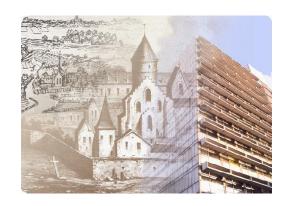
Hemophagocytic syndrome

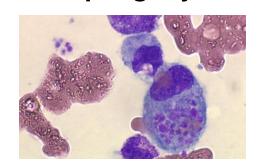

A better understanding for a better management

Paul Coppo

paul.coppo@aphp.fr

Service d'Hématologie - Hôpital Saint-Antoine AP-HP et Université Pierre & Marie Curie

Reference Center for Thrombotic Microangiopathies



Hemophagocytic syndrome (HS)

1. Clinical features:

- Fever and wasting, organomegaly
- Liver cytolysis, coagulopathy
- Hypertriglyceridemia with hyperferritinemia
- Cytopenias

 Cytologic pictures of hemophagocytosis

2. Associated conditions:

Malignancies

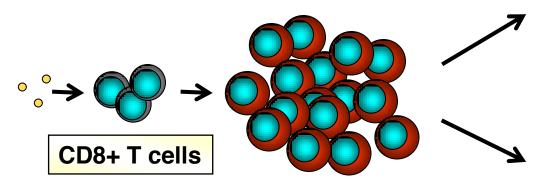
- Lymphoid malignancies
- Other cancers

Immune deficiency

- Hereditary
- Acquired

HIV Immunosuppressive TTT Transplantation

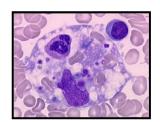
Other contexts


- Autoimmune diseases
- Infections

HS: two main pathophysiological mechanisms I.

Hereditary form

Deficiency in cytotoxicity + infection (trigger)

