfusions are not listed as mutually exclusive
- endotracheal intubation and tracheostomy use are not listed as mutually exclusive
- potassium infusion and binding resin administration are not listed as mutually exclusive

NTISS =

=SUM(applicable subscores)

Interpretation:

- minimum score: 0
- maximum score: 100

NTISS	Estimated Risk	Mortality (in 1992)
0 - 9	low	1%
10 - 19	mild-to-moderate	4-5%
20 - 29	moderate	18-19%
>= 30	high	20-30%

(after Figure 2, page 564)

References:

Gray JE, Ricahardson DK, et al. Neonatal Therapeutic Intervention Scoring System: A therapy-based severity-of-illness index. Pediatrics. 1992; 90: 561-567.

30.10.04 Intermediate TISS for Non-ICU Patients

Overview:

D

.

A modification of the original TISS was developed for patients in non-ICU settings such as intermediate ("step-down") and regular nursing units. This can be used both to quantitate the severity of patient illness and to measure the nursing workload.

Items relative to original TISS (1) retained, with same point score (49) (2) retained, but reweighted (10) (3) new (26) (4) deleted (18)

Scoring: Points are scored if the modality was used within the previous 24 hours, except for a new tracheostomy or acute digitalization (48 hours).

Patient Care and Monitoring		
Intervention	Туре	Points
vital signs every shift [1]	new	1
vital signs every 2-4 hours [1]	new	2
vital signs hourly or procedure checks [1]	reweighted	3
intake and output every 24 hours [2]	retained	1
intake and output every 6-8 hours [2]	retained	3
pulse volume recorder, Doppler	new	2
pulse oximetry	new	2
Glasgow Coma Scale every 4 hours [3]	new	2
Glasgow Coma Scale every 1-2 hours [3]	new	4
central venous pressure	retained	2
EKG monitoring or telemetry	reweighted	2
unscheduled 12 lead EKG	new	2
serial EKG or isoenzymes	new	3
multiple STAT specimens (more than 1 per shift)	retained	3
sputum, wound or other cultures [6]	new	1
initial "PAN" cultures, including blood [6]	new	4

Patient Care and Monitoring

Procedures		
Intervention	Туре	Points
simple dressing changes [4]	retained	1

multiple dressing changes [4]	retained	2
simple orthopedic therapy or cast care [5]	retained	1
complicated orthopedic therapy or special care	retained	3
beds [5]		
Foley catheter	retained	1
drainage tube(s)	new	1
nasogastric and/or gastric tubes	retained	1
hemodialysis [7]	retained	2
hemodialysis, initial [7]	retained	4
peritoneal dialysis chronic [7]	new	3
peritoneal dialysis, initial [7]	retained	4
chest tubes	reweighted	2
arterial catheter	retained	3
hypo or hyperthermia blanket	retained	3
emergency bronchoscopy or endoscopy	retained	4
emergency surgery within 24 hours	retained	4
lavage for acute GI bleed	retained	4
isolation	new	4
4 point restraints	new	4
emergency thora, para, peri or cardiocentesis	reweighted	4
arterial sheath	new	4

Infusions and Medications		
Intervention	Туре	Points
one IV catheter [8]	retained	1
2 IV catheters [8]	retained	2
anticoagulation, oral	retained	1
anticoagulation, IV (heparin, etc.)	retained	3
IV medications, scheduled	retained	1
IV medications, unscheduled	retained	3
IV antibiotic, 1 [9]	retained	1
IV antibiotic, >1 [9]	reweighted	2
intralipid/peripheral hyperalimentation [10]	retained	1
GI feedings [10]	retained	2
hyperalimentation by central catheter [10]	retained	3
epidural infusion	new	2
continuous IV sedation, patient controlled	new	2
anesthesia		
IV aminophylline/theophylline	new	2
IV chemotherapy	retained	2
IV diuresis [11]	retained	3
oral diuresis or change in oral diuretic therapy [11]	retained	3
replacement of excess fluid loss	retained	2
diabetic management (glucose monitoring with	new	3

Infusions and Medications

sliding scale insulin administration)		
acute treatment of seizures or encephalopathy	retained	3
digitalization within 48 hours	retained	3
continuous antiarrhythmia infusion	retained	3
vasoactive drug infusion, 1 [12]	retained	3
vasoactive drug infusion, > 1 [12]	retained	4
blood products, frequent infusion (3 units within 24	retained	3
hours)		
pressure activated blood infusion	retained	4
platelet infusion	retained	4
tissue plasminogen activation	retained	4
streptokinase/urokinase infusion		
concentrated potassium chloride infusion (40	retained	3
mEq/dL)		

Intervention	Туре	Points
pneumatic boots	new	1
chronic implanted pacemaker [13]	reweighted	2
temporary A/V pacing [13]	retained	4
cardiac pacer implanted within 24 hours [13]	new	4
chronic implanted automatic internal cardiac defibrillator [14]	new	3
automatic internal cardiac defibrillator [14]	new	4
cardioversion	reweighted	4
cardiac arrest within 24 hours	retained	4

Respiratory Support		
Intervention	Туре	Points
tracheostomy care [15]	retained	1
fresh tracheostomy within 48 hours [15]	reweighted	3
minitracheostomy [15]	new	2
intubation [15]	retained	3
incentive spirometry	new	1
formal chest physiology	reweighted	2
endotracheal suctioning more than 2 times every 6-	new	1
8 hours [16]		
blind endotracheal suctioning [16]	retained	3
oxygen by mask or cannula [17]	reweighted	2
spontaneous respiration via tracheostomy mask or	retained	2
T-piece [17]		
continuous positive airway pressure (CPAP) [17]	retained	3
mechanical ventilation [17]	retained	4

Respiratory Support

where:

- separation into subgroups not in the original table, which merely separted interventions by point scores (Table 2, page 1409, Cullen et al, 1994)
- items in brackets "[]" appear to be mutually exclusive (my choice)
- I am not sure what an "arterial sheath" refers to
- formal chest "physiology" may refer to physiotherapy (as in original TISS)

Deleted items from original TISS (18)

- controlled ventilation with intermittent or continuous muscle relaxants
- balloon tamponade of varices
- pulmonary artery catheter
- induced hypothermia
- G suit
- intracranial pressure monitoring
- intra-aoritc balloon assist
- intermittent mandatory ventilation or assisted ventilation
- measurement of cardiac output by any means
- active therapy of metabolic alkalosis
- active therapy of metabolic acidosis
- phlebotomy for volume overload
- coverage with > 2 IV antibiotics
- hourly neuro vital signs
- vasopressin infusion
- decubitus ulcer
- STAT blood tests (weighted 1 point; 3 point intervention retained)
- extensive irrigation, packings or debridement of wounds, fistula or colostomy

intermediate TISS =

= SUM [therapeutic interventions being used]

The intermediate TISS results in the test patients showed good correlation with the original TISS results, with a linear relation.

intermediate TISS = = 4.4 + (1.4 * (original TISS))

This can be rearranged:

original TISS = = ((intermediate TISS) - 4.4) / 1.4

References:

Cullen DJ, Nemeskal AR, Zaslavsky AM. Intermediate TISS: A new Therapeutic Intervention Scoring System for non-ICU patients. Crit Care Med. 1994; 22: 1406-1411.

30.10.05 TISS-28

Overview:

The Simplified Therapeutic Intervention Scoring System TISS-28 consists of 28 items. It is intended to accurately measure the level of care required for a patient in the Intensive Care Unit (ICU) but be simpler to administer than previous TISS forms. It correlates well with the TISS-76 score and can be used in its place.

Parameter	Action	Points
basic activities	standard monitoring (hourly vital signs,	5
	calculation of fluid balance, regular registration)	
	laboratory investigations	1
	[1] single medication, any route (IV, po, IM, etc.)	2
	[1] multiple intravenous medications (more than 1	3
	drug, single injections, or continuously)	
	routine dressing changes (care and prevention of	1
	decubitus and daily dressing change)	
	frequent dressing changes (at least one time per	1
	nursing shift and/or extensive wound care)	
	care of drains (all excpet gastric tube)	3
ventilatory	[2] mechanical ventilation (any form of mechanical	5
support	or assisted ventilation with or without PEE), with	
	or without muscle relaxants; spontaneous	
	breathing with PEEP)	
	[2] supplementary ventilatory support (breathing	2
	spontaneously through endotracheal tube without	
	PEEP; supplementary oxygen by any method	
	except if mechanical ventilation used)	
	care of artificial airways (endotracheal tube or	1
	tracheostoma)	
	treatment for improving lung function (thorax	1
	physiotherapy, incentive spirometry, inhalation	
	therapy)	
cardiovascular	[3] single vasoactive medication (any vasoactive	3
support	drug)	
••	[3] multiple vasoactive medications (more than1	4
	vasoactive drug)	
	intravenous replacement of large fluid losses; fluid	4
	replacement > 3 liters per square meter per day;	
	disregard type of fluid administered	
	peripheral arterial catheter	5
	left atrium monitoring; pulmonary artery flotation	8
	catheter with or without cardiac output	
	measurement	
	central venous line	2

	cardiopulmonary resuscitation after arrest in the past 24 hours (a single precordial percussion not included)	3
renal support	hemofiltration techniques. Dialytic techniques	3
	quantitative urine output measurement	2
	active diuresis	3
neurologic support	measurement of intracranial pressure	4
metabolic support	treatment of complicated metabolic acidosis/alkalosis	4
	intravenous hyperalimentation	3
	enteral feeding (through gastric tube or other GI route such as jejunostomy)	2
specific interventions	[4] single specific intervention	3
	[4] multiple specific interventions	5
	specific interventions outside of ICU (surgery, diagnostic procedures)	2

where:

- The selection of one item marked [1], [2], [3] and [4] excludes the other matching numbered item.
- single specific interventions = naso- or oro-tracheal intubation, introduction of a pacemaker, cardioversion, endoscopies, emergency surgery in the past 24 hours, and gastric lavage.

TISS-28 =

= SUM(points for actions involved in the care of the patient)

estimated the TISS-76 = = ((TISS28) - 3.33) / 0.97

Interpretation

- minimum score = 0 (unlikely in patient requiring true intensive care)
- maximum score = 78
- Each nurse is capable of providing care for 46.35 TISS-28 points per shift. Each TISS-28 point requires 10.6 minutes of each nurse's shift.

References:

- Miranda DR, de Rijk A, Schaufeli W. Simplified Therapeutic Intervention Scoring System: The TISS-28 items - Results from a multicenter study. Crit Care Med. 1996; 24: 64-73.
- Moreno R, Morais P. Validation of the simplified therapeutic intervention scoring system on an independent database. Intensive Care Med. 1997; 23: 640-644.

30.11 Simplified Acute Physiology Score (SAPS)

30.11.01 Original Simplified Acute Physiology Score (SAPS)

Overview:

The Simplified Acute Physiology Score (SAPS) is a simplified version of the APACHE acute physiology score (APS). It provides a simply calculated score using clinical data; the score correlates with a patient's mortality rate in the ICU.

Data

• collected during the first 24 hours after ICU admission

• 14 data items, versus 34 items in the APACHE APS

		_						_	
	+4	+3	+2	+1	0	+1	+2	+3	+4
age in years					<=	46 -	55 -	66 -	> 75
					45	55	65	75	
heart rate (beats	>=	140-	110-		70-		55 -	40 -	< 40
per minute)	180	179	139		109		69	54	
systolic blood	>=		150-		80-		55 -		< 55
pressure (mm	190		189		149		79		
Hg)									
body temperature	>=	39 -		38.5-	36 -	34 -	32 -	30 -	< 30
(°C)	41	40.9		38.9	38.4	35.9	33.9	31.9	
spontaneous	>=	35 -		25 -	12 -	10 -	6 - 9		< 6
respiratory rate	50	49		34	24	11			
(breaths/min)									
ÔR									
ventilation or								Yes	
CPAP									
urinary output (L			>=	3.5-	0.70-		0.50-	0.20-	<
per 24 hours)			5.00	4.99	3.49		0.69	0.49	0.20
blood urea	>=	101-	81-	21-80	10-20	< 10			
nitrogen in	154	153	100						
mg/dL									
hematocrit (%)	>=		50-	46-	30-		20.0-		<
	60		59.9	49.9	45.9		29.9		20.0
white blood cell	>=		20 -	15 -	3.0 -		1.0 -		< 1.0
count (1000/µL)	40		39.9	19.9	14.9		2.9		
serum glucose	>=	500-		250-	70-		50-69	29-49	<29
8	800	799		499	249				
serum potassium	>=	6.0-		5.5-	3.5-	3.0-	2.5-		<2.5
(mEq/L)	7.0	6.9		5.9	5.4	3.4	2.9		
serum sodium	>=	161-	156-	151-	130-		120-	110-	< 110
(mEq/L)	180	179	160	155	150		129	119	
serum HCO3		>=		30-	20-	10-		5.0-	< 5.0
(mEq/L)		40		39.9	29.9	19.9		9.0	
Glasgow Coma					13 -	10 -	7 - 9	4 - 6	3
8		1	1				1		

Score					15	12			
	+4	+3	+2	+1	0	+1	+2	+3	+4

where

- glucose converted from mmol/L to mg/dL (multiply mmol/L by 18.018)
- blood urea nitrogen converted from mmol/L to mg/dL (multiple mmol/L by 2.801)

SAPS score =

= SUMMATION (points for each data item)

Interpretation

- minimum score: 0
- maximum score: 56

SAPS	Mortality Rate
4	
5-6	10.7 +/- 4.1
7-8	13.3 +/- 3.9
9-10	19.4 +/- 7.8
11-12	24.5 +/- 4.1
13-14	30.0+/- 5.5
15-16	32.1 +/- 5.1
17-18	44.2 +/- 7.6
19-20	50.0 +/- 9.4
>= 21	81.1+/- 5.4

References:

Le Gall J-R, Loirat P, et al. A simplified acute physiology score for ICU patients. Crit Care Med. 1984; 12: 975-977.

30.11.02 New Simplified Acute Physiology Score (SAPS II)

Overview:

The New Simplified Acute Physiology Score (SAPS II) is a revision of the Simplified Acute Physiology Score. It is used to assess patients in the ICU and can predict mortality risk based on the most marked abnormalities of 15 variables.

