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Studies of service and therapy pro-
vision in critical care frequently
use observational designs (1, 2).
These rely on robust, valid risk

adjustment to reduce bias and ensure high-
quality methodology (3–5).

There has been considerable work in
risk prediction models in critical care. The
original Acute Physiology and Chronic
Health Evaluation (APACHE) model was
published in 1981 (6), with three subse-
quent revisions (7–9). UK coefficients for

the APACHE II model were published in
1990 (10). The Simplified Acute Physiology
Score (SAPS) was devised as a simplifica-
tion of APACHE (11) and has been revised
twice (12, 13). The Mortality Prediction
Model (MPM) produced a risk prediction
based on categorical (yes/no) variables (14)
and has been revised once (15).

Recent work has shown that even with
sophisticated recalibration, these models
display considerable lack of fit when evalu-
ated in different critical care populations
(16). Variations in calibration across the
range of predictions may lead to significant
bias if centers are compared based on the
ratio of observed to expected deaths. The
models also define exclusion criteria that
may exclude up to 15% of admissions (17).
These criteria are inconsistently applied
and may introduce biases into risk-adjusted
analyses.

We aimed to derive a new risk predic-
tion model suitable for use in all admis-
sions to UK critical care units, based on
data from a large, multicenter, high-
quality clinical database (18). To ensure
continuity, we sought to build on the
existing models rather than build a new

model de novo. However, we aimed to
improve on well-known limitations of the
models, such as modeling of neurologic
impairment (19), and to investigate the
inclusion of interaction terms in the
model, in particular to allow the effect of
physiologic derangement on mortality to
vary depending on diagnosis.

MATERIALS AND METHODS

Data. The Case Mix Programme (CMP) is a
national comparative audit of patient outcome
from adult, general (mixed medical/surgical)
critical care units—intensive care units (ICUs)
and combined intensive care and high-
dependency units (HDUs)—in England, Wales,
and Northern Ireland, coordinated by the In-
tensive Care National Audit & Research Centre
(ICNARC). The CMP database contains raw
physiologic and diagnosis data for the
APACHE II, APACHE III, SAPS II, and MPM II
models, together with demographic, outcome,
and activity data, for consecutive admissions
to units participating in the CMP. Data are
collected prospectively, are abstracted by
trained data collectors, and undergo extensive
validation both locally and centrally (20). Ad-
ditional physiologic variables not required by the
published models were included in the original
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Objective: To develop a new model to improve risk prediction
for admissions to adult critical care units in the UK.

Design: Prospective cohort study.
Setting: The setting was 163 adult, general critical care units

in England, Wales, and Northern Ireland, December 1995 to Au-
gust 2003.

Patients: Patients were 216,626 critical care admissions.
Interventions: None.
Measurements and Main Results: The performance of different

approaches to modeling physiologic measurements was evalu-
ated, and the best methods were selected to produce a new
physiology score. This physiology score was combined with other
information relating to the critical care admission—age, diagnos-
tic category, source of admission, and cardiopulmonary resusci-
tation before admission—to develop a risk prediction model.
Modeling interactions between diagnostic category and physiol-
ogy score enabled the inclusion of groups of admissions that are

frequently excluded from risk prediction models. The new model
showed good discrimination (mean c index 0.870) and fit (mean
Shapiro’s R 0.665, mean Brier’s score 0.132) in 200 repeated
validation samples and performed well when compared with
recalibrated versions of existing published risk prediction models
in the cohort of patients eligible for all models. The hypothesis of
perfect fit was rejected for all models, including the Intensive
Care National Audit & Research Centre (ICNARC) model, as is to be
expected in such a large cohort.

Conclusions: The ICNARC model demonstrated better discrim-
ination and overall fit than existing risk prediction models, even
following recalibration of these models. We recommend it be used
to replace previously published models for risk adjustment in the
UK. (Crit Care Med 2007; 35:1091–1098)

KEY WORDS: critical care; hospital mortality; intensive care units;
models, statistical; risk adjustment; severity of illness index
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data set specification to enable investigation of
alternative approaches to modeling.