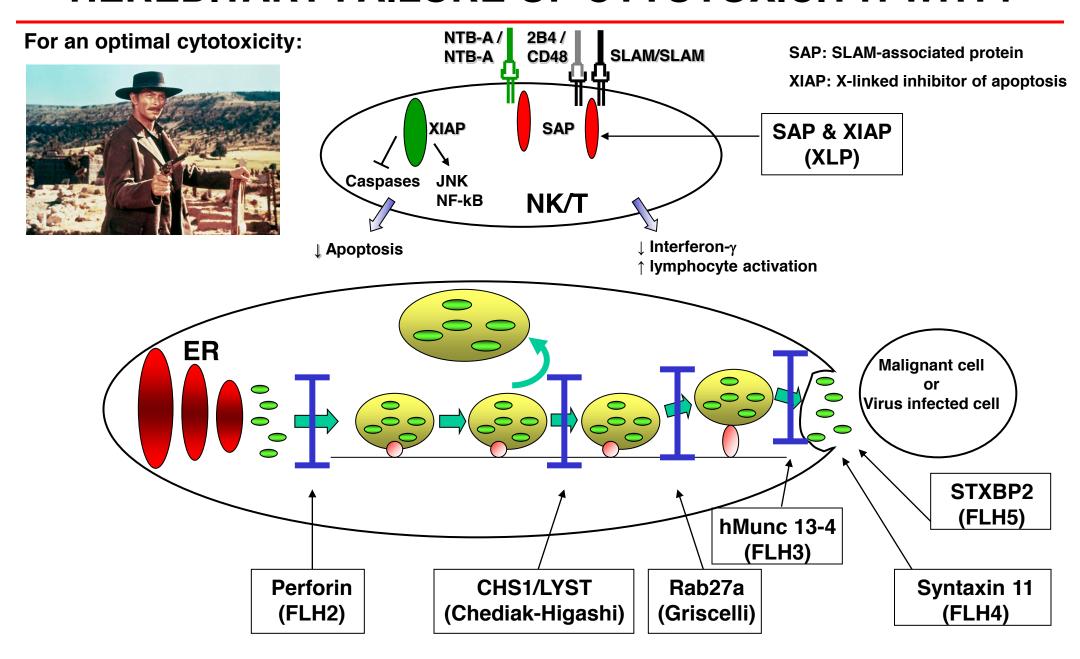

Failure of the body to clear up (intracellular) infectious agents

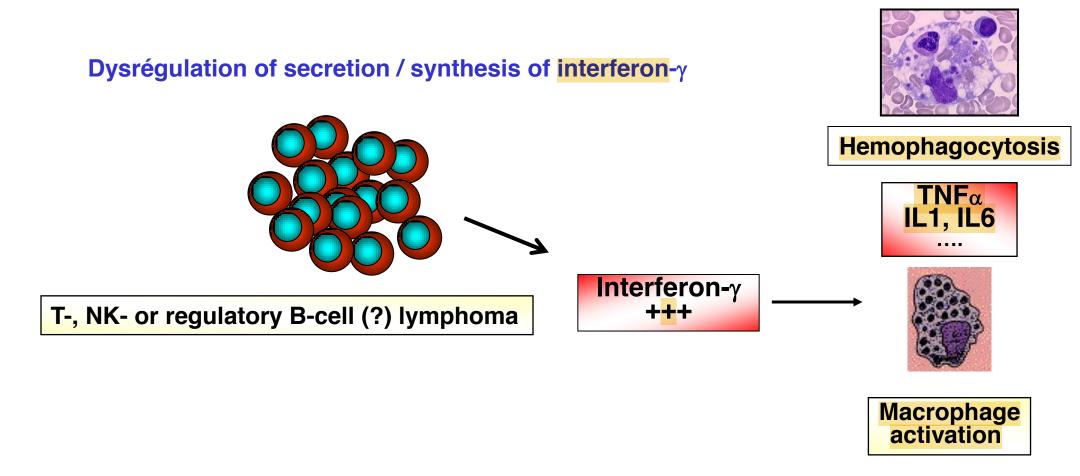
CD8+ T cell expansion

Failure of contraction

Tissue infiltration spleen, liver Bone marrow, CNS

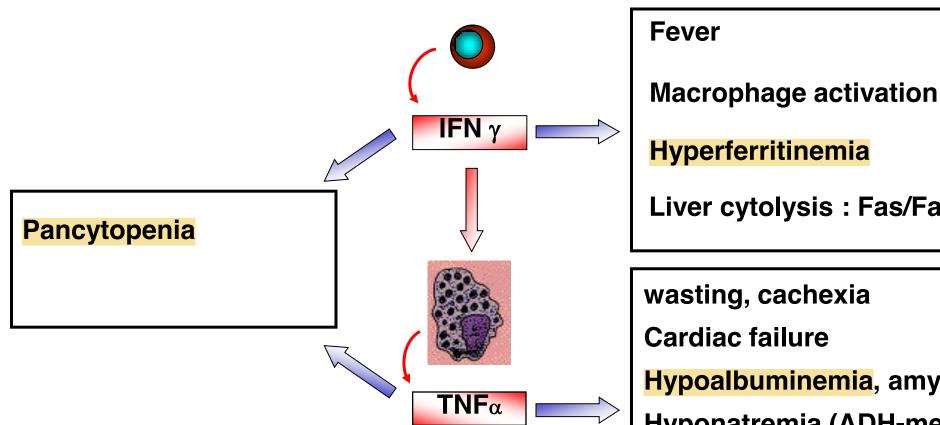
Hemophagocytosis


Interferon-γ +++


Macrophage activation

TNFα IL1, IL6

HEREDITARY FAILURE OF CYTOTOXICITY: WHY?



Pathophysiology of reactive HS: less clear

FROM PATHOPHYSIOLOGY TO CLINICAL PRESENTATION

Hemophagocytic syndrome : an inappropriate secretion of cytokines

Liver cytolysis: Fas/FasL

Hypoalbuminemia, amyotrophy

Hyponatremia (ADH-mediated)

Hypertriglyceridemia

Tissue plasminogen activator

To diagnose an hemophagocytic syndrome

Suspicion of HS (fever + wasting + cytopenias, with no other obvious etiology)

No specific biological test: the diagnosis is based on an association of criteria

∆ criteria of the « Histiocyte Society 2004 »:

Henter et al., Pediatr Blood Cancer 2004

Typically used for HS in children; used by default in adults+++

- 1. Familial context / Genetic abnormality
- 2. 5/8 following criteria:
 - Fever
 - Splenomegaly
 - ≥ 2 cytopenias
 - Hypertriglyceridemia or hypofibrinemia
 - Ferritin > 500 ng/mL
 - sCD25 > 2400 U/mL
 - Decreased NK cell activity
 - Hemophagocytosis

Uneasy to use in emergency...

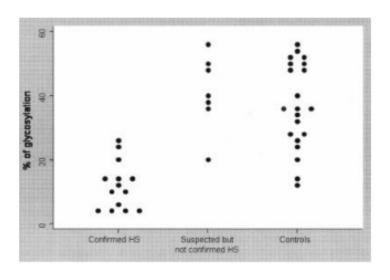
The diagnosis of HS is frequently underestimated; a delayed diagnosis is frequent

A tool for the diagnosis of adult reactive HS: the HScore

Parameter	No. of points (criteria for scoring)		
Known underlying immunosuppression*	0 (no) or 18 (yes)		
Temperature (°C)	0 (<38.4), 33 (38.4–39.4), or 49 (>39.4)		
Organomegaly	0 (no), 23 (hepatomegaly or splenomegaly), or 38 (hepatomegaly and splenomegaly)		
No. of cytopenias†	0 (1 lineage), 24 (2 lineages), or 34 (3 lineages		
Ferritin (ng/ml)	0 (<2,000), 35 (2,000–6,000), or 50 (>6,000)		
Triglyceride (mmoles/liter)	0 (<1.5), 44 (1.5–4), or 64 (>4)		
Fibrinogen (gm/liter)	$0 \ (>2.5) \text{ or } 30 \ (\leq 2.5)$		
Serum glutamic oxaloacetic transaminase (IU/liter)	0 (<30) or 19 (≥30)		
Hemophagocytosis features on bone marrow aspirate	0 (no) or 35 (yes)		