Comparison with SAPS

- dropped: glucose, hematocrit
- added: bilirubin, chronic disease, reason for admission
- altered: PaO2/FIO2 (no score if not ventilated or on CPAP)
- SAPS II scores range from 0 to 26, vs 0 to 4 in SAPS

Variables	Scoring Guidelines
age	age in years at time of last birthday

heart rate	use the high act on lowest beaut note in next 24
neart rate	use the highest or lowest heart rate in past 24
	hours, whichever gives the higher number of
	points
systolic blood	use the highest or lowest blood pressure in past
pressure	24 hours , whichever gives the higher number
	of points
body temperature	use highest temperature
PaO2/FIO2 ratio	use only if on ventilation or CPAP, using the
	lowest ratio
urinary output	if time period is less than 24 hours, adjust urine
	output for period to 24 hours
SUN	use the highest value
WBC count	use the highest or lowest WBC count in past 24
	hours, whichever gives the higher number of
	points
serum potassium	use the highest or lowest potassium in past 24
Ĩ	hours, whichever gives the higher number of
	points
serum sodium	use the highest or lowest sodium in past 24
	hours, whichever gives the higher number of
	points
serum bicarbonate	use the lowest value
serum bilirubin	use the lowest value
Glasgow Coma	use the lowest value; if patient sedated, use the
Score	score before sedated
type of admission	scheduled surgery if scheduled at least 24 hours
~ -	prior to operation; unscheduled if operated on
	with less than 24 hour notice; medical if no
	surgery within 1 week of admission to ICU
AIDS	HIV positive with AIDS defining opportunistic
	infection or tumor
hematologic	malignant lymphoma, Hodgkins disease,
malignancy	leukemia or multiple myeloma
metastatic cancer	metastases demonstrated at surgery,
	radiographically or other suitable method
4	

Variable	Finding	Points
age in years	< 40	0
	40 - 59	7
	60 - 69	12
	70 - 74	15
	75 - 79	16
	>= 80	18
heart rate in beats per	< 40	11

minute		
	40 - 69	2
	70 - 119	0
	120 - 159	4
	>= 160	
avatalia blood prosanno in	< 70	13
systolic blood pressure in mm Hg	< 70	15
	70 - 99	5
	100 - 199	0
	>= 200	2
body temperature in °C	< 39 °C	0
	>= 39	3
if on ventilation or CPAP, PaO2/FIO2	< 100	11
	100 - 199	9
	>= 200	6
urinary output in L per 24 hours	< 0.500	11
	0.500 - 0.999	4
	>= 1.000	0
serum urea nitrogen in mg/dL	< 28	0
	28 - 83	6
	>= 84	10
WBC count in 1000 per μL	< 1.0	12
	1.0 - 19.9	0
	>= 20	3
serum potassium in mEq/L	< 3.0	3
	3.0 - 4.9	0
	>= 5.0	3
serum sodium in mEq/L	< 125	5
*	125 - 144	0
	>= 145	1
serum bicarbonate in	< 15	6
mEq/L		
	15 - 19	3
	>= 20	0
bilirubin level in mg/dL	< 4.0	0
	4.0 - 5.9	4
	>= 6.0	9
Glasgow Coma score	< 6	26
	6 - 8	13

	9 - 10	7
	11 - 13	5
	14 - 15	0
chronic diseases	metatastic carcinoma	9
	hematologic malignancy	10
	AIDS	17
type of admission	scheduled surgery	0
	medical	6
	unscheduled surgery	8

SAPS II =

= (points for age) + (points for heart rate) + (points for systolic blood pressure) + (points for body temperature) + (points for ventilation) + (points for urinary output) + (points for SUN) + (points for WBC count) + (points for potassium) + (points for serum) + (points for bicarbonate) + (points for bilirubin) + (points for Glasgow Coma Score) + (points for chronic diseases) + (points for type of admission)

Interpretation

• minimum score 0

• maximum score 160

logit = = (-7.7631) + (0.0737 * (SAPSII)) + ((0.9971 * (LN((SAPSII)+1)))

probability of hospital mortality =
= EXP(logit) / (1 + (EXP(logit)))

References:

Le Gall J-R, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993; 270: 2957-2963.

Lemeshow S, Le Gall J-R. Modeling the severity of illness in ICU patients. JAMA. 1994; 272: 1049-1055.

30.12 Mortality Probability Models (MPM)

Overview:

Mortality Probability Models (MPM) is used to assess the prognosis of patients in the adult medical-surgical intensive care unit (ICU). Comparison of actual outcomes versus estimates allows different ICUs to be evaluated for quality of care. The estimates can also be used to help inform a patient's family members of her/his relative prognosis.

30.12.01 MPM at Admission

Overview:

The MPM at admission (MPM-0) collects data at the time the patient is admitted to the ICU.

Parameter	Value	beta value
patient in deep stupor or coma	1 if yes, else 0	2.8902
emergency admission	1 if yes, else 0	1.2671
CPR prior to admission	1 if yes, else 0	1.0137
cancer part of present problem	1 if yes, else 0	0.94131
history of chronic renal failure	1 if yes, else 0	0.64049
infection probable	1 if yes, else 0	0.55592
age in years	age	0.047789
previous ICU admission within	1 if yes, else 0	0.43946
past 6 months		
on surgical service at ICU	1 if yes, else 0	-0.37987
admission		
heart rate at ICU admission in	heart rate	0.00736
beats per minute		
systolic blood pressure	SBP	-0.04591
	(SBP) ^2	0.000116
constant	1	-2.9678

logit =

= SUM ((value) * (beta-value))

probability of hospital mortality =
= (EXP(logit)) / (1 + (EXP(logit)))

References:

Lemeshow S, Teres D, et al. Refining intensive care unit outcome prediction by using changing probabilities of mortality. Crit Care Med. 1988; 16: 470-477.

30.12.02 MPM at 24 Hours

Overview:

The MPM at 24 hours (MPM-24) collects data from the 24 hour period after the patient was admitted to the ICU.

Parameter	Value	beta value
patient in deep stupor coma at 24 hours	1 if yes, else 0	3.4986
cancer part of present problem at admission	1 if yes, else 0	0.99476

emergency admission	1 if yes, else 0	0.80224
patient's prothrombin time in	1 if (patient prothrombin	0.73764
seconds	time > 3 seconds above	
	laboratory standard), else	
	0	
patient in shock during first 24	1 if yes, else 0	0.67367
hours		
urine output in any 8 hour	1 if < 180 mL, else 0	0.65128
during first 24 hours		
infection confirmed at 24 hours	1 if yes, else 0	0.53755
PaO2 in mm Hg in first 24 hours	1 if < 60 mm Hg, else 0	0.49666
FIO2 in first 24 hours	1 if > 0.50, else 0	0.47462
creatinine in mg/dL in first 24	1 if > 2.0, else 0	0.45716
hours		
age in years	age	0.044142
hours of mechanical ventilation	hours	0.026336
number of lines at 24 hours	number of lines (see	0.15376
	below)	
patient on surgical service at 24	1 if yes, else 0	-0.70808
hours	-	
constant	1	-6.5917

number of lines

- number of intravascular lines (arterial, invtravenous, pulmonary artery catheter)
- ventilation tube (endotracheal or tracheal)
- Foley catheter
- pacing wires (count as 1 if one or more present)
- number of chest tubes
- nasogastric tube
- drains in each abdominal quadrant (count as 1 if one or more present)

logit = = SUM ((value) * (beta-value))

probability of hospital mortality =
= (EXP(logit)) / (1 + (EXP(logit)))

References:

Lemeshow S, Teres D, et al. Refining intensive care unit outcome prediction by using changing probabilities of mortality. Crit Care Med. 1988; 16: 470-477.

30.12.03 MPM at 48 hours

Overview:

The MPM at 48 hours (MPM-48) collects data from the 24-48 hour period after the patient was admitted to the ICU.

Parameter	Value	beta value
patient in deep stupor or coma at	1 if yes, else 0	2.8644
48 hours		
urine output in mL during any 8	1 if < 180 mL, else 0	0.99015
hour during 24-48 hour period		
patient in deep stupor or coma at	1 if yes, else 0	0.97702
time of ICU admission		
emergency admission	1 if yes, else 0	0.9602
prothrombin time in seconds	1 if (patient prothrombin	0.90928
	time > 3 seconds above	
	laboratory standard), else	
	0	
FIO2 in period 24-48 hours	1 if > 0.50, else 0	0.84206
cancer part of present problem	1 if yes, else 0	0.8155
infection confirmed at 48 hours	1 if yes, else 0	0.47138
age in years	age	0.042383
total hours on mechnical	total hours	0.021409
ventilation in ICU		
total hours of continuous IV	total hours	0.017262
vasoactive drug therapy		
constant	1	-5.8601

logit =

= SUM ((value) * (beta-value))

probability of hospital mortality =
= (EXP(logit)) / (1 + (EXP(logit)))

References:

Lemeshow S, Teres D, et al. Refining intensive care unit outcome prediction by using changing probabilities of mortality. Crit Care Med. 1988; 16: 470-477.

30.12.04 MPM Over Time

Overview:

Evaluation of the MPM-0, MPM-24 and MPM-48 together allows a global assessment for the period covered by the individual measures.

Value	beta value
(probability of mortality as determined by MPM-0)	6.3373
(probability of mortality as determined by MPM-0) minus (probability of mortality as determined by MPM-24)	-5.1914
(probability of mortality as determined by MPM-24) minus (probability of mortality as determined by	-3.0546

MPM-48)	
constant	-2.9287

logit = = SUM ((value) * (beta-value))

probability of hospital mortality =
= (EXP(logit)) / (1 + (EXP(logit)))

References:

Lemeshow S, Teres D, et al. Refining intensive care unit outcome prediction by using changing probabilities of mortality. Crit Care Med. 1988; 16: 470-477.

30.13 Mortality Probability Models (MPM II)

30.13.01 MPM II at Admission to the ICU

Overview:

Mortality Probability Models (MPM II) can be used to assess patients at the time of admission to the ICU and to predict hospital mortality. It also can be used in the quality assessment of the care given in different intensive care units.

Patients excluded

- age < 18 years
- burn patients
- coronary care patients
- cardiac surgery patients

Definitions for Variables

Coma or deep stupor at time of ICU admission

- not due to drug overdosage
- if patient is on paralyzing muscle relaxant, awakending from anesthesia or heavily sedated, use best judgment of the level of consciousness prior to sedation
- coma: no response to any stimulation, no twitching, no movements in extremities, no response to pain or command, Glasgow coma scale 3
- deep stupor: decorticate or decerebrate posturing; posturing is spontaneous or in response to stimulation or deep pain; posturing is not in response to commands; Glasgow coma scale 4 or 5

Heart rate at ICU admission

• heart rate >= 150 beats per minute within 1 hour before or after ICU admission

Systolic blood pressure at ICU admission

• systolic blood pressure <= 90 mm Hg within 1 hour before or after ICU admission

Chronic renal compromise or insufficiency

- elevation of serum creatinine > 2 mg/dL and documented as chronic in the medical record
- if there is the acute diagnosis on chronic renal failure, then only record yes for acute renal failure

Cirrhosis

- history of heavy alcohol use with portal hypertension and varices
- other causes of liver disease with evidence of portal hypertension and varices
- biopsy confirmation of cirrhosis

Metastatic malignant neoplasm

- stage IV carcinomas with distant metastases
- do not include involvement only of regional lymph nodes
- include if metastases are obvious by clinical assessment or confirmed by a pathology report
- do not include if metastases not obvious or if pathology report is not available at the time of ICU admission
- acute hematologic malignancies are included
- chronic leukemias are not included unless there are findings attributable to the disease or the patient is under active treatment for the leukemia. Findings include sepsis, anemia, stroke caused by clumping of white blood cells, tumor lysis syndrome with elevated uric acid following chemotherapy, pulmonary edema or lymphangiectatic form of ARDS

Acute renal failure

- acute tubular necrosis, or acute diagnosis on chronic renal failure
- prerenal azotemia is not included

Cardiac dysrhythmia

- cardiac arrhythmia, paroxysmal tachycardia, fibrillation with rapid ventricular response, second or third degree heart block
- do not include chronic and stable arrhythmias

Cerebrovascular incident

• cerebral embolism, occlusion, CVA, stroke, brain-stem infarction, cerebrovascular arteriovenous malformation (acute stroke or cerebrovascular hemorrhage, not chronic arteriovenous malformation)

Gastrointestinal bleeding

- hematemesis, melena
- a perforated ulcer does not necessarily indicate GI bleeding; may be identified by obvious "coffee grounds" in nasogastric tube
- a drop of hemoglobin by itself is not sufficient evidence of acute GI bleeding

Intracranial mass effect

- intracranial mass (abscess, tumor, hemorrhage, subdural) as identified by CT scan associated with any of the following: (1) midline shift, (2) obliteration or distortion of cerebral ventricles, (3) gross hemorrhage in cerebral ventricles or subarachnoid space, (4) visible mass > 4 cm or (5) any mass that enhances with contrast media
- if the mass effect is known within 1 hour of ICU admission, it can be indicated as yes
- CT scanning is not mandated and is only indicated for patients with major neurological insult

Age in years

• patient's age at last birthday

CPR within 24 hours prior to ICU admission

- CPR includes chest compression, defibrillation or cardiac massage
- not affected by the location where the CPR was administered

Mechanical ventilation

• patient is using a ventilator at the time of ICU admission or immediatey thereafter

Medical or unscheduled surgery admission

• do not include elective surgical patients (surgery scheduled at least 24 hours in advance) or pre-operative Swan-Ganz catheter insertion in elective surgery patients

Class	Variable	coefficient
chronic health status	cirrhosis	1.13681
	metastatic carcinoma	1.19979 i
	chronic renal insufficiency	0.91906
physiology	heart rate >= 150 beats/minute	0.45603
	systolic blood pressure <= 90 mm Hg	1.06127
	Glasgow Coma Scale or modified	1.48592
acute diagnoses	acute renal failure	1.48210
	cardiac dysrhythmia	0.28095
	cerebrovascular incident	0.21338
	gastrointestinal bleeding	0.39653
	intracranial mass effect	0.86533
other	age in years at last birthday	0.03057
	type of admission (medical or	1.19098
	unscheduled surgery admission)	
	CPR prior to ICU admission	0.56995
	mechanical ventilation	0.79105
constant		-5.46836

beta value for each variable =

= (coefficient) * (if age, then age in years; else, 1 if present or 0 if absent)

logit = = SUM (beta values)

probability of hospital mortality =
= (EXP(logit)) / (1 + (EXP(logit)))

References:

Lemeshow S, Teres D, et al. Mortality Probability Models (MPM II) based on an international cohort of intensive care patients. JAMA. 1993; 270: 2478-2486.

Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.

30.13.02 MPM II during Admission

Overview:

Mortality Probability Models (MPM II) can be used during a patient's stay in the ICU to predict mortality.

Continued Variables

- age in years
- cirrhosis
- metastatic carcinoma
- Glasgow coma scale
- intracranial mass effect
- nonelective surgical admission
- mechanical ventilation

Discontinued Variables

- chronic renal insufficiency
- acute renal failure
- heart rate
- systolic blood pressure
- cardiac dysrhythmia
- cerebrovascular incident
- gastrointestinal bleeding
- CPR prior to ICU admission

New Variables

- creatinine > 2 mg/dL
- urine output < 150 mL in an 8 hour period
- PaO2 < 60 mm Hg
- prothrombin time > 3 seconds above control

infection

• intravenous vasoactive drug therapy >= 1 hour

Constant

• varies for 24, 48 and 72 hours

Class	Variable	coefficient
chronic health status	cirrhosis	1.08745
	metastatic carcinoma	1.16109
physiology	creatinine > 2 mg/dL	0.72283
	urine output < 150 mL in 8 hours	0.82286
	PaO2 < 60 mm Hg	0.46677
	prothrombin time > 3 seconds above control	0.55352
	Glasgow Coma Scale or modified	1.68790
acute diagnoses	infection	0.49742
-	intracranial mass effect	0.91314
other	age	0.03268
	type of admission (medical or unscheduled surgery admission)	0.83404
	mechanical ventilation	0.80845
	vasoactive drug therapy >= 1 hour intravenously	0.71628
constant		-5.646 (24)
		-5.392 (48)
		-5.238 (72)

beta value for each variable =

= (coefficient) * (if age, then age in years; else, 1 if present or 0 if absent)

logit = = SUM (beta values)

probability of hospital mortality =
= (EXP(logit)) / (1 + (EXP(logit)))

References:

Lemeshow S, Teres D, et al. Mortality Probability Models (MPM II) based on an international cohort of intensive care patients. JAMA. 1993; 270: 2478-2486.

Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.

30.13.03 Comparison of MPM II Assessments

Overview:

The Mortality Probability Models (MPM II) can be used for predicting the mortality of patients in the ICU and for comparing the care received in different intensive care units.

Features of MPM assessments

- multiple diagnoses can be included, rather than a single, most severe condition
- adjustments made in conditions considered and weightings given at admission and during hospitalization, reflecting differing impact on mortality

Class	Variable	MPM II at	MPM II at
		admission	24, 48, 72
			hours
chronic health status	cirrhosis	1.137	1.087
	metastatic carcinoma	1.200	1.161
	chronic renal insufficiency	0.919	
physiology	heart rate	0.456	
	systolic blood pressure	1.061	
	creatinine		0.723
	urine output		0.823
	PaO2		0.467
	prothrombin time		0.554
	Glasgow Coma Scale or	1.486	1.688
	modified		
acute diagnoses	acute renal failure	1.482	
	cardiac dysrhythmia	0.281	
	cerebrovascular incident	0.213	
	gastrointestinal bleeding	0.397	
	infection		0.497
	intracranial mass effect	0.865	0.913
other	age	0.031	0.033
	type of admission	1.191	0.834
	CPR prior to ICU admission	0.570	
	mechanical ventilation	0.791	0.808
	vasoactive drug therapy		0.716
constant		-5.468	-5.646 (24)
			-5.392 (48)
			-5.238 (72)

Use in quality assessment of ICU care

• the MPM-0 is independent of ICU care, while later MPM scores are affected by care received

References:

Lemeshow S, Teres D, et al. Mortality Probability Models (MPM II) based on an international cohort of intensive care patients. JAMA. 1993; 270: 2478-2486.

Lemeshow S, Le Gall J-R. Modeling the severity of illness of ICU patients. JAMA 1994; 272: 1049-1055.

30.14 The SUPPORT Prognostic Model

30.14.01 Calculating the SUPPORT Physiologic Score

Overview:

The SUPPORT Physiologic Score needs to be calculated before the prognosis for a patient in the Intensive Care Unit can be determined.

Data

• All data is from day 3 after admission, except for albumin.

• The albumin data used is from day 1.

	Primary	Secondary	Value
1	acute renal failure or multiorgan failure present?		259.9
2	COPD or CHF present?		263.4
3	cirrhosis or coma present?		241.4
4	lung or colon cancer present?		281.5
5	PaO2/FIO2	PaO2/FIO2 < 225 PaO2/FIO2 >= 225	- 0.06174 * (PaO2/FIO2) - 0.06174 * 225
6	blood pressure	mean blood pressure < 60	-0.6316 * (mean BP)
		mean blood pressure >= 60	-0.6316 * 60
7	WBC	WBC <= 9 and ARF/MOSF present	1.0205 * WBC
		WBC <= 9 and not ARF/MOSF	1.0205 * 9

$\begin{tabular}{ c c c c c c } & WBC > 9, < 40 & 1.0205 * WBC > 9, < 40 & 1.0205 * WBC > 40 & 40.3676 * (WBC > 9 and not ARF/MOSF & -0.3676 * (WBC > 9 and not ARF/MOSF & -0.3676 * (WBC > 9 & WBC > 11 & WBC > 11, < 40 & -0.3676 * (WBC > 240 & -0.5631 * (40 & -0.2691 * 4 & -0.2691 * 4 & -0.2691 * 4 & -0.2691 * & -0.2691 * & -0.2691 * & -0.2691 * & -0.2612 * (sec - 36.6) & -0.2612 $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RC
$\begin{tabular}{ c c c c c c } \hline WBC > 8 & WBC > 8 & WBC > 8 & WBC < 9 and ARF/MOSF present & -0.3676 * (WB ARF/MOSF present & -0.3676 * (WB ARF/MOSF & -0.3676 * (WB WBC > 9 and not ARF/MOSF & -0.3676 * (WB WBC > 9, <40 & -0.3676 * (WB WBC > 40 & -0.5631 * (40 & -0.5631 * (WB WBC > 40 & -0.5631 * (WB WB & -0.5631 * (WB $	0
ARF/MOSF present -0.3676 * (9) WBC <= 9 and not	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C - 8)
WBC <= 9 and not ARF/MOSF -0.3676 * (WB -0.3676 * (WB WBC >9, < 40	
$\begin{tabular}{ c c c c c c } \hline ARF/MOSF & & & & & & & & & & & & & & & & & & &$	- 8)
wBC > 9, < 40 -0.3676 * (WB 9 WBC > 11 WBC > 11, < 40	
WBC > 9, < 40 -0.3676 * (40 9 WBC > 11 WBC > 11, < 40	
WBC >= 40 -0.3676 * (40) 9 WBC > 11 WBC > 11, < 40	C - 0)
WBC >= 40 9 WBC > 11 WBC > 11, < 40 -0.5631 * (WBC) 10 albumin albumin -0.5631 * (40) 10 albumin albumin 0.2691 * 4 11 apache III respiration score 0.2691 * 4 11 apache III respiration score 0.2691 * 4 12 temperature °C -2.362 * (tempe - 36.6) 13 temperature > 36.6 °C 1.326 * ((tempe - 38.3)) 14 temperature > 38.3 °C 2.473 * ((tempe - 38.3)) 15 heart rate -0.1579 * (hear - 38.3) 16 heart rate > 55 9.77 * 10^(-5) * rate) - 55)^{^{/}} 17 heart rate > 110 (((heart rate) - 1518 * 10^{(((meart rate) - 1518 * 10^{((((meart rate) - 1518 * 10^{((((meart rate) - 1518 * 10^{(((((heart rate) - 1518 * 10^{((((heart rate) - 1518 * 10^{((((heart rate) - 1518 * 10^{((((heart rate) - 1518 * 10^{(((((heart rate) - 1518 * 10^{((((heart rate) - 1518 * 10^{((- 8)
WBC >= 40 -0.5631 * (40 10 albumin albumin < 4.6	,
10 albumin albumin < 4.6 $0.2691 * (albumin > 4.6)$ 11 apache III respiration score $0.2691 * 4$ 11 apache III respiration score $0.2312 * (score)$ 12 temperature °C $-2.362 * (temperature)$ 13 temperature > 36.6 °C $1.326 * ((temperature) - 36.6)$ 14 temperature > 38.3 °C $2.473 * ((temperature) - 38.3))$ 15 heart rate $-0.1579 * (heart) - 38.3$ 16 heart rate > 55 $9.77 * 10^{\wedge}(-5) * rate) - 55)^{\wedge}$ 17 heart rate > 80 $-2.189 * 10^{\wedge}(-1)^{-1}$ 18 heart rate > 110 $1.518 * 10^{\wedge}(-1)^{-1}$ 19 heart rate > 149 $-3.062 * 10^{\wedge}(-1)^{-1}$ 20 bilirubin $0.9763 * (bilir)^{-1}$ 21 bilirubin > 7 $-0.7481 * ((bilir)^{-1})^{-1}$	C - 11)
10 albumin albumin < 4.6 $0.2691 * (albumin > 4.6)$ 11 apache III respiration score $0.2691 * 4$ 11 apache III respiration score $0.2312 * (score)$ 12 temperature °C $-2.362 * (temperature)$ 13 temperature > 36.6 °C $1.326 * ((temperature) - 36.6)$ 14 temperature > 38.3 °C $2.473 * ((temperature) - 38.3))$ 15 heart rate $-0.1579 * (heart) - 38.3$ 16 heart rate > 55 $9.77 * 10^{\wedge}(-5) * rate) - 55)^{\wedge}$ 17 heart rate > 80 $-2.189 * 10^{\wedge}(-1)^{-1}$ 18 heart rate > 110 $1.518 * 10^{\wedge}(-1)^{-1}$ 19 heart rate > 149 $-3.062 * 10^{\wedge}(-1)^{-1}$ 20 bilirubin $0.9763 * (bilir)^{-1}$ 21 bilirubin > 7 $-0.7481 * ((bilir)^{-1})^{-1}$.
albumin >= 4.6 $0.2691 * 4$ 11 apache III respiration score $0.2312 * (scolution)$ 12 temperature °C $-2.362 * (temperature)$ 13 temperature > 36.6 °C $1.326 * ((temperature) - 36.6)$ 14 temperature > 38.3 °C $2.473 * ((temperature) - 38.3)$ 15 heart rate $-0.1579 * (heart) - 38.3$ 16 heart rate > 55 $9.77 * 10^{\circ}(-5) * - 38.3$ 17 heart rate > 80 $-2.189 * 10^{\circ}(-5) + - 3.062 * 10^{\circ}(-5) + - 3.0$	
11 apache III respiration score $0.2312 * (scolerange)$ 12 temperature °C $-2.362 * (temperature)$ 13 temperature > 36.6 °C $1.326 * ((temperature) - 36.6)$ 14 temperature > 38.3 °C $2.473 * ((temperature) - 38.3)$ 15 heart rate $-0.1579 * (heart) - 38.3$ 16 heart rate > 55 $9.77 * 10^{\wedge}(-5) * rate) - 55)^{\wedge}$ 17 heart rate > 80 $-2.189 * 10^{\wedge}(rate) - 10^{\circ}(rate) $	imin)
11 apache III respiration score $0.2312 * (scolerange)$ 12 temperature °C $-2.362 * (temperature)$ 13 temperature > 36.6 °C $1.326 * ((temperature) - 36.6)$ 14 temperature > 38.3 °C $2.473 * ((temperature) - 38.3)$ 15 heart rate $-0.1579 * (heart) - 38.3$ 16 heart rate > 55 $9.77 * 10^{\wedge}(-5) * rate) - 55)^{\wedge}$ 17 heart rate > 80 $-2.189 * 10^{\wedge}(rate) - 10^{\circ}(rate) $.6
iscore -2.362 * (temperature of temperature of temperatu	
13 temperature > 36.6 °C 1.326 * ((tempe - 36.6) 14 temperature > 38.3 °C 2.473 * ((tempe - 38.3) 15 heart rate -0.1579 * (hear 16 heart rate > 55 9.77 * 10^(-5) * rate) - 55)^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^	-,
14 temperature > 38.3 °C - 36.6) 14 temperature > 38.3 °C 2.473 * ((temperature - 38.3)) 15 heart rate -0.1579 * (heart - 38.3) 16 heart rate > 55 9.77 * 10^(-5) * rate) - 55 ^ 17 heart rate > 80 -2.189 * 10^(18 heart rate > 110 1.518 * 10^(-(((heart rate) - 12)))) 19 heart rate > 149 -3.062 * 10^((((heart rate) - 12))))) 20 bilirubin 0.9763 * (bilir 21 bilirubin > 7 -0.7481 * ((bilin 7)))	rature)
14temperature > 38.3 °C2.473 * ((tempe - 38.3)15heart rate-0.1579 * (hear16heart rate > 55 $9.77 * 10^{\circ}(-5) *$ rate) - 55° 17heart rate > 80-2.189 * $10^{\circ}($ (((heart rate) -18heart rate > 110 $1.518 * 10^{\circ}(-1)$ (((heart rate) -19heart rate > 149-3.062 * $10^{\circ}($ (((heart rate) -20bilirubin $0.9763 *$ (bilir 7)	rature)
15 heart rate -0.1579 * (hear 16 heart rate > 55 9.77 * 10^(-5) * rate) - 55)^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^	rature)
16 heart rate > 55 9.77 * 10^(-5) * rate) - 55)^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^	4 2242)
17 heart rate > 80 -2.189 * 10^(17 heart rate > 80 -2.189 * 10^(18 heart rate > 110 1.518 * 10^(- 19 heart rate > 149 -3.062 * 10^(20 bilirubin 0.9763 * (bilir 21 bilirubin > 7 -0.7481 * ((bilin 7))	,
17 heart rate > 80 -2.189 * 10^((((heart rate) - 18 heart rate > 110 1.518 * 10^(- (((heart rate) - 1 19 heart rate > 149 -3.062 * 10^((((heart rate) - 1 20 bilirubin 0.9763 * (bilir 21 bilirubin > 7 -0.7481 * ((bilir 7)	
18 heart rate > 110 (((heart rate) - 1.518 * 10^()) 19 heart rate > 149 -3.062 * 10^() 20 bilirubin 0.9763 * (bilir 21 bilirubin > 7 -0.7481 * ((bilin 7))	
18 heart rate > 110 1.518 * 10^(- (((heart rate) - 1 19 heart rate > 149 -3.062 * 10^((((heart rate) - 1 20 bilirubin 0.9763 * (bilir 21 bilirubin > 7 - 0.7481 * ((bilin 7)	/
19 heart rate > 149 -3.062 * 10^((((heart rate) - 1) 20 bilirubin 0.9763 * (bilir 21 bilirubin > 7 -0.7481 * ((bilin 7)	
20 bilirubin 0.9763 * (bilir 21 bilirubin > 7 - 0.7481 * ((bilir 7) - 7) - 7)	, ,
20 bilirubin 0.9763 * (bilir 21 bilirubin > 7 - 0.7481 * ((bilin 7))	
21 bilirubin > 7 - 0.7481 * ((bilin 7)	
	ubin) -
22creatininecreatinine <= 15-6.8761 * (creatinine)	tinine)
creatinine > 15 -6.8761 * 1	15
23 creatinine > 0.600 creatinine <= 15 11.6058 * (((creating the second sec	
- 0.6) ^3)	1
creatinine > 15 11.6058 * (((15 ^3)) - 0.6)