Admissions were excluded from the study if
they were missing the outcome variable (mor-
tality at ultimate discharge from an acute hos-
pital) or were readmissions of the same patient
within the hospital stay.

The CMP has received approval from the
Patient Information Advisory Group to hold
patient identifiable information without con-
sent (approval number PIAG 2-10(f)/2005).
Approval by an Institutional Review Board was
not required.

Measures of Model Performance. Model
performance was assessed using a combina-
tion of techniques recommended by an expert
statistical steering committee (as listed in the
Acknowledgments). Discrimination was as-
sessed with the c index (21), equivalent to the
area under the receiver operating characteris-
tic curve (22). Overall accuracy was summa-
rized by the R statistic from Shapiro’s Q (23)
(geometric mean probability assigned to the
event that occurred) and Brier’s score (24)
(mean square error between outcome and pre-

diction) and its associated calibration test (25)
and decomposition (26). Calibration was as-
sessed by the Hosmer-Lemeshow goodness-
of-fit statistic (27) and Cox’s calibration re-
gression (28) (linear recalibration of the
predicted log odds). These techniques have
previously been used to evaluate the published
risk prediction models in the same cohort of
admissions, where full details of each tech-
nique were presented (16).

Model Development. Full details of the
model development have been published in an
online supplement (29). A brief outline is
given next.

Different approaches to modeling blood
pressure, respiratory rate, oxygenation, acid
base disturbance, creatinine, and neurologic
status were compared in a development sam-
ple (random two thirds of ICUs) and assessed
in a validation sample (remaining one third of
ICUs). The best model for each was included in
the full physiology model, together with all
other physiologic variables from APACHE II,
APACHE III, SAPS II, and MPM II. A parsimo-
nious physiology score was developed by sim-
plification of the full model. Adjacent catego-
ries within each variable were combined if the
difference in risk was not significant (p � .1).
Variables were then removed from this simpli-
fied model in a stepwise manner until none
remained. At each step, the model was fitted in
the development sample and assessed in the
validation sample, with the “best” model cho-
sen to balance parsimony against predictive
ability. The full stepwise selection procedure
was repeated in 1,000 bootstrap samples to
assess the stability of the selected variables
(30). For variables recorded as both a highest
and lowest value, either the highest or lowest
was selected when the effect on predictive abil-
ity was minimal. Coefficients for the final
physiology model were estimated in the full
data, and the model was converted to an inte-
ger score by multiplying the predicted log
odds of mortality by a constant and rounding,
an approach that has been used in previous
models (8, 12, 13). The purpose of this is to
provide a simple summary of the degree of
physiologic derangement, and the constant
was chosen to ensure that the final score
would have a possible range of zero to 100.

The following additional factors with a
well-established association with mortality
were investigated to find the best modeling
approach: age, past medical history, and
source of admission to ICU/surgical urgency.
The full model consisted of the selected mod-
els for these factors, plus physiology score,
gender, cardiopulmonary resuscitation within
24 hrs before ICU admission, and the body
systems from the ICNARC Coding Method for
primary reason for admission (31) plus inter-
actions with surgical status. Each individual
diagnostic category from the ICNARC Coding
Method and an interaction with the physiology
score was entered one by one into the full
model and retained if p � .001. This stringent
cutoff was chosen to ensure that diagnostic

categories were only included if the coefficient
could be accurately estimated. The full model
was simplified by stepwise backward elimina-
tion in the same manner as the physiology
score, and a final model was selected based on
predictive ability in the validation sample.

Model Validation. The final model was re-
fitted in 200 repeated development samples
and assessed in the corresponding validation
samples. This cross-validation ensures that
the model is fitted and validated in separate
data sets while avoiding the potential for mis-
leading results based on a single random split
into development and validation samples.

The model was compared with the best
recalibrated versions of APACHE II, APACHE
III, SAPS II, and MPM II, refitted in the 200
development samples, in the subset of admis-
sions that were not excluded from any of the
models.

The final coefficients for the ICNARC model
were estimated in the full data set and shrunk by
Efron’s .632 bootstrap method to adjust for over-
fitting (32).

Analyses were performed in Stata 8.2
(StataCorp LP, College Station, TX). Models
were fitted with logistic regression using ro-
bust (Huber-White) standard errors clustered
by ICU due to the hierarchical nature of the
data (30).