HScore = 230 (IQR, 203-257) for a PPV of 98% 125 (IQR, 91-150) for a NPV of 93%

HScore	Probability of hemophagocytic syndrome, %	
90	<1	
100	1	
110		
120	3 5 9	
130	9	
140	16	
150	25	
160	40	
170	54	
180	70	
190	80	
200	88	
210	93	
220	96	
230	98	
240	99	
250	>99	


The probability of HS ranges from < 1% with a HScore ≤ 90 to > 99% with a HScore ≥ 250

Score freely available online: http://saintantoine.aphp.fr/score/

A potentially interesting tool: glycosylated ferritin

Low Glycosylated Ferritin, a Good Marker for the Diagnosis of Hemophagocytic Syndrome

Laurence Fardet,¹ Paul Coppo,¹ Adrien Kettaneh,¹ Monique Dehoux,² Jean Cabane,¹ and Olivier Lambotte³

Patients with confirmed
hemophagocytic syndrome (n = 14)
vs. patients with suspected but
unconfirmed hemophagocytic
syndrome $(n = 7)$

Patients with confirmed hemophagocytic syndrome (n = 14) vs. controls (n = 21)

	Apparent performance	Cross-validation performance	Apparent performance	Cross-validation performance
Optimal cutoff, %† Sensitivity Specificity Positive predictive value Negative predictive value	26 1.00 (0.77–1.00) 0.86 (0.42–1.00) 0.93 (0.68–1.00) 1.00 (0.54–1.00)	25 1.00 (0.77-1.00) 0.71 (0.29-0.96) 0.88 (0.62-0.98) 1.00 (0.48-1.00)	26 1.00 (0.77–1.00) 0.76 (0.53–0.92) 0.74 (0.49–0.91) 1.00 (0.80–1.00)	25 0.86 (0.57-0.98) 0.76 (0.53-0.92) 0.71 (0.44-0.90) 0.89 (0.65-0.89)

^{*} Values in parentheses are 95% confidence intervals.

Value of glycosylated ferritin: certain HS: 10% [3-14] vs 40% [36-47] (uncertain HS) (p<0.001) vs controls (36% [26-49]) (p<0.001)

[†] The optimal cutoff value is the one that gives the higher total sensitivity and specificity.

Therapeutical principles: 3 points

1. Management in emergency and ressuscitation measures:

- Correct ionic troubles and coagulopathy, transfusions
- Typically need preemptive antibiotherapy (febrile neutropenia)
- Organ failure: ventilation, catecholamins, anti-epileptic drugs...

2. Symptomatic treatment: « to calm the immune system down »

- Steroids 0.3 to 1 mg/kg
- Most efficient treatment: etoposide+++: rapidly efficient
 efficacy > steroids > IgIV
 > leukemogenic risk (+++ if > 2 g/m²!)
- Patients treated with etoposide during the 4 first weeks have a better pronosis (p < 0.01)
- 1-2 or more infusions..., 100 to 150 mg/m²

Shinsaku et al., J Clin Oncol 2001

3. Specific therapies:

- Treat an associated disease+++: autoimmune disease, lymphoid malignancy, HIV infection...

PROGNOSIS OF REACTIVE HS

Assessment of parameters on admission associated with day-30 mortality in 162 patients with reactive HS

Variable	Odds ratio	95% CI	P-value
Age (per 10 years increase)	1.59	1.06-2.38	0.03
Platelets (per 1 × 10 ⁹ /l increase)	0.97	0.95-0.99	0.01
Underlying immunodeficiency (HIV infection)	0-19	0.03-1.03	0.06
Triggering condition			
Infection or other condition*	1	-	_
Lymphoma	11.9	2-4-60-5	0.003
Multicentric Castleman disease	_	_	_
Treatment use			
No specific treatment or glucocorticoid or IVIG alone	1	-	-
Etoposide	0-21	0.05-0.94	0.04

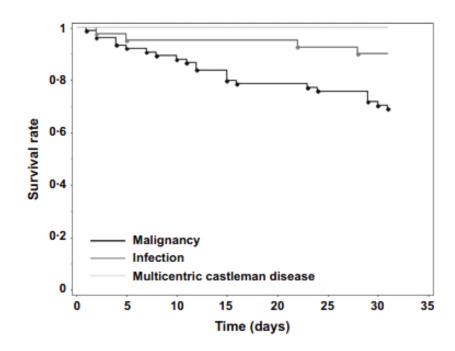


Fig 1. Kaplan–Meier survival estimates of survival rate in patients with reactive haemophagocytic syndrome according to the underlying condition.

Age, thrombocytopenia, an underlying lymphoid malignancy and lack of etoposide in the treatment negatively impact prognosis

Conclusion: future directions for 2016

- 1. HS: at the junction of immune deficiency, infections and malignancies:
 - Are there susceptibility genes shared by these conditions?
 - hMunc13.4, perforine (lymphoma or CTD + HS)
- 2. Improvement of diagnostic criterias:
 - Confirmation of the **Hscore** by other groups
 - Glycosylated ferritin should be evaluated in emergency: a reliable tool?
 - An « aggressive