24	(*** > 1.000	/••• _ 1 m	01 0 412 *
24	creatinine > 1.000	creatinine <= 15	-21.8413 *
			(((creatinine) - 1.0) ^3)
		(•••••••••••••••••••••••••••••••••••••	
		creatinine > 15	-21.8413 * (((15) - 1.0)
			^3)
25	creatinine > 1.500	creatinine <= 15	10.3574 * (((creatinine)
			- 1.5) ^3)
		creatinine > 15	10.3574 * (((15) - 1.5)
			^3)
26	creatinine > 5.399	creatinine <= 15	-0.1219 * (((creatinine)
			- 5.399) ^3)
		creatinine > 15	-0.1219 * (((15) - 5.399)
			^3)
27	sodium		-0.6167096 * (sodium)
28	sodium > 128		0.0021118 * (((sodium)
			- 128) ^3)
29	sodium > 135		-0.0036730 * (((sodium)
			- 135) ^3)
30	sodium > 139		0.0006126 * (((sodium)
			- 139) ^3)
31	sodium > 148		0.0009486 * (((sodium)
			- 148) ^3)
32	COPD or CHF present	albumin < 4.6	-6.278 * (albumin)
		albumin >= 4.6	-6.278 * 4.6
33	lung or colon cancer	albumin < 4.6	-11.45 * (albumin)
	present		
		albumin >= 4.6	-11.45 * 4.6
34	acute renal failure or	WBC < 8	-2.3549 * (WBC)
	multiorgan failure		
	present	WBC >= 8, < 11	-2.3549 * (WBC) +
			2.7494 (WBC - 8)
		WBC >= 11, < 40	-2.3549 * (WBC) +
			2.7494 (WBC - 8) -
			0.4638 * (WBC - 11)
		$WBC \ge 40$	-2.3549 * (40) + 2.7494
			(40 - 8) - 0.4638 * (40 -
			11)

where:

• Definitions for acute renal failure, multi-organ failure, and the other clinical conditions are available in Murphy and Cluff (1990; Chapter 3, pages 11S-28S)

- The WBC value is set to 9 if the WBC count is < 9,000 and the patient does not have ARF or MOSF. The WBC value is set to 40 if the WBC count is > 40,000.
- The creatinine value is set to 15 if creatinine is > 15.
- The value to use for the "APACHE III respiration score" is not precisely defined but is assumed to be based on the following score from APACHE III based on the respiratory rate.

respiratory rate in breaths per minute	Points
<= 5	17
6 - 11	8 if not on mechanical
	ventilation; 0 if on
	mechanical ventilation
12-13	7 (0 points if rate 12 and
	patient on mechanical
	ventilation)
14 - 24	0
25 - 34	6
35 - 39	9
40 - 49	11
>= 50	18

SUPPORT physiologic score =

= SUM (values from 34 elements listed above)

Note:

- The SUPPORT physiologic equation is copyrighted by George Washington University and cannot be used for commerical purposes without permission.
- This equation is fairly complex and confusing. Before using, verifying the assumptions and calculations are recommended.

References

Knaus WA, Harrell FE Jr, et al. The SUPPORT prognostic model. Ann Intern Med. 1995; 122: 191-203.

Murphy DJ, Cluff LE (editors). SUPPORT: Study to understand prognoses and preferences for outcomes and risks of treatment. J Clin Epidemiol. 1990; 43 (supplement): 1S-123S.

30.15 Blood Lactate and Survival

Overview:

Critically ill patients develop tissue hypoxia with lactic acidosis and high blood lactate levels. High lactate levels can correlate with the patient's prognosis.

Parameters

- lactate in mmol/L (conversion factor from mg/dL to mmol/L is 0.111)
- urine output in mL per 8 hour period

Survivor if:	False NonSurvivor	False Survivor
lactate in mmol/L <= 3.830	0.04	0.49
((5.649 * LOG10 (lactate)) - (0.0008 * (urine output))) <= 3.040	0.05	0.41
((4.592 * LOG10 (lactate)) + (1.073 * (severity rating))) <= 6.409	0.03	0.44
((4.456 * LOG10 (lactate)) - (0.0009 * (urine output))+ (1.087 * (severity rating))) <= 6.002	0.05	0.44

• qualitative severity rating, from 1 (good) to 5 (very bad)

Approximating the survival curve in Figure 7 (Weil, 1973) with JMP,

lactate in mmol/L	probability of survival =		
< 0.7	100%		
0.7 to 3.0	(0.0005149 * ((lactate)^3)) - (0.026797 *		
	((lactate) ^ 2)) + (0.0082298 * (lactate)) + 0.9992159		
3.0 to 6.0	(0.0314286* ((lactate) ^ 2)) - (0.467143 * (lactate)) + 1.9214286		
6.0 to 20	(0.0000303 * ((lactate)^4)) - (0.001872 * ((lactate)^3)) + (0.0425701 * ((lactate) ^ 2)) - (0.427473 * (lactate)) + 1.6471193		
> 20	0%		

References:

Cady LD Jr, Weil MH, et al. Quantitation of severity of critical illness with special reference to blood lactate. Crit Care Med. 1973; 1: 75-80.

Weil MH, Afifi AA. Experimental and clinical studies in lactate and pyruvate as indicators of the severity of acute criculatory failure (shock). Circulation. 1970; 41: 989-1001.

30.16 Physiology Stability Index

30.16.01 Physiologic Stability Index (PSI)

Overview:

The Physiologic Stability Index is an attempt to assess severity of acute illness in pediatric patients admitted to the ICU.

Physiologic Systems (7) and Variables (34)

- cardiovascular: systolic blood pressure, diastolic blood pressure, heart rate, cardiac index, C(a-v)O2, CVP, PCWP
- respiratory: respiratory rate, PaO2, PaO2/FIO2, PaCO2
- neurologic: Glasgow coma score, intracranial pressure, seizures, pupils
- hematologic: hemoglobin, WBC count, platelet count, PT/PTT, FSP
- renal: BUN, creatinine, urine output
- gastrointestinal: AST/ALT, amylase, total bilirubin, albumin
- metabolic: sodium, potassium, calcium, glucose, osmolality, pH, HCO3

Points for each variable

- 0, 1, 3, 5
- reflect clinical importance of derangement, with more abnormal having higher point value
- not intended to reflect magnitude of deviation from the normal value

Variable	0 points	1 points	3 points	5 points
systolic blood pressure in	•	-	-	-
mm Hg				
• infants	• 66-129	• 55-65, or	• 40-54, or >	• < 40
		130-160	160	
• children	• 66-149	• 65-75, or	• 50-74, or >	• < 50
		150-200	200	
diastolic blood pressure,	< 90	90-110	> 110	
in mm Hg				
heart rate, in beats per				
minute				
• infants	• 91-159	• 75-90, or	• 50-74, or	• < 50, or >
		160-180	181-220	220
• children	• 81-149	• 60-80, or	• 40-59, or	• < 40 or >
		150-170	171-200	200
cardiac index, in L per	> 3.0	2.0-3.0	1.0-1.9	< 1.0
min per square meter				
arterial to mixed venous	3.0-5.4	< 3.0, or	> 6.5	
oxygen content difference,		5.5-6.5		
C(a-v)O2, in ml O2 per				
dL (vol%)				
CVP, in mm Hg	0-15	< 0, or > 15		
wedge pressure, or left	5-14	< 5, or 15-	> 25	
atrial pressure, in mm Hg		25		
respiratory rate, in				
breaths per minute				
• infants	• < 50	• 50-60	• 61-90	• > 90,
				apnea
• children	• < 30	• 51-70	• 51-70	• > 70
PaO2, in mm Hg	> 50	50-60	40-49	< 40
PaO2/FIO2	> 300	200-300	< 200	

PaCO2 in mm Hg	30-44	< 30, or 45- 50	51-65	< 65
рН	7.31-7.54	7.20-7.30, or 7.55-7.65	7.10-7.19, or > 7.65	< 7.10
Glasgow Coma Score	>11	8-11	5-7	< 5
intracranial pressure, in mm Hg	< 15	15-20	21-40	> 40
seizures		focal	grand mal or status epilepticus	
pupils	equal and responsive	equal and sluggish	unequal and sluggish	fixed and dilated
hemoglobin, in g/dL	7.1-17.9	5.0-7.0, or 18.0-22.0	3.0-5.0, or 22.1-25.0	< 3.0
WBC count, per μL	5,001 - 19,999	3,000-5,000, or 20,000 - 40,000	< 3,000, or > 40,000	
platelet count, per µL	51,000 - 999,999	20,000- 50,000, or > 1 M	< 20,000	
PT/PTT ratio, relative to normal control PT/PTT	<= 1.5	> 1.5		
fibrin split products in μg/mL	<= 40	> 40		
BUN, in mg/dL	< 40	40-100	> 100	
creatinine, in mg/dL	< 2.0	2.0-10.0	> 10.0	
urine output, in mL per kg per hour	> 1.0	0.5-1.0	< 0.5	
AST / ALT, in IU/L	<= 100	> 100		
amylase, in U/L	<= 500	> 500		
total bilirubin, in mg/dL	<= 3.5	> 3.5		
serum albumin, in g/dL	> 2.0	1.2-2.0	< 1.2	
sodium, in mEq/L	126-149	115-125, or 150-160	< 115, or > 160	
potassium, in mEq/L	3.6-6.4	3.0-3.5, or 6.5-7.5	2.5-2.9, or 7.6-8.0	< 2.5, or > 8.0
calcium, in mg/dL	8.1-11.9	7.0-8.0, or 12.0-15.0	5.0=6.9, or > 15.0	< 5.0
glucose, in mg/dL	61-249	40-60, or 250-400	20-39, or > 400	< 20
osmolality, in mOsm/L	< 320	320-350	> 350	
bicarbonate, in mEq/L	16-32	< 16 or > 32		

where

- infants are all those under 1 year of age; children are all those older than 1 year of age
- AST/ALT is taken to be the ratio of the transaminases
- hypoosmolality does not seem be included for evaluation

physiologic stability index =

= SUM (points for each physiologic variable)

Interpretation

Index scores

- minimum score 0
- maximum score 119
- higher scores indicate more severe disease

Scores compared

- on day of admission
- maximum score
- 4-day average
- trend over hospital course

Trends over hospital course

- decreasing indicates improvement
- increasing indicates worsening
- unchanging

probability of mortality = = (EXP((0.277 * (4 day average PSI)) - 5.241)) / (1 + (EXP((0.277 * (4 day average PSI)) - 5.241)))

References:

- Pollack MM, Yeh TS, et al. Evaluation of pediatric intensive care. Crit Care Med. 1984; 12: 376-383.
- Pollack MM, Ruttimann UE, et al. Accurate prediction of the outcome of pediatric intensive care. N Eng J Med. 1987; 316: 134-139.
- Yeh TS, Pollack MM, et al. Validation of a physiologic stability index for use in critically ill infants and children. Pediatric Res. 1984; 18: 445-451.

30.16.02 PSI/TISS Ratio

Overview:

The Physiologic Stability Index (PSI) measures severity of illness, while the Therapeutic Intervention Scoring System (TISS) measures quantity of care. The ratio of the two relates the level of physiologic instability to amount of therapy required. Analysis of the ratio over time can show differences not apparent by analysis of the PSI or TISS alone. The ratio can be used to evaluate pediatric intensive care units.

The patients studied were classified by the Clinical Classification System:

- Class III (physiologically stable, requires intensive nursing and monitoring)
- Class IV (physiologically unstable, requires intensive nursing and physician care, with frequent patient assessment and therapy adjustment)

Admission service

- medicine
- cardiovascular surgery
- non-cardiovascular surgery

PSI/TISS ratio =

= (PSI) / (TISS)

Interpretation

- Survivors tend to have lower ratios than nonsurvivors.
- Patients on the different services differ in the ratios seen, with highest ratios seen on medical services and lowest on the cardiovascular surgery service

PSI/TISS ratio at admission	Survivors	Nonsurvivors
medicine	0.40 +/- 0.03	0.57 +/- 0.05
cardiovascular surgery	0.18 +/- 0.01	0.33 +/- 0.05
other surgery	0.33 +/- 0.04	0.52 +/- 0.10

When the ratio is plotted over time, the slope of the line correlates with survival or nonsurvival.