RESULTS

Data. Validated data on 231,930 admis-
sions to 163 critical care units between
December 1995 and August 2003 were
available for analysis. Excluding 4,857
(2.1%) admissions missing hospital out-
come and 10,447 (4.6%) readmissions of
the same patient during the hospital stay, a
total of 216,626 admissions were analyzed.
No further exclusions were applied. Details
of the case mix of this population have been
reported previously (16).

Model Development. The following
modeling approaches were selected: cat-
egories of extreme systolic blood pres-
sure, categories of respiratory rate from
APACHE III (removing the condition that
ventilated respiratory rates between 6 and
13 are not weighted), categories of PaO2/
FIO2 from SAPS II and interaction with
ventilation status, categories of arterial
pH and associated PaCO2, categories of
creatinine from APACHE II (without dou-
bling the weighting for acute renal fail-
ure). Neurologic status was modeled with
13 categories for individual Glasgow
Coma Scale values from 3 to 15 (assessed
during the first 24 hrs following admis-
sion to ICU) and two additional categories
for patients who were sedated or para-
lyzed and sedated for the entire of the
first 24 hrs. This approach considerably
outperformed all methods from the pub-

Table 1. Calibration and discrimination in the
validation sample of a progressively simplified
model for physiology

Model df a c Index C*b

Full 113 0.826 263
Simplifiedc 84 0.826 252
Variables removedd

Hematocrit 82 0.823 252
Serum potassium 80 0.826 253
Serum bicarbonate 78 0.826 252
Prothrombin time 77 0.825 255
Serum glucose 73 0.825 251
PaCO2 68 0.824 267
Total serum bilirubin 65 0.824 264
Serum albumin 62 0.823 279
Serum creatinine 59 0.822 297
White blood count 54 0.821 307
Temperature 50 0.819 335
Heart rate 45 0.817 381
Respiratory rate 39 0.814 506
Serum sodium 35 0.811 591
Arterial pH 31 0.808 680
PaO2/FIO2 26 0.799 1,193
Urine output 20 0.788 2,019
Systolic blood

pressure
11 0.754 4,687

Sedated, paralyzed
or GCS

3 0.658 12,183

Serum urea 0 0.500 24,160

GCS, Glasgow Coma Scale score. Bold type
indicates the variables included in the final phys-
iology model and the fit of the final physiology
model.

aDegrees of freedom (number of model pa-
rameters minus one); bHosmer-Lemeshow chi-
square statistic for 20 groups from quantiles of
full model predictions; cthe simplified model rep-
resents the full model with adjacent categories
combined when not significant (p � .1); dleast
significant variable removed at each step until no
variables remained.
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lished models (c index 0.694 vs. 0.568 for
APACHE II and III, 0.611 for SAPS II,
0.588 for MPM II0, 0.598 for MPM II24)
and also outperformed the model using
presedation Glasgow Coma Scale for se-
dated patients (c index 0.626).

The full physiology model had a c in-
dex of 0.826 and Hosmer-Lemeshow C*
statistic (for 20 groups based on quantiles
of predicted mortality) of 263 in the val-
idation sample (Table 1). Simplification
of the full model by combining adjacent
categories resulted in no loss of discrim-
ination and a slight improvement in cal-
ibration. Following backward elimina-
tion, the “best” model contained 12
physiologic variables (vital signs, urine
output, Glasgow Coma Scale score, and
laboratory values) and 63 variables (c in-
dex 0.823, Hosmer-Lemeshow C* 279).
On bootstrapping the backward elimina-
tion, 10 of the 12 selected physiologic
variables were included in the last 12
variables in all 1,000 bootstrap samples
with the other two found in around 75%

of samples. All physiologic variables re-
corded as both a lowest and highest value
were replaced with either the lowest or
highest value with little loss of perfor-
mance (c index 0.822, Hosmer-Leme-

show C* 333). The final physiology score
resulting from this modeling is shown in
Table 2. The mean (SD) physiology score
in the full data set was 18.5 (10.0), with
median (interquartile range) 17 (11–24).

Figure 1. Distribution of Intensive Care National Audit & Research Centre (ICNARC) physiology score
and observed mortality in the full data set (n � 216,626).

Table 2. Intensive Care National Audit & Research Centre physiology score

Highest heart rate
min�1 �39 40–109 110–119 120–139 �140
Score 14 0 1 2 3

Lowest systolic BP
mm Hg �49 50–59 60–69 70–79 80–99 100–179 180–219 �220
Score 15 9 6 4 2 0 7 16

Highest temperature
°C �33.9 34–35.9 36–38.4 38.5–40.9 �41
Score 12 7 1 0 5

Lowest respiratory rate
min�1 �5 6–11 12–13 14–24 �25
score 1 0 1 2 5

PaO2/FIO2 ratioa (ventilation)
mm Hg �99 (NV) 100–199 (NV) �200 (NV) �99 (V) 100–199 (V) �200 (V)
Score 6 3 0 8 5 3

Lowest arterial pH
pH �7.14 7.15–7.24 7.25–7.32 7.33–7.49 �7.50
Score 4 2 0 1 4

Highest serum urea
mmol L�1 �6.1 6.2–7.1 7.2–14.3 �14.4
Score 0 1 3 5

Highest serum creatinine
mg dL�1 �0.5 0.6–1.4 �1.5
Score 0 2 4

Highest serum sodium
mmol L�1 �129 130–149 150–154 155–159 �160
Score 4 0 4 7 8

Urine output (24 hrsb)
mL �399 400–599 600–899 900–1499 1500–1999 �2000
score 7 6 5 3 1 0

Lowest WBC
�10�9 L�1 �0.9 1–2.9 3–14.9 15–39.9 �40
Score 6 3 0 2 4

Sedated, paralyzed or GCS
Value S P 3 4 5 6 7–13 14 15
Score 5 6 11 9 6 4 2 1 0

BP, blood pressure; NV, not ventilated at any time; V, ventilated at some time, during first 24 hrs or entire stay if �24 hrs; WBC, white blood cell count;
GCS, Glasgow Coma Scale score; S, sedated; P, paralyzed and sedated, for whole of first 24 hrs or entire stay if �24 hrs.

aFrom arterial blood gas with lowest PaO2; bfor admissions staying �24 hrs, urine output from entire stay scaled to represent a 24-hr measurement.
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Although the maximum possible physiol-
ogy score is 100, the highest observed
was 82 (Fig. 1). The relative weightings of
physiologic variables therefore remained
fixed in all further models.

A linear model was selected for age. Past
medical history was modeled in five cate-
gories: liver, cardiovascular, respiratory, re-
nal, and immunocompromised. The origi-
nal nine categories for source of admission
were combined into the following six:

1. Elective surgery: Admissions from
theater in the same hospital (direct or
via accident and emergency) with a
classification of surgery (according to
the definitions of the National Confi-
dential Enquiry into Perioperative
Death) of elective or scheduled

2. Emergency surgery: Admissions from
theater in the same hospital with a
classification of surgery of emergency
or urgent

3. Ward: Admissions from the ward or an
intermediate care area (where the
level of care is greater than the normal
ward but not an ICU or HDU) in the
same hospital

4. Critical care transfer: Admissions from
an ICU or HDU in the same or another
hospital (direct or via accident and
emergency)

5. Accident and emergency/other hospi-
tal: Admissions from accident and
emergency in the same hospital (not
following surgery or transfer from an
ICU or HDU) or from any location in
another hospital except ICU or HDU

6. Clinic or home: Admissions from an
outpatient or other clinic or directly
from the community without being ad-
mitted to any other part of the hospital

For admissions from recovery (not hav-
ing undergone a surgical procedure) or
from diagnostic/imaging areas, the prior
location was used to allocate the patient to
one of the preceding categories.

Of 709 individual diagnostic catego-
ries from the ICNARC Coding Method
represented in the data, 67 nonsurgical
diagnoses (plus 19 interactions with the
physiology score) and 34 surgical diag-
noses (plus four interactions) were in-
cluded in the model. These diagnoses ac-
counted for 54.7% of admissions, with
the remaining 45.3% allocated coeffi-
cients according to body system.