Trend analysis over time	Survivor	Nonsurvivor
PSI	negative slope	zero or positive slope (except cardiovascular surgery)
TISS	negative slope	zero or positive slope
PSI/TISS, medicine	zero slope	zero slope
PSI/TISS, cardiovascular surgery	positive slope	negative slope
PSI/TISS, non- cardiovascular surgery	negative slope	positive slope

References:

Pollack MM, Yeh TS, et al. Evaluation of pediatric intensive care. Crit Care Med. 1984; 12: 376-383.

30.17 PRISM Scores

30.17.01 Pediatric Risk of Mortality (PRISM) Score

Overview:

Pediatric risk of mortality (PRISM) score allows for mortality risk assessment in the pediatric ICU. It was developed from the Physiologic Stability Index (PSI), but is intended to be not only simpler but also more objective in its use of physiologic variables. It is institution independent and can be used within limits to compare different intensive care units.

Parameter	Age Limit	Ranges	Points
systolic blood pressure in	infants	130-160	2
mm Hg			
		55-65	2
		> 160	6
		40-54	6
		< 40	7
	children	150-200	2
		65-75	2
		> 200	6
		50-64	6
		< 50	7
diastolic blood pressure in	all ages	> 110 mm Hg	6
mm Hg			
heart rate in beats per minute	infants	> 160	4
		< 90	4
	children	> 150	4
		< 80	4
respiratory rate in	infants	61-90	1
breaths per minute			
		> 90	5
		apnea	5
	children	51-70	1
		> 70	5
		apnea	5
PaO2/FIO2	all ages	200-300	2
		< 200	3
PaCO2 in torr (mm Hg)	all ages	51-65	1
		> 65	5
Glasgow coma score	all ages	< 8	6
pupillary reactions	all ages	unequal or	4
		dilated	
		fixed and	10

		dilated	
PT/PTT	all ages	1.5 times	2
	_	control	
total bilirubin in mg/dL	>1 month	> 3.5	6
potassium in mEq/L	all ages	3.0-3.5	1
		6.5-7.5	1
		< 3.0	5
		> 7.5	5
calcium in mg/dL	all ages	7.0-8.0	2
		12.0-15.0	2
		< 7.0	6
		> 15.0	6
glucose in mg/dL	all ages	40-60	4
		250-400	4
		< 40	8
		> 400	8
bicarbonate in mEq/L	all ages	< 16	3
		> 32	3

where:

• infants: 0-1 years of age

PRISM score =

= (systolic blood pressure points) + (diastolic blood pressure points) + (heart rate points) + (respiratory rate points) + (oxygenation points) + (glasgow coma score points) + (pupillary reaction points) + (coagulation points) + (bilirubin points) + (potassium points) + (calcium points) + (glucose points) + (bicarbonate points)

Interpretation

• maximum score 76, which is almost invariably associated with death

• minimum score 0, which has an excellent prognosis

Prediction of Mortality in ICU

```
R =
```

= (0.207 * (PRISM score)) - (0.005 * (age in months)) - (0.433 * (operative status)) - 4.782

where:

• operative status = 1 if postoperative or = 0 if nonoperative

• upper limit for age used in implementation will be 19th birthday

probability of mortality in the ICU = = EXP(R) / (1 + EXP(R)) probability of survival from the ICU = = 1 - (probability of mortality)

Assessment

- sensitivity: correct prediction of nonsurvival
- specificity: correct prediction of survival

Limitations:

• The PRISM score underpredicts deaths after cardiac surgery.

References:

Balakrishnan G, Aitchison T, et al. Prospective evaluation of the Pediatric Risk of Mortality (PRISM) score. Arch Dis Child. 1992; 67: 196-200.

Pollack MM, Ruttimann UE, et al. Accurate prediction of the outcome of pediatric intensive care. N Eng J Med. 1987; 316: 134-139.

- Pollack MM, Ruttimann UE, Getson PR. Pediatric risk of mortality score. Crit Care Med. 1988; 16: 1110-1116.
- Pollack MM. Chapter 199: Evaluating pediatric intensive care units. pages 1788-1792. IN: Ayres SM, et al. Textbook of Critical Care, Third Edition. W.B. Saunders Company. 1995.

30.17.02 Dynamic Objective Risk Assessment (DORA) Score

Overview:

The Dynamic Objective Risk Assessment (DORA) Score uses the PRISM scores for a patient's admission to predict the patient's risk of mortality in the next 24 hours.

If PRISM scores were determined upon admission and during the time in the ICU, then

DORA score = = (0.154 * (PRISM score from previous day)) + (0.053 * (PRISM score on day of admission to ICU)) - (6.791)

On the second day in the ICU, the previous day and the day of admission are the same. The equation then is:

DORA score = = (0.160 * (PRISM score on admission)) - (6.427)

probability of mortality within the next 24 hours = = EXP(DORA score) / (1 + EXP(DORA score))

References:

- Heard CMB, Fletcher JE, Papo MC. A report of the use of the Dynamic Objective Risk Assessment (DORA) score in the changing pediatric intensive care environment. Crit Care Med. 1998; 26: 1593-1595.
- Ruttimann UE, Pollack MM. Objective assessment of the changing mortality risks in pediatric intensive care unit patients. Crit Care Med. 1991; 19: 474-483.

30.17.03 PRISM III Score

Overview:

The PRISM III score is an improved version of the PRISM score developed at the Children's National Medical Center in Washington, DC based on data collected at 32 pediatric intensive care units using 11,165 admissions.

Age groups recognized:

- neonate: 0 to < 1 month
- infant: 1 month to 12 months
- child: > 12 months to 144 months (12 years)
- adolescent: > 144 months (12 years)

Subscores:

(1) cardiovascular and neurologic vital signs: 5 measures

(2) acid-base and blood gas: 5 measures

(3) chemistry tests: 4 measures

(4) hematology tests: 3 measures (with PT and PTT counted as one)

Grading variables

• Use the highest and/or lowest values for scoring.

Cardiovascular and	Findings	Points
Neurologic Vital Signs		
systolic blood pressure	neonate AND > 55 mm Hg	0
	neonate AND 40 -55 mm Hg	3
	neonate AND < 40 mm Hg	7
	infant AND > 65 mm Hg	0
	infant AND 45 -65 mm Hg	3
	infant AND < 45 mm Hg	7
	child AND > 75 mm Hg	0
	child AND 55 -75 mm Hg	3
	child AND < 55 mm Hg	7
	adolescent AND > 85 mm Hg	0
	adolescent AND 65 -85 mm Hg	3
	adolescent AND < 65 mm Hg	7
heart rate	neonate AND < 215 beats/minute	0
	neonate AND 215 - 225 bpm	3
	neonate AND > 225 beats/minute	4

	infant AND < 215 beats/minute	0
	infant AND 215 - 225 bpm	3
	infant AND > 225 beats/minute	4
	child AND < 185 beats/minute	0
	child AND 185 - 205 bpm	3
	child AND > 205 beats/minute	4
	adolescent AND < 145 beats/minute	0
	adolescent AND 145 - 155 bpm	3
	adolescent AND > 155 beats/minute	4
temperature	<33°C	3
	33 - 40°C	0
	> 40°C	3
mental status	Glasgow coma score >= 8	0
	Glasgow coma score < 8	5
pupillary response	both reactive	0
	1 reactive AND (1 fixed AND > 3 mm)	7
	both fixed AND both > 3 mm	11

where:

- The heart rate should not be monitored during crying or iatrogenic agitation.
- Pupillary size should not be assessed after iatrogenic dilatation.
- Body temperature may be rectal, oral, axillary or blood.
- Mental status should not be scored within 2 hours of sedation, paralysis or anesthesia. If sedation, paralysis or anesthesia is continuous, score based status prior to sedation, paralysis or anesthesia.

Acid-Base and Blood Gases	Findings	Points
acidosis	pH > 7.28 AND total CO2 >= 17 mEq/L	0
	(pH 7.0 - 7.28) OR (total CO2 5 - 16.9	2
	mEq/L)	
	pH < 7.0 OR total CO2 < 5	6
рН	< 7.48	0
	7.48 - 7.55	2
	> 7.55	3
PCO2	< 50 mm Hg	0
	50 - 75 mm Hg	1
	> 75 mm Hg	3
total CO2	<= 34 mEq/L	0
	> 34 mEq/L	4
PaO2	>= 50 mm Hg	0
	42.0 - 49.9 mm Hg	3
	< 42 mm Hg	6

where:

• PaO2 requires arterial blood.

• PCO2 can be measured from arterial, venous or capillary specimens.

Chemistry Tests	Findings	Points
glucose	<= 200 mg/dL	0
	> 200 mg/dL	2
potassium	<= 6.9 mEq/L	0
	> 6.9 mEq/L	3
creatinine	neonate AND <= 0.85 mg/dL	0
	neonate AND > 0.85 mg/dL	2
	infant AND <= 0.90 mg/dL	0
	infant AND > 0.90 mg/dL	2
	child AND <= 0.90 mg/dL	0
	child AND > 0.90 mg/dL	2
	adolescent AND <= 1.30mg/dL	0
	adolescent AND > 1.30 mg/dL	2
BUN	neonate AND <= 11.9 mg/dL	0
	neonate AND > 11.9 mg/dL	3
	not neonate AND <= 14.9 mg/dL	0
	not neonate AND > 14.9 mg/dL	3

where:

• whole blood measurements for glucose are increased 10% over serum; for potassium 0.4 mEq/L

Hematologic Tests	Findings	Points
white blood cell count	>= 3,000 per μL	0
	< 3,000 per μL	4
platelet count	> 200,000 per μL	0
	100,000 - 200,000 per µL	2
	50,000 - 99,999 per μL	4
	< 50,000 per μL	5
PT and PTT	neonate AND PT <= 21 seconds AND	0
	PTT <= 85 seconds	
	neonate AND (PT > 22 seconds OR	3
	neonate and PTT > 85 seconds)	
	not neonate AND PT <= 21 seconds	0
	AND PTT <= 57 seconds	
	not neonate AND (PT > 22 seconds OR	3
	PTT > 57 seconds)	

Other factors to document:

- nonoperative cardiovascular disease
- chromosomal anomaly

- cancer
- previous ICU admission during current admission
- pre-ICU CPR during current admission
- post-operative (not including catheterizations) during past 24 hours
- acute diabetes with ketoacidosis or other severe complication
- admission from inpatient unit (do not count if in ICU for < 2 hours or if transferred from surgical recovery room)

cardiovascular and neurologic subscore = = (points for systolic pressure) + (points for temperature) + (points for mental status)+ (points for heart rate) + (points for pupillary reflex)

```
acid-base and blood gas subscore =
= (points for acidosis) + (points for pH) + (points for PaCO2)+ (points for total CO2)
+ (points for PaO2)
```

chemistry subscore = = (points for glucose) + (points for potassium) + (points for creatinine)+ (points for blood urea nitrogen)

hematology subscore = = (points for WBC count) + (points for platelet count) + (points for PT and PTT testing)

total PRISM III score = = (cardiovascular and neurologic subscore) + (acid base and blood gas subscore) + (chemistry subscore)+ (hematology subscore)

Interpretation:

- minimum subscore and total score: 0
- maximum cardiovascular and neurologic subscore: 30
- maximum acid-base and blood gas subscore: 22
- maximum chemistry subscore: 10
- maximum hematology subscore: 12
- maximum total PRISM III score: 74
- The higher the total score, the worse the prognosis.
- A rising score indicates deterioration.
- If performed during the first 12 hours in the ICU, the score is designated PRISM-12.
- If performed during the first 24 hours in the ICU, it is designated PRISM-24.

Predictive equations

- Predictive equations for prognosis are available for the 12 hour and 24 hour scores.
- The equations for predicting prognosis from total score are patented and unpublished but can be obtained for research purposes from the authors.

References:

Pollack MM, Patel KM, Ruttimann UE. PRISM III: An updated Pediatric Risk of Mortality score. Crit Care Med. 1996; 24: 743-752.

30.18 Score for Neonatal Acute Physiology (SNAP)

30.18.01 Score for Neonatal Acute Physiology (SNAP) Determination

Overview:

The Score for Neonatal Acute Physiology (SNAP) is a illness severity measure which can be used to compare outcomes of care in different neonatal intensive care units. It scores the worst physiologic derangement in each organ system for the first 24 hours after admission to the NICU.

	1 point	3 point	5 point
mean blood pressure, maximum, in mm Hg	66-80	81-100	> 100
mean blood pressure, minimum, in mm Hg	30-35	20-29	< 20
heart rate, maximum, in beats per minute	180-200	201-250	> 250
heart rate, minimum, in beats per minute	80-90	40-79	< 40
respiratory rate, in breaths per minute	60-100	> 100	
temperature in °F	95-96	92-94.9	< 92
PaO2 in mm Hg	50-65	30-50	< 30
PaO2/FIO2, with FIO2 as a percent	2.5-3.5	0.3-2.49	< 0.3
PaCO2 in mm Hg	50-65	66-90	> 90
oxygenation index	0.07-0.20	0.21-0.40	> 0.40
hematocrit, maximum, as percent	66-70	> 70	
hematocrit, minimum, as percent	30-35	20-29	< 20
white blood cell count, per µL	2,000 - 5,000	< 2,000	
immature-to- total neutrophil ratio	> 0.21		
absolute neutrophil count (percent neutrophils * WBC)	500-999	< 500	
platelet count, per µL	30,000 - 100,000	< 30,000	
blood urea nitrogen, in mg/dL	40-80	> 80	
creatinine, in mg/dL	1.2-2.4	2.5-4.0	> 4.0
urine output in mL per kilogram per hour	0.5-0.9	0.1-0.49	< 0.1

	1		
indirect bilirubin in mg/dL if	15-20	> 20	
birthweight > 2 kg			
indirect bilirubin in mg/dL/kg if	5-10	> 10	
birthweight <= 2 kg			
direct bilirubin, in mg/dL	>= 2.0		
sodium, maximum, in mEq/L	150-160	161-180	> 180
sodium, minimum, in mEq/L	120-130	< 120	
potassium, maximum, in mEq/L	6.6-7.5	7.6-9.0	> 9.0
potassium, minimum, in mEq/L	2.0-2.9	< 2.0	
total calcium, maximum, in	>= 12		
mg/dL			
total calcium, minimum, in	5.0-6.9	< 5.0	
mg/dL			
ionized calcium, maximum, in	>= 1.4		
mg/dL			
ionized calcium, minimum, in	0.8-1.0	< 0.8	
mg/dL			
glucose, maximum, in mg/dL	150-250	>= 250	
glucose, minimum, in mg/dL	30-40	< 30	
serum bicarbonate, maximum, in	>= 33		
mEq/L			
serum bicarbonate, minimum, in	11-15	<= 10	
mEq/L			
serum pH	7.20-7.30	7.10-7.19	< 7.10
seizures	single	multiple	
apnea	responsive	unrespon-	complete
	to	sive to	apnea
	stimulation	stimulation	
stool guiac	positive		

where

- mean blood pressure = ((systolic blood pressure) + (2 * (diastolic blood pressure))) / 3
- immature-to-total neutrophil ratio is the (summation of promyelocytes + myelocytes + metamyelocytes + bands-stabs) divided by (total neutrophils)
- for indirect bilirubin, only one value is entered based on body weight
- for total calcium and ionized calcium, only one value is returned for high or low (total and ionized "mutually exclusive")
- oxygenation index = ((mean airway pressure) * (FIO2) * 100) / (PaO2)

Limitations

• The immature-to-total neutrophil ratio assumes that the findings are consequent to a left shift in neutrophilia and that there is no leukemia.