The full model had a c index of 0.874
and a Hosmer-Lemeshow C* statistic of
74.3 in the validation sample. Table 3
shows the process of backward elimina-

tion: Gender and all variables relating to
past medical history were eliminated with
a minimal decrease in discrimination (c
index 0.872) and a small improvement in
calibration (Hosmer-Lemeshow C* 68.2)
in the validation sample. The final model
included physiology score, age, diagnos-
tic category coefficients and interactions
with the physiology score, cardiopulmo-
nary resuscitation within 24 hrs before
admission, and source of admission.

Model Validation. The performance of
the final model in 200 repeated validation
samples is summarized in Table 4 and

compared with the recalibrated APACHE
II, APACHE III, SAPS II, and MPM II (16)
in 141,106 admissions eligible for all
models in Table 5. The ICNARC model
outperformed all other models in terms
of discrimination (c index), accuracy
(Shapiro’s R, Brier’s score), unnecessary
variability in predictions (lowest excess
variance and test statistic for � � 1|� in
Cox’s calibration regression), and highest
covariance between outcomes and predic-
tions. SAPS II performed better than the
ICNARC model in tests of perfect calibra-
tion (Spiegelhalter’s Z and Hosmer-

Table 3. Calibration and discrimination in the validation sample of a progressively simplified full model

Model dfa c Index C*b

Full 154 .874 74.3
Variables removed

Chronic renal replacement 153 .874 74.3
Gender 152 .874 74.3
Chronic cardiovascular disease 151 .874 74.0
Chronic respiratory disease 150 .874 72.1
Chronic liver disease 149 .873 67.9
Immunocompromised 148 .872 68.2
Source of admission 143 .870 87.8
CPR prior to admission 142 .868 104
Diagnostic category interactions 119 .867 162
Diagnostic category coefficients 2 .840 1519
Age 1 .822 3289
Physiology score 0 .500 31,250

CPR, cardiopulmonary resuscitation. Bold type indicates the variables included in the final model
and the fit of the final model.

aDegrees of freedom (number of model variables minus one); bHosmer-Lemeshow chi-square
statistic for 20 equal-sized groups from quantiles of full model predictions.

Table 4. Performance of the final model in 200 repeated validation samples (random one third of units)
following refitting in the corresponding development sample

Ideal Value Observed Value

Average predicted mortality probability, mean (SD) 0.313 0.313 (0.008)
c index, mean (SD) 1 0.870 (0.003)
Shapiro’s R, mean (SD) 1 0.665 (0.004)
Brier’s score and derivatives

Brier’s score, mean (SD) 0 0.132 (0.002)
Spiegelhalter’s Z statistic,a median (IQR) 0 1.58 (�0.39 to 3.73)
Accuracy of the average prediction, mean (SD) 0 5.6 � 10�5 (8.6 � 10�5)
Excess variance of predictions, mean (SD) 0 1.57 (0.04)
Covariance of outcome and prediction, mean (SD) 0.215 0.084 (0.002)

Hosmer-Lemeshow goodness-of-fit
C* statistic (20 equal size groups),b median (IQR) 0 82.6 (65.8 to 108)
H* statistic (20 equal width groups),b median (IQR) 0 80.9 (63.5 to 105)

Cox’s calibration regression
Error in intercept (�), mean (SD) 0 �2.1 � 10�3 (0.060)
Error in slope (�-1), mean (SD) 0 �4.6 � 10�3 (0.020)
Test hypothesis: � � 0, � � 1,c median (IQR) 0 20.1 (8.04 to 41.9)
Test hypothesis: � � 0 � � � 1,d median (IQR) 0 12.3 (3.32 to 37.1)
Test hypothesis: � � 1 � �,d median (IQR) 0 3.31 (0.64 to 7.28)

IQR, interquartile range.
aZ-statistic (one-tailed), p � .05 for values �1.64, p � .01 for values �2.33, p � .001 for values

�3.09; bchi-square statistic on 20 df, p � .05 for values �31.4, p � .01 for values �37.6, p � .001 for
values �45.3; cchi-square statistic on 2 df, p � .05 for values �5.99, p � .01 for values �9.21,
p � .001 for values �13.8; dchi-square statistic on 1 df, p � .05 for values �3.84, p � .01 for values
�6.63, p � .001 for values �10.8. Mean (SD) sample size of validation samples was 72,706 (9717).
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Lemeshow C* and H*); however, the me-
dian Z statistic for the ICNARC model did
not indicate a significant lack of calibra-

tion. MPM II had the best accuracy of the
average prediction; however, this mea-
sure was close to zero for all models.

Similarly, both SAPS II and MPM II had
mean values of � and � from Cox’s cali-
bration regression closer to the ideal val-
ues of 0 and 1, but the values for the
ICNARC model did not indicate signifi-
cant bias.

Figure 2 shows the distribution of pre-
dicted mortality, and Figure 3 shows the
calibration curve for the final model in
the validation sample. Coefficients for the
ICNARC model are freely available for
research purposes via the ICNARC Web
site (33).

Worked Examples. Table 6 shows two
worked examples of applying the ICNARC
model, together with comparative mor-
tality predictions from the other models
(requiring additional data not shown).

DISCUSSION

We have developed a new risk pre-
diction model for UK critical care, the

Table 5. Performance of the final model compared with the best recalibrated versions of existing models assessed in admissions eligible for all models
(n � 141,106)

Model Ideal Value ICNARC Model APACHE II APACHE III SAPS II MPM II

Mortality, n (%) 31.1 (0.9) 31.1 (0.8) 31.0 (0.8) 31.2 (1.0) 31.1 (0.8) 31.1 (0.8)
c index 1 0.863 (0.003) 0.832 (0.004) 0.845 (0.004) 0.840 (0.004) 0.824 (0.004)
Shapiro’s R 1 0.656 (0.005) 0.633 (0.005) 0.644 (0.005) 0.640 (0.005) 0.629 (0.004)
Brier’s score and

derivatives
Brier’s score 0 0.136 (0.003) 0.150 (0.003) 0.143 (0.003) 0.145 (0.003) 0.152 (0.003)
Spiegelhalter’s Z-

statistic,a median
0 1.38 1.89 1.59 0.47 1.23

Accuracy of the average
prediction

0 8.2 � 10�5

(9.6 � 10�5)
1.1 � 10�4

(1.6 � 10�4)
1.3 � 10�4

(2.2 � 10�4)
1.0 � 10�4

(1.4 � 10�4)
7.7 � 10�5

(1.0 � 10�4)
Excess variance of

predictions
0 1.67 (0.05) 2.34 (0.08) 2.03 (0.07) 2.10 (0.06) 2.45 (0.07)

Covariance of outcome
and prediction

0.213 0.082 (0.002) 0.064 (0.002) 0.071 (0.002) 0.069 (0.001) 0.062 (0.001)

Hosmer-Lemeshow
goodness-of-fit
statistics

C* (20 equal-sized
groups),b median

0 64.2 140.2 80.0 52.0 92.7

H* (20 equally spaced
cut points),b median

0 62.4 146.9 85.2 46.7 91.3

Cox’s calibration
regression

Error in intercept (�) 0 �3.7 � 10�3 (0.07) �1.0 � 10�3 (0.08) �9.5 � 10�3 (0.07) �5.4 � 10�4 (0.07) �2.7� 10�3 (0.06)
Error in slope (�-1) 0 �7.7 � 10�3 (0.02) �9.1 � 10�3 (0.03) �1.1 � 10�2 (0.03) �3.6 � 10�3 (0.02) �3.2 � 10�3 (0.02)
Test hypothesis: � � 0,

� � 1,c median
0 20.5 23.7 23.5 20.0 18.6

Test hypothesis: � � 0
� � � 1,d median

0 15.8 19.1 15.9 13.8 13.5

Test hypothesis: � � 1
� �,d median

0 1.61 3.10 3.24 2.15 2.00

ICNARC, Intensive Care National Audit & Research Centre; APACHE, Acute Physiology and Chronic Health Evaluation; SAPS, Simplified Acute
Physiology Score; MPM, Mortality Prediction Model. Bold type indicates closest to ideal value.