Interpretation

- maximum score 127 (16 at 5 points, 14 at 3 points, and 5 at 1 point)
- since 9 of the parameters involve high range (total 29) and low range (total 33), and since most patients will normally meet one of these extremes, the practical maximum score is around 103 (maximum value for each parameter pair)

References:

- Gray JE, Richardson DK, et al. Score for Neonatal Acute Physiology (SNAP) and risk of intraventricular hemorrhage (abstract). Ped Research. 1992; 31: 249A.
- Richardson DK, Gray JE, et al. Score for Neonatal Acute Physiology: A physiologic severity index for neonatal intensive care. Pediatrics. 1993; 91: 617-623.
- Richardson DK, Phibbs CS, et al. Birth weight and illness severity: Independent predictors of neonatal mortality. Pediatrics. 1993; 91: 969-975.
- Rodwell RL, Leslie AL, Tudehope DI. Early diagnosis of neonatal sepsis using a hematologic scoring system. J Pediatr. 1988; 112: 761-767.
- Samaik AP, Meert KL, et al. Predicting outcome in children with severe acute respiratory failure with high-frequency ventilation. Crit Care Med. 1996; 24: 1396-1402.
- Seebach JD, Morant R, et al. The diagnostic value of the neutrophil left shift in predicting inflammatory and infectious disease. Am J Clin Pathol. 1997; 107: 582-591.

30.18.02 Score for Neonatal Acute Physiology Perinatal Extension (SNAP-PE)

Overview:

The Score for Neonatal Acute Physiology Perinatal Extension (SNAP-PE) extends the SNAP score by the addition of birthweight and Apgar score information.

Parameter	Finding	Points
SNAP score for 1st 24		SNAP score
hours after NICU admit		
birthweight	< 749 grams	30
	750-999 grams	10
	>= 1000 grams	0
Apgar score at 5 minutes	< 7	10
	> = 7	0
small for gestational age	< 5th%	5
	> 5th%	0

Bodyweight Small for Gestional Age

equation for determining if small for gestational age

weight at 5th% for body weight =

= (-0.06217 * ((week gestation) ^ 4)) + (7.585979 * ((week gestation) ^ 3)) - (337.3942 * ((week gestation) ^ 2)) + (6583.4774 * (week gestation)) - 47312.4

where • week of gestation is weeks since last menstrual period

NOTE: This equation is for Caucasian infants. Equations for other races will be needed.

SNAP-PE	mortality, all birth weights	mortality with birthweight <1500	mortality with birthweight >=
		grams	1500 grams
0-9	0%	0%	0%
10-19	1.2%	0.9%	1.3%
20-29	12%	14%	11%
30-39	35%	38%	32%
40-49	52%	52%	50%
50-59	47%	44%	100% (N=1)
60-69	63%	63%	
>= 70	75%	75%	

Mortality Based on SNAP-PE Information

References:

Richardson DK, Gray JE, et al. Score for Neonatal Acute Physiology: A physiologic severity index for neonatal intensive care. Pediatrics. 1993; 91: 617-623.

Richardson DK, Phibbs CS, et al. Birth weight and illness severity: Independent predictors of neonatal mortality. Pediatrics. 1993; 91: 969-975.

Usher R, McLean F. Intrauterine growth of live-born Caucasian infants at sea level: Standards obtained from measurements in 7 dimensions of infants born between 25 and 44 weeks of gestation. J Pediatrics. 1969; 74: 901-910.

30.18.03 SNAP and Mortality Risk

Overview:

From the SNAP score and data incluced in the Perinatal Extension, it is possible to calculate the expected mortality risk for neonates in the NICU.

```
logit =
```

= -14.6889 + (8.6774 * (1/ (birthweight in kilograms))) + (1.4414 * (1 if Apgar at 5 minutes < 7, 0 if Apgar >= 7) + (1.0898 * (1 if <5th% for gestational age, 0 if >= 5th% for gestational age) + (0.7422 * (SNAP) * (1 if SNAP <= 15, 0 if SNAP > 15)) + (0.6251 * (SNAP) * (1 if SNAP >= 16 and <=20, 0 if SNAP < 16 or > 20)) + (0.4674 * (SNAP) * (1 if SNAP >= 21 and <=27, 0 if SNAP < 21 or > 27)) + (0.4073 * (SNAP) * (1 if SNAP >= 28, 0 if SNAP < 28)) -(0.5429 * (SNAP/birthweight) * (1 if SNAP <= 15, 0 if SNAP > 15)) -

```
(0.4088 * (SNAP/birthweight) * (1 if SNAP >= 16 and <=20, 0 if SNAP < 16 or >
20)) -
(0.2809 * (SNAP/birthweight) * (1 if SNAP >= 21 and <=27, 0 if SNAP < 21 or >
27)) -
(0.2399 * (SNAP/birthweight) * (1 if SNAP >= 28, 0 if SNAP < 28 ))
```

risk of mortality = = EXP(logit) / (1 + EXP(logit))

chance for survival = = 1 - (risk of mortality)

References:

Richardson DK, Gray JE, et al. Score for Neonatal Acute Physiology: A physiologic severity index for neonatal intensive care. Pediatrics. 1993; 91: 617-623.

Richardson DK, Phibbs CS, et al. Birth weight and illness severity: Independent predictors of neonatal mortality. Pediatrics. 1993; 91: 969-975.

30.19 Acute Physiologic Score for Children (APSC)

Overview:

The Acute Physiologic Score for Children (APSC) can be used to clinically evaluate critically ill infants and children.

Scoring

- The APSC is based on a scale of 0-4 with a more abnormal result given a higher point value.
- Points are assigned for physiologic, chronic health and operative status.
- The physiologic status uses 17 variables to cover 7 organ systems.
- The APSC is calculated at admission, and then 24, 48, and 96 hours after admission to the instensive care unit

Data Collection

- The most abnormal recorded value in each parameter within the first 4 hours after admission is used for the admission calculation.
- The most abnormal recorded value in each parameter during the 24 hours is used for the 24, 48 and 96 hour calculations.

		Points				
Parameter	Age	0	1	2	3	4
temperature in		36.0 -	34.0-	32.0-33.9	30.0-	< 30;
°C		38.4	35.9;		31.9;	> 41
			38.5-38.9		39.0-41	
heart rate per	<1 mo	100-180		80-99;	60-79;	< 60;

Physiologic Points

		1	r	1		
minute				181-200	201-220	> 220
	<1 year	80-160		65-79;	50-64;	< 50;
				161-180	181-200	> 200
	1-5 yr	75-130		60-74;	45-59;	< 45 ;
				131-160	161-190	> 190
	> 5 yr	70-120		55-69;	40-54;	< 40;
				121-150	151-180	> 180
systolic blood	< 1 mo	50-100		35-49;		< 35;
pressure in				101-120		> 120
mm Hg						
	<1 year	60-120		45-59;		< 45 ;
				121-150		> 150
	1-5 yr	70-140		50-69;		<50;
				141-160		> 160
	> 5 yr	75-150		55-74;		< 55;
				151-180		> 180
respiratory	< 1 mo	40-60	21-39;	15-20	76-100	< 15;
rate			61-75			> 100
	<1 year	25-40	16-24;	12-15	66-90	<12;
			41-65			> 90
	1-5 yr	20-30	16-19;	10-15	51-75	< 10;
			31-50			> 75
	> 5 yr	15-25	11-14;	8-10	41-65	< 8 ;
			26-40			> 65
CPAP or						Yes
ventilation						
(PaO2 in mm			200- 249	150-199	100-149	< 100
Hg) / FIO2						
urine output in		1.0-2.0	0.5 -	0.3-0.49;	0.15-0.29	< 0.15
mL/kg/h			0.99;	> 3.0		
			2.01-3.0			
serum		< 1.0	1.0-1.5	1.51-2.0	2.01-3.5	> 3.5
creatinine in						
mg/dL						
bilirubin in		< 1.0	1.0-2.0	2.01-3.0	3.01-5.0	> 5.0
mg/dL						
serum sodium		130-150	151-155	120-129;	110-119;	< 110;
in mEq/L				156-160	161-180	> 180
serum		3.5-5.5	3.0-3.49;	2.5-2.99	6.01-7.0	< 2.5;
potassium in			5.51-6.0			> 7.0
mEq/L				0.0.10		• •
blood glucose		70-200	50-69;	30-49;	501-800	< 30;
in mg/dL			201-350	351-500	— <i>i</i> –	> 800
arterial pH		7.33-7.50	7.51-7.6	7.25-7.32	7.15-	< 7.15;
					7.24;	> 7.70
					7.61-7.7	

hematocrit in		30-45	25-29;	20-24;		< 20;
percent			46-50	51-60		> 60
	1 week	30-45	25-29;	20-24;		< 20;
			46-50	51-70		> 70
leukocytes in		3.0-15.0	15.1-20.0	1.0-2.9;		<1;
1000/µL				20.1-40		> 40
platelets in		100-400	50-99;	20-49;	5-19	< 5
- 1000/μL			400-1000	> 1000		
Glasgow coma		13-15	10-12	7-9	4-6	3
score						

where

- data for scoring respiratory rates in the following groups was absent in the source reference (< 1 month, 21-39; < 1 year, 16-24; 1-5 years, 16-19; > 5 years, 11-14); data assigned based on gaps in existing data in table
- data for scoring hematocrit scores at 1 week of age sketchy in reference
- data for scoring platelet counts from 400,000-1,000,000 absent in source reference; value used inferred

Chronic Health Care Points

Organ	Condition	Points
cardiovascular	chronic heart failure on anticongestive	1
	therapy	
respiratory	chronic obstructive or restrictive lung	1
	disease with exercise restriction	
renal	receiving chronic dialysis	1
liver	liver cirrhosis	1
hematology-immunology	patients with congenital or acquired	1
	immunosuppression; tumor patients	

Operative Status Points

	Points
emergency post-operative patients	5
elective post-operative patients	2

Calculation

acute physiologic score for children =

= (physiologic points) + (chronic health care points) + (operative status points)

Interpretation

• nonsurvivors tended to have higher APSC scores on admission than survivors

References:

Zobel G, Kuttnig M, et al. Evaluation of clinical scoring systems in critically ill infants and children. Clin Intens Care. 1990; 1: 202-206.

30.20 Prediction of Seizures in ICU Patients with Gram-negative Infections

Overview:

The risk for developing seizures in Intensive Care Unit (ICU) patients with Gramnegative infections can be estimated using an additive predictive risk index.

Population

- ICU patients with serious Gram-negative infections
- seizures were divided into early onset (within 48 hours of ICU admission) and late onset

Derivation of clinical risk score

- factors identified by multiple logistic regression
- the weight assigned is based on rounding the regression coefficient to the nearest integer

History	Factor	Weight
history before admission	prior history of seizures	2
	any previous or current CNS tumors	4
concurrent factors before onset of seizure	acute stroke, intracranial hemorrhage, CNS surgery or CNS infection during or within 1 month before hospitalization	
	_	3
	coma or anoxic encephalopathy while in the ICU	1
	renal impairment (serum creatinine > 1.6 mg/dL, or dialysis)	2
	acute hypotensive episode while in the ICU	1

clinical risk score =

= SUM(weights present)

Interpretation

- minimum clinical risk score = 0
- maximum clinical risk score = 13
- clinical risk score <=2 indicates low risk for seizures
- clinical risk score >= 3 indicates a high risk for seizures

References:

Guess HA, Resseguie LJ, et al. Factors predictive of seizures among intensive care unit patients with Gram-negative infections. Epilepsia. 1990; 31: 567-573.

30.21 A 24 Hour ICU Point System for Prediction of Outcome in Trauma Patients

Overview:

A 24 hour point system for trauma patients in the Intensive Care Unit (ICU) can be used to predict outcome.

Parameters

(1) neurologic (brain injury and Glasgow Coma Scale)

(2) pulmonary (ventilation and PaO2/FIO2 index)

(3) cardiovascular (24 hour fluid balance)

Parameter	Finding	Points
neurologic	no brain injury	0
	brain injury and Glasgow Coma Scale 13-15	0
	brain injury and Glasgow Coma Scale 9-12	1
	brain injury and Glasgow Coma Scale 6-8	2
	brain injury and Glasgow Coma Scale 4-5	3
	brain injury and Glasgow Coma Scale 3	4
pulmonary	extubated	0
	intubated with PaO2/FIO2 >= 325	0
	intubated with PaO2/FIO2 225-324	1
	intubated with PaO2/FIO2 175-224	2
	intubated with PaO2/FIO2 125-174	3
	intubated with PaO2/FIO2 < 125	4
cardiovascular (24 hour ICU fluid balance)	fluid balance < 3 L	0
	fluid balance >= 3 L	4

24 hour ICU score =

= (neurologic points) + (pulmonary points) + (cardiovascular points)

Interpretation

- minimum score 0
- maximum score 12
- The higher the score, the worse the prognosis.

24 hour ICU score	estimated mortality
0-1	2%
2-3	18%
4-5	22%
6-7	32%

8-9	84%
10-11	96%
12	98%

(after Figure 2, page 493)

Probability of Mortality

regression equation = = (-3.900) + (0.911 * (neurologic points)) + (0.588 * (pulmonary points)) + (0.468 * (cardiovascular points))

probability of death =
= 1 / (1 + EXP ((-1) * (regression equation)))

NOTE: In the paper the equation is given as (page 492):

probability of death = 1 - (probability equation above)

but when data is applied, this gives results hard to understand. For example, a patient with no brain injury, intubated with an index > 325 and fluid balance < 3 liters (all scores 0) would have a survival rate of 2% and mortality rate of 98%, which seems the opposite of the intuitive prediction.

References:

- Vassar MJ, Wilerson CL, et al. Comparison of APACHE II, TRISS, and a proposed 24-hour ICU point system for prediction of outcome in ICU trauma patients. J Trauma. 1992; 32: 490-500.
- **30.22** Hypotension Score for Predicting Outcome in Critically III Patients with Unexplained Hypotension

Overview:

The Hypotension Score can be used to predict the mortality rate for critically ill patients with sustained, unexplained hypotension.

Patient population

- 101 adults admitted to the ICU of an academic medical center (UCSF)
- hypotension lasting > 60 minutes which was unexplained

Parameters

- (1) number of days from time of admission to onset of hypotension
- (2) APACHE II score at the onset of hypotension
- (3) reason for hospital admission

hypotension score =

= (number of days from hospital admission to onset of hypotension) + (1.5 * (APACHE II score)) + (20 * (admission value))

where

• admission value = 0 if admitted for surgery or for treatment of malignancy, else 1

Interpretation

- The values can range widely depending on the number of days and the APACHE II scores (range of values 0 to 71).
- minimum score: theoretically 0
- maximum score: dependent on number of days. It could be 156 for a 30 day interval, which would be a relatively long admission by today's standards.

Hypotension Score	Mortality Rate
< 40	7%
40 - 64	70%
>= 65	92%

References:

Heidenreich PA, Foster E, Cohen NH. Prediction of outcome for critically ill patients with unexplained hypotension. Crit Care Med. 1996; 24: 1835-1840.

30.23 Predictors of Early After-Discharge Mortality in ICU Patients

Overview:

Patients discharged from the intensive care unit (ICU) can have a high early afterdischarge mortality (EADM). Latour et al developed an equation which can be used to identify a group of patients at high risk (21-46%) for early death after discharge from the ICU.

Population

• 700 patients older than 14 years discharged from ICUs at 3 hospitals in Valencia, Spain, during the period of January 1986 to May 1987.

Parameters found predictive of outcome

(1) age

- (2) days in the ICU
- (3) number of organ system failures
- (4) SAPS score in the first hour after admission to the ICU

Parameter	beta	Finding	Value
age	-0.633	<= 65	- 1
		>= 66	+ 1
days in ICU	-0.415	<= 9	- 1
		>= 10	+ 1
organ system failure	-0.423	none	- 1

		>= 1	+ 1
SAPS	-0.822	<= 10	- 1
		>=11	+ 1

X =

= 2.08 - (0.822 * (SAPS value)) - (0.423 * (organ system failure value)) - (0.415 * (days in ICU value)) - (0.633 * (age value))

probability of early death within 2 months after discharge from the ICU = = 1 / (1 + EXP(X))

Interpretation

- The minimum mortality rate is about 1% with all favorable parameters.
- The maximum mortality rate is about 56% with all unfavorable parameters.
- The authors found that the equation was not suitable to make predictions in the individual patient since the variables had a low predictive value. However, it did allow identification of a high risk group of patients who might benefit from more intensive care.
- Patients with an initial SAPs score >= 11 had a 6-fold greater risk of dying in the immediate post-ICU period than those with a score <= 10.
- Note: On page 126, ln (p / (1 p)) = X. If this is rearranged, p = 1 / (1 + EXP(-X)), not 1 / (1 + EXP(X)) as given. Since (1 / (1 + EXP(-X))) + (1 / (1 + EXP(X))) = 1, one value is the probability of death and the other is the probability of survival. I have elected to go with the example given at the bottom of the page.

References:

```
Latour J, Lopez-Camps V, et al. Predictors of death following ICU discharge.
Intensive Care Med. 1990; 16: 125-127.
```

30.24 Multiple Organ System Failure Score of Tran et al

Overview:

Tran et al developed a scoring system for multiple organ failure developing in patients receiving intensive care.

Organ systems: 7 evaluated (1) cardiovascular (2) pulmonary (3) renal (4) hepatic (5) hematologic (6) gastrointestinal (7) neurologic

cardiovascular	 mean arterial pressure > 70 mm Hg heart rate > 70 beats per minute 	0
	mean arterial pressure 51-70 mm Hg heart rate 51 - 70 beats per minute	1
	ventricular tachycardia	
	• mean arterial pressure <= 50 mm Hg	2
	• heart rate <= 50 beats per minute	
	• need for inotropic agents	
	• ventricular fibrillation	
	• cardiac arrest	
	acute myocardial infarction	0
pulmonary	• PEEP <= 4 cm H2O	0
	• FIO2 <= 0.3	
	respiratory rate 12-24 per minute	- 1
	• PEEP 5 - 9 cm H2O	1
	• FIO2 > 0.3 and <= 0.4	
	• respiratory rate 6-11 per minute, or	
	25-49 per minute	2
	• PEEP >= 10 cm H2O	2
	• FIO2 > 0.4	
	• respiratory rate <= 5 per minute or >=	
vanal	50 per minute	0
renal	serum creatinine <= 2.0 mg/dL serum creatinine > 2.0 and <= 3.5	<u>0</u> 1
	mg/dL	1
	• serum creatinine > 3.5 mg/dL	2
	 chronic renal insufficiency 	
	• acute renal replacement therapy	
hepatic	• bilirubin <= 2.0 mg/dL • AST <= 25 U/L	0
	• bilirubin > 2.0 and <= 3.0 mg/dL	1
	• AST > 25 and <= 50 U/L	
	• bilirubin > 3.0 mg/dL	2
	• AST > 50 U/L	
	• hepatic encephalopathy	
hematologic	• hematocrit >= 30%	0
	• WBC count >= 3,000 per μL	
	 platelet count > 100,000 per μL 	
	hematocrit 21-29%	1
	• WBC count 290 - 3,000 per µL	
	• platelet count 51,000 - 100,000 per µL	
	• hematocrit <= 20%	2
	• WBC count < 300 per μL	
	• platelet count <= 50,000 per μL	
	• DIC	
gastrointestinal	normal functioning	0

	 acalculous cholecystitis; stress ulcer not requiring blood transfusion 	1
	 bleeding from stress ulcer requiring > 2 units of blood in 24 hours; necrotizing colitis; necrotizing pancreatitis; perforation of viscus or gallbladder 	2
neurologic	Glasgow coma score 13-15	0
	Glasgow coma score 7-12	1
	Glasgow coma score <= 6	2

(Table I, page 22)

where

- mean arterial pressure = ((2 * (diastolic pressure)) + (systolic pressure)) / 3
- "acute renal replacement therapy" I infer to mean dialysis
- The WBC count entry in original tables says that a score of 2 is assigned if the WBC <= 3,000 per μL, which overlaps with the assignment for a score of 1.

MOSF score =

= SUM(score for all 7 organ systems)

Interpretation

- minimum score: 0
- maximum score: 14

• The higher the MOSF score, the higher the mortality rate.

According to Figure 4, page 28:

estimated mortality in percent = = (8.18 * (MOSF score)) - 18.86

References:

Tran DD, Cuesta MA, et al. Risk factors for multiple organ system failure and death in critically injured patients. Surgery. 1993; 114: 21-30.

30.25 Nine Equivalents of Nursing Manpower Use Score

Overview:

The Nine Equivalents of Nursing Manpower Use Score (NEMS) is a simplified version of the TISS-28 which can be used in the intensive care unit (ICU) to measure nursing workload. Its development was supported by the Foundation for Research on Intensive Care in Europe and tested in the ICUs of 11 European countries.

Γ	No.	Item	Points
ſ	1	basic monitoring (hourly vital signs, regular record	9

	and calculation of fluid balance)	
2	intravenous medications (bolus or continuous	6
	infusion, not including vasoactive drugs)	
3	mechanical ventilatory support (any form of	12
	mechanical or assisted ventilation, with or without	
	PEEP, with or without muscle relaxants)	
4	supplementary ventilatory care (breathing	3
	spontaneously through endotracheal tube,	
	supplemental oxygen by any method, excludes	
	mechanical ventilatory support)	
5	single vasoactive medication: any vasoactive drug	7
6	multiple vasoactive medications: more than one	12
	vasoactive drug, regardless of type and dose	
7	dialysis techniques: all	6
8	specific interventions in the ICU (endotracheal	5
	intubation, pacemaker insertion, cardioversion,	
	endoscopy, gastric lavage, emergency operation in the	
	past 24 hours)	
9	specific interventions outside of the ICU (surgical	6
	operations, diagnostic procedures)	

from Table 2, page 762

where

- points are derived from rounding the calculated B coefficients
- PEEP = continuous positive airway pressure
- specific interventions in the ICU does not include routine interventions such as Xrays. echocardiography, electrocardiography, dressing changes, introduction of venous or arterial lines
- specific interventions outside of the ICU are related to the severity of illness of the patient and makes an extra demand upon manpower efforts in the ICU

NEMS =

= SUM(points for items utilized)

Notes on scoring:

- (1) The following appear to be mutually exclusive: 3 and 4, 5 and 6
- (2) One option would be to score items 8 and 9 for each occurrence; however, based on Figure 1 page 763 the maximum NEMS score does not appear to exceed 56, which it would if each occurrence were scored

Interpretation

• minimum score: 0

• maximum score (based on the interpretations above): 56

The NEMS correlates with the TISS-28 (see Figure 1, page 763):

estimated NEMS based on TISS-28 = = 6.7 + (0.76 * (TISS-28 score))

This can be rewritten:

estimated TISS-28 score = = ((NEMS) - 6.7) * 1.316

References:

Miranda DR, Moreno R, Iapichino G. Nine equivalents of nursing manpower use score (NEMS). Intensive Care Medicine. 1997; 23: 760-765.

30.26 Transfer of Critically III Patients

30.26.01 Prediction of Respiratory Deterioration After Transfer in Critically III Patients

Overview:

The transfer of a critically ill patient on mechanical ventilation may be followed by respiratory deterioration. The ability to predict which patients are at risk for respiratory deterioration may help in the decisions for when and how to transfer the patient.

Population

- 98 patients at a teaching hospital in Hannover, Germany
- patients were 16-89 years of age (mean 46)
- all on mechanical ventilation
- respiratory deterioration after transfer indicated by a significant decrease in the PaO2-to-FIO2 ratio,

Respiratory deterioration was predicted if either of the following was present (Table 4, page 1160)

(1) age > 43 years

(2) FIO2 > 50%

Performance

identified 20 of 22 patients who showed respiratory deterioration (sensitivity 91%)
specificity 65%

References:

Marx G, Vangerow B, et al. Predictors of respiratory function deterioration after transfer of critically ill patients. Intensive Care Medicine. 1998; 24: 1157-1162.

30.26.02 The Rapid Acute Physiology Score (RAPS)

Overview:

The Rapid Acute Physiology Score (RAPS) is a severity scale which can be used to assess patients being transported between intensive care units. This is a simplified version of the Acute Physiology and Chronic Health Evaluation (APACHE II) score.

Parameters

(1) mean arterial pressure

(2) heart rate

(3) respiratory rate

(4) Glasgow coma score

Parameter	Finding	Points
mean arterial pressure	<= 49	+4
	50 - 69	+2
	70 - 109	0
	110 - 129	+2
	130 - 159	+3
	>= 160	+4
heart rate	<= 39	+4
	40 - 54	+3
	55 - 69	+2
	70 - 109	0
	110 - 139	+2
	140 - 179	+3
	>= 180	+4
respiratory rate	<= 5	+4
	6 - 9	+2
	10 - 11	+1
	12 - 24	0
	25 - 34	+1
	35 - 49	+3
	>= 50	+4
Glasgow coma score	14 or 15	0
	11, 12 or 13	+1
	8, 9 or 10	+2
	5, 6 or 7	+3
	3 or 4	+4

where:

- mean arterial pressure = ((2* (diastolic pressure)) + (systolic pressure)) / 3
- The respiratory rate is either (1) the spontaneous respiratory rate or (2) the ventilated rate if not spontaneous

RAPS =

= SUM(points for the 4 parameters)

Interpretation:

- minimum score: 0
- maximum score: 16

RAPS	Percent Survival
0	96%
1	94%
2	92%
3	89%
4	83%
5	77%
6	69%
7	58%
8	50%
9	38%
10	29%
11	22%
12	15%
13	10%
14	7%
15	5%
16	3%

from Figure 3, page 260.

References:

Rhee KJ, Fisher CJ Jr, Willitis NH. The Rapid Acute Physiology Score. Am J Emerg Med. 1987; 5: 278-286.

30.27 Hannover Intensive Score (HIS)

Overview:

The Hannover Intensive Score can be used to assess patients in the intensive care unit (ICU). This can help identify those patients who might benefit from more aggressive therapy, and it can be used to compare outcomes between different institutions.

NOTE: This is based on my translation from the German. I did not have a medical dictionary at the time of translation, so some nuances may have been lost as well as some outright errors introduced.

Patient population

- I believe this applies to adults and not neonates or small children.
- The score was developed in a large series of patients admitted to an ICU at an academic center in Hannover, Germany.

Evaluation can be performed on the first day in the ICU, after 1 week, and after 2 weeks.