aZ-statistic (one-tailed), p � .05 for values �1.64; p � .01 for values �2.33, p � .001 for values �3.09; bchi-square statistic on 20 df, p � .05 for values
�31.4, p � .01 for values �37.6, p � .001 for values �45.3; cchi-square statistic on 2 df, p � .05 for values �5.99, p � .01 for values �9.21, p � .001
for values �13.8; dchi-square statistic on 1 df, p � .05 for values �3.84, p � .01 for values �6.63, p � .001 for values �10.8. Values are mean (SD) over
200 repeated validation samples, unless otherwise stated. Mean (SD) sample size of validation samples was 46,589 (6924).

Figure 2. Distribution of predicted mortality from the final model in validation sample 1 (n �
79,526).
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ICNARC model, based on the best ele-
ments of the existing models and further
research into modeling techniques.
When restricted to a cohort of admis-
sions eligible for all models, the IC-
NARC model outperformed existing
models on measures of model perfor-
mance including discrimination and

overall fit. In addition, the ICNARC model
has no exclusions, allowing it to be applied
to all critical care admissions regardless of
age, diagnosis, or length of stay. Perfor-
mance of the ICNARC model was better
when applied to all critical care admissions
than when restricted to those eligible for all
models.

The great strength of this study lies in
the large, representative database in
which the model was developed. The CMP
database has been assessed according to
published criteria for high-quality clini-
cal databases and scored highly (20). It
includes patients from all geographical
regions of the target population (En-
gland, Wales, and Northern Ireland), with
a representative spread of units in teach-
ing and nonteaching hospitals and a
representative, wide variation in the size
of units. We can therefore expect the
ICNARC model to perform well within
this target population. There is no evi-
dence that the ICNARC model would per-
form well outside of its target population;
indeed, the evidence suggests that mod-
els fitted in one healthcare setting re-
quire recalibration before use in a differ-
ent setting (16), and we would advise
anyone wishing to use the ICNARC model
outside of the UK to first validate the
model and to recalibrate it if necessary.
Statistical techniques, including robust
variance estimation, cross-validation, and
bootstrapping, were applied to ensure
that the estimates of model performance
are as accurate as possible. Nevertheless,
some overfitting may remain as it was not
possible to validate the model in an en-
tirely independent sample.

A major advantage of the ICNARC
model over previous risk prediction mod-
els is the elimination of exclusion crite-
ria. Excluding groups of patients has the
potential to bias risk-adjusted analyses
(17). The relationship between age and
outcome (adjusted for physiology score)
was found to remain linear below the
traditional cutoffs of 16 or 18 yrs, so this
exclusion was considered unnecessary.
However, our data and model are for ad-
missions to adult ICUs; thus, we would
not recommend that this model be used
for analyses of admissions to pediatric
units, where specific models exist.
Rather, our model enables children ad-
mitted to adult units to be scored. Re-
moval of exclusions based on particular
diagnoses (e.g., cardiac surgery/burns)
has been made possible by introducing
interactions between diagnostic catego-
ries and the physiology score. The rela-
tionship between physiology and out-
come was found to be stronger for certain
groups, including coronary artery bypass
graft surgery and burns, so that a small
change in physiology could lead to a
larger change in predicted outcome. For
other groups (e.g., acute renal failure,
chronic obstructive pulmonary disease),

Figure 3. Calibration plot for the final model in validation sample 1 (n � 79,526). Observed mortality
vs. predicted mortality from the final model in 20 equal-sized groups based on quantiles of predicted
mortality. Diagonal line indicates perfect calibration. Axes drawn on a log odds scale.