Major functions assessed to derive score

- (1) immunologic and hematologic: temperature, WBC count, platelet count
- (2) cerebral: level of consciousness, Glasgow Coma Score
- (3) gastrointestinal: intestinal status, liver function, prothrombin time (Quick test), PTT, antithrombin III level, blood glucose
- (4) cardiovascular: Shock Index, pulse, arrhythmias
- (5) renal: creatinine clearance, serum creatinine, urea or BUN, urine output, serum potassium
- (6) respiratory: ventilatory status, use of PEEP or CPAP, FIO2

Parameter	Finding	Points	Supple- mental
tommonotuno (OC)	< 34.0	2	mental
temperature (°C)			
	34.0 - 36.4	1	
	36.5 - 38.4°C	0	
	38.5 - 38.9	1	
	39.0 - 40.9	2	
	>= 41	3	
	positive blood culture		+1
WBC	< 3,000 per μL	2	
	3,000 - 14,900	0	
	15,000 - 19,900	1	
	20,000 - 29,900	2	
	>= 30,000	3	
platelet count	< 120,000 per μL		+1
CNS	conscious, responds to verbal	0	
	commands		
	responds to pain but does not	1	
	responds to verbal commands		
	does not respond to pain	2	
	no reaction to pain, pupils do not	3	
	react to light		
	positive Babinski, convulsions,		+1
	disturbances of central		
	regulatory functions		
Glasgow coma score	13 - 15	0	
	7 - 12	1	
	4 - 6	2	
	3	3	
Intestine function	normal	0	
	partial ileus	1	

	ileus	2	
	operation needed due to ileus; GI	3	
	tract bleeding		
	anastomosis insufficiency; bowel		+1
	perforation		
liver function	normal	0	
	SGOT, SGPT > 200 U	1	
	bilirubin >= 1.1 mg/dL		
	amylase > 500 U		
	SGOT, SGPT > 1000 U	2	
	evidence of cirrhosis		
	jaundice		
Quick test (%)	>= 50%	0	
	20 - < 50%	1	
	< 20%	2	
	consumptive coagulopathy (DIC)		+1
PTT in seconds	<= 60 seconds	0	
	> 60 seconds	1	
antithrombin III in	>= 70%	0	
percent			
	< 70%	1	
	coagulation factor replacement		+1
	therapy		
glucose in mmol/L	< 2 mmol/L		+1
	> 30 mmol/L		+1
shock index	<= 0.85	0	
	0.86 - 0.99	1	
	1.0 - 1.2	2	
	> 1.2	3	
	resuscitation performed		+1
pulse in	< 40	3	
beats/minute			
	40 - 110	0	
	111 - 140	1	
	141 - 180	2	
	> 180	3	
	dopamine > 200 mg/day or		+1
	catecholamines		
heart rhythm	ventricular tachycardia;		+1
	supraventricular tachycardia;		
	atrial arrhythmias;		
	antiarrhythmic agents		
creatinine clearance	>= 100 mL/min	0	
	50 - 99 mL/min	1	

	< 50 mL/min	2	
	dialysis	3	
serum creatinine	< <u>2.3 mg/dL</u>	0	
sol and ci catilitie	2.3 - 4.4 mg/dL	1	
	4.5 - 7.8 mg/dL	2	
	>= 7.9 mg/dL	3	
"urea" (see below)	20 - 39 mg/dL	0	
(>= 40 mg/dL	1	
urine output	patient receiving diuretics	1	
*	oliguria	2	
	polyuria	2	
	uremia	3	
	anuria	3	
	gross hematuria		+1
serum potassium	<= 6 mEq/L	0	
	> 6 mEq/L	3	
respiration	spontaneous without assistance	0	
	spontaneous breathing with assistance	1	
	mechanical ventilation	2	
	pneumothorax or thoracic drainage		+1
PEEP/CPAP	none	0	
	<= 10 cm H2O	1	
	> 10 cm H2O	2	
FIO2	0.21	0	
	0.22 - 0.40	1	
	0.41 - 0.60	2	
	> 0.60	3	

where:

- I translated Streckkrampfe and Zerebr. Krampfe as seizures
- I translated Platzbauch as "bowel perforation"
- shock index = (heart rate) / (systolic blood pressure)
- I translated "VES" as "ventricular tachycardia"
- urea vs BUN: I believe "serumharnstoff" translates to urea, but when looking at the point assignment, values for BUN made more sense than values for urea (the value I got for BUN correspondint to a urea of 40 mg/dL was pretty low), Only 1 point is assigned for this, so a small error seemed acceptable. For serious usage, this needs to be checked.
- The use of values for SGOT, SGPT, bilirubin and amylase without knowing the reference range could introduce error, but the breakpoints seem to handle minor variations between institutions. If this system is to be seriously used, then finding the reference ranges used at Hannover would be indicated.

• The Quick test is the prothrombin time. The percent is read from a graph correlating prothrombin time vs the percent dilution of normal plasma (viz, a PT of 45 seconds is seen at an X% of normal plasma).

HIS = = SUM(points for parameters present)

Interpretation

• minimum score: 0

• maximum score: 60

• The performance of HIS was found comparable to Apache II and TISS. It may be better for predicting outcome during longer admissions.

HIS Score	Mortality Rate
0-1	2%
2-3	5%
4-5	12%
6-7	25%
8-9	28%
10-11	36%
12-13	33%
14-15	55%
> 15	72%

approximated from Table 2, page 530, von Bierbrauer 1998

Limitations

• Correlations between score and mortality rate will be affected by improved technologies.

Implementation Notes

• When more than one item is present (in liver function tests, supplemental scores for CNS function, etc.) the options are to add one point if any one of the findings is present (OR function), or to add one point for each finding present (AND function). I have opted for the OR approach.

References:

- Lehmkuhl P, Lips U, Pichlmayr I. Der Hannover Intensiv Score (HIS) als neues Klassifikationssystem zu Verlaufskontrollen und Prognosestellung bei Intensivpatienten. Medizinische Klinik. 1986; 81: 235-240.
- von Bierbrauer A, Burchardt C, et al. Die Aussagekraft der Hannover Intensiv Score (HIS) in der internistischen Intensivmedizin. Medizinische Klinik. 1998; 93: 524-532.

30.28 The Abdominal Compartment Syndrome

Overview:

The abdominal compartment syndrome occurs when raised intra-abdominal pressure is associated with signs of organ failure in critically ill patients.

Settings:

- (1) after abdominal surgery
- (2) in injured patients, with or without abdominal trauma
- (3) critically ill patients, including patients with burns, sepsis or ascites

Criteria for the diagnosis of the abdominal compartment syndrome:

- (1) elevated intra-abdominal pressure (>= 25 mm Hg)
- (2) one or more of the following, indicating organ damage
 - oliguria
 - raised pulmonary pressure
 - hypoxia
 - decreased cardiac output
 - hypotension
 - acidosis

(3) abdominal decompression results in clinical improvement

where:

• Pressure in the urinary bladder correlates with the actual intra-abdominal pressure over the pressure range of 5-70 mm Hg. It can be measured with the patient in the supine position, a Foley catheter in the bladder and a water pressure manometer held at the level of the symphysis pubis (Meldrum et al, 1997).

Complications:

- (1) failure in one or more organs (heart. lung, kidneys)
- (2) breakdown of surgical sites
- (3) impaired blood flow with decreased visceral perfusion
- (4) intestinal obstruction

Management:

- prompt abdominal decompression when the pressure becomes elevated
- prevention through the use of tension-free abdominal closures

Meldrum et al (1997) developed a grading system based on intra-abdominal pressure levels, with recommended management steps.

Pressure	Grade	Management
10-15 mm Hg	Ι	maintain normovolemia
16-25 mm Hg	II	hypervolemic resuscitation
26-35 mm Hg	III	decompression
> 35 mm Hg	IV	decompression and re-exploration

References:

- Ivatury RR, Porter JM, et al. Intra-abdominal hypertension after life-threatening abdominal trauma: prophylaxis, incidence and clinical relevance to gastric mucosal pH and abdominal compartment syndrome. J Trauma. 1998; 44: 1016-1023.
- Mayberry JC. Commentary: Prevention of the abdominal compartment syndrome. Lancet. 1999; 354: 1749-1750.
- Meldrum DR, Moore FA, et al. Prospective characterization and selective management of the abdominal compartment syndrome. Am J Surg. 1997; 174: 667-673.

30.29 POSSUM Scoring System for Surgical Audit

Overview:

The POSSUM (Physiologic and Operative Severity Score for the enUmeration of Mortality and morbidity) is a scoring system which allows for either retrospective or prospective evaluation of surgical and post-operative care. This can allow comparison of care between different providers and/or institutions. It was developed at the Broadgreen Hospital in Liverpool, England.

Components

- (1) physiologic score
- (2) operative score
- (3) tally of complications

(4) calculations of estimated morbidity and mortality rates from scores

Physiologic Score

The physiologic score is calculated before surgery.

Parameters:

- (1) age
- (2) cardiac signs
- (3) respiratory history
- (4) systolic blood pressure
- (5) pulse in beats per minute
- (6) Glasgow coma score
- (7) hemoglobin
- (8) white blood cell count
- (9) urea
- (10) sodium
- (11) potassium
- (12) electrocardiogram

Parameter	Finding	Points
age in years	<= 60 years	1
	61 - 70 years	2

	>= 71 years	4
cardiac signs	no failure	1
	diuretics, digoxin, antianginal therapy, antihypertensive therapy	2
	peripheral edema, warfarin therapy, borderline cardiomegaly on chest X- ray	4
	raised jugular venous pressure, cardiomegaly on chest X-ray	8
respiratory findings	no dyspnea	1
	dyspnea on exertion; mild evidence of COPD on chest X-ray	2
	limiting dyspnea after 1 flight of stairs; moderate COPD on chest X-ray	4
	dyspnea at rest; respiratory rate > 30 breaths per minute; fibrosis or consolidation on chest X-ray	8
systolic blood pressure	<= 89 mm Hg	8
•	90 - 99 mm Hg	4
	100 - 109 mm Hg	2
	110 - 130 mm Hg	1
	131 - 170 mm Hg	2
	>= 171 mm Hg	4
pulse	<= 39 beats per minute	8
	40 - 49 beats per minute	2
	50 - 80 beats per minute	1
	81 - 100 beats per minute	2
	101 - 120 beats per minute	4
	>= 121 beats per minute	8
Glasgow coma score	15	1
9	12 - 14	2
	9 - 11	4
	<= 8	8
hemoglobin	<= 9.9 g/dL	8
8	10.0 - 11.4 g/dL	4
	11.5 - 12.9 g/dL	2
	13.0 - 16.0 g/dL	1
	16.1 - 17.0 g/dL	2
	17.1 - 18.0 g/dL	4
	>= 18.1 g/dL	8
white blood cell count	<= 3,000 per μL	4
	3,100 - 3,999 per μL	2
	4,000 - 10,000 per μL	1
		-

	>= 20,100 per μL	4
urea	<= 7.5 mmol/L	1
	7.6 - 10.0 mmol/L	2
	10.1 - 15.0 mmol/L	4
	>= 15.1 mmol/L	8
sodium	<= 125 mmol/L	8
	126 - 130 mmol/L	4
	131 - 135 mmol/L	2
	>= 136 mmol/L	1
potassium	<= 2.8 mmol/L	8
-	2.9 - 3.1 mmol/L	4
	3.2 - 3.4 mmol/L	2
	3.5 - 5.0 mmol/L	1
	5.1 - 5.3 mmol/L	2
	5.4 - 5.9 mmol/L	4
	>= 6.0 mmol/L	8
electrocardiogram	normal	1
0	atrial fibrillation with heart rate 60-90	4
	any other abnormal rhythm	8
	>= 5 ectopics per minute	8
	Q waves or ST-T wave changes	8

(from Table 1, page 356)

where:

• Table 1 on page 356 includes "chest radiograph" as an indented entry below both "cardiac signs" and "respiratory history". I have merged the radiograph findings with the clinical findings into one score; this corresponds to the 12 factors mentioned on page 355. An alternative approach would be to have as separate parameters. This would increase the number of parameters from 12 to 14, the minimum score from 12 to 14, and maximum score from 96 to 112.

Operative Score

The operative score is calculated at discharge.

Parameters

- (1) operative severity
- (2) number of procedures done
- (3) total blood loss
- (4) peritoneal soiling
- (5) presence of malignancy
- (6) mode of surgery

Parameter	Finding	Points
operative severity	minor	1

	moderate	2
	major	4
	very major	8
number of procedures	1	1
*	2	4
	> 2	8
total blood loss in mL	<= 100 mL	1
	101 - 500 mL	2
	501 - 999 mL	4
	>= 1,000 mL	8
peritoneal soiling	none	1
	minor (serous fluid without pus)	2
	local pus	4
	free bowel content, pus or blood	8
presence of malignancy	none	1
	primary only	2
	nodal metastases	4
	distant metastases	8
mode of surgery	elective	1
	emergency with resuscitation >= 2	4
	hours	
	operation < 24 hours after admission	4
	immediate surgery	8

(from Table 2, page 356)

where:

- moderate severity procedures: appendectomy, cholecystectomy, mastectomy, transurethral resection of prostate
- moderate severity procedures: laparotomy, bowel resection, cholecystectomy with choledochotomy, peripheral vascular procedure, major amputation
- very major severity procedures: procedure involving aorta, abdominoperineal resection, pancreatic resection, hepatic resection, esophago-gastrectomy
- emergency surgery with resuscitation: I am assuming that this refers to preoperative stabilization.

operative score =

= SUM(points for all 6 parameters)

Complications

Complications (defined pages 356-357)

- (1) hemorrhage: wound, deep, other
- (2) infection: chest, wound, urinary tract, deep, septicemia, fever of unknown origin, other
- (3) wound dehiscence: superficial, deep

- (4) anastomotic leak
- (5) thrombosis: deep vein thrombosis, pulmonary embolus, other thrombosis, cerebrovascular accident, myocardial infarction
- (6) cardiac failure
- (7) impaired renal function ((urea post-operative) > (urea pre-operative) + (5 mmol/L))
- (8) hypotension (systolic blood pressure < 90 mm Hg for 2 hours or more)
- (9) respiratory failure
- (10) any other complication
- (11) death

Interpretation:

- minimum physiologic score:
- maximum physiologic score:
- mininum operative score: 6
- maximum operative score: 48

Y = = (0.13 * (physiologic score)) + (0.16 * (operative score)) - 7.04

probability of morbidity =
= 1 / (1 + EXP((-1) * (X)))

probability of mortality =
= 1 / (1 + EXP((-1) * (Y)))

where:

```
• The article uses the form: LN ((probability) / (1 - (probability))) = X
```

References:

Copeland GP, Jones D, Walters M. POSSUM: A scoring system for surgical audit. Br J Surg. 1991; 78: 356-360.