Table 6. Worked examples

Case 1 Case 2

Measurement Score Measurement Score

Highest heart rate 97 min�1 0 135 min�1 2
Lowest systolic BP 78 mm Hg 4 66 mm Hg 6
Highest temperature 39.4°C 0 38.0°C 1
Lowest respiratory rate 17 min�1 2 9 min�1 0
Mechanical ventilation? No Yes
Lowest PaO2 98 mm Hg 61 mm Hg
Associated FIO2 0.30 0.42

PaO2/FlO2 327 mm Hg 0 145 mm Hg 5
Lowest pH 7.34 1 6.92 4
Highest serum urea 7.9 mmol L�1 3 Not recorded 0
Highest serum creatinine 1.6 mg/100 mL 4 1.3 mg/100 mL 2
Highest serum sodium 137 mmol L�1 0 154 mmol L�1 4
Urine output (24 hrs) 1983 mL 1 648 mL 5
Lowest WBC 6.7 � 109 L�1 0 2.0 � 109 L�1 3
Paralyzed/sedated? No Sedated
Lowest GCS 15 0 N/A 5
ICNARC physiology score 15 37
Age, yrs 74 54
Source of admission Elective surgery A&E/other hospital
Diagnostic category Surgical: aortic aneurysm Nonsurgical: respiratory
CPR No Yes
Predicted mortality, %

ICNARC model 10.5 87.6
APACHE II 15.5 52.7
APACHE III 6.2 56.6
SAPS II 11.7 91.9
MPM II 3.9 27.5

BP, blood pressure; WBC, white blood cell count; GCS, Glasgow Coma Scale score; N/A, not
applicable; A&E, accident and emergency; CPR, cardiopulmonary resuscitaton; ICNARC, Intensive
Care National Audit & Research Centre; APACHE, Acute Physiology and Chronic Health Evaluation;
SAPS, Simplified Acute Physiology Score; MPM, Mortality Prediction Model.

1096 Crit Care Med 2007 Vol. 35, No. 4



a weaker relationship between physiology
and outcome was found.

It was surprising that no variables relat-
ing to past medical history improved the
model performance. It may be that the ef-
fects of these chronic conditions are re-
flected through the physiology or diagno-
sis. Alternatively, it may be that although
specific chronic conditions are important
prognostic factors for admissions with cer-
tain diagnoses, these effects are not consis-
tent across all diagnostic groups. The vari-
ables relating to past medical history
represented very severe chronic conditions
(e.g., New York Heart Association func-
tional class IV for cardiovascular disease)
(34) and were therefore rare, ranging from
0.07% for acquired immunodeficiency syn-
drome to 3.2% for severe respiratory dis-
ease. There was also considerable variation
across units in the reporting of past medi-
cal history conditions, which may reflect
either genuine differences such as geo-
graphical variation or varying interpreta-
tion of the definitions. These differences
across units may affect the ability of a
model fitted in one group of units to vali-
date in different units.

The burden of data collection was con-
sidered to be important when developing
the model. For this reason, physiologic
measurements were based on either the
highest or the lowest value over 24 hrs,
but not both. This simplifies the data
collection by comparison with APACHE
II, APACHE III, and SAPS II, which re-
quire the worst value (most accurately
collected as the lowest and highest val-
ues) for certain physiologic variables.

Due to the nature of the data set, it
was not possible to deviate significantly
from the approach of previous models in
basing predictions on extreme physiology
measurements and diagnoses. We de-
cided to retain the traditional approach of
basing predictions on a physiology score
produced by allocating points for physio-
logic derangement. Advances in compu-
tation techniques since the original mod-
els were developed mean that more
sophisticated “black-box” methods are
now possible (35–38), although these
have often been found not to improve
significantly on the logistic-regression-
based approach, especially when the
number of events far exceeds the number
of covariates. Also, discussion with clini-
cians established that it was useful to
have a score that can be calculated sim-
ply, summarizes the patient’s physiologic
condition, and reflects a methodology
that is widely accepted and trusted. In-

vestigation of these newer techniques in
the CMP database may in the future pro-
duce a less transparent but more accurate
model for use in research and compara-
tive risk adjustment.

CONCLUSIONS

The ICNARC model is a more accurate
model for predicting the risk of hospital
mortality for admissions to adult, general
critical care units in the UK than any of
the published models. Even following
recalibration of the published models, the
ICNARC model demonstrated better dis-
crimination and overall fit in the cohort
of patients eligible for all models. The
elimination of all exclusion criteria
makes the ICNARC model a more reliable
tool to use as the basis for risk-adjusted
comparisons between critical care units.
We recommend that it be used to replace
previously published models for risk ad-
justment in the UK.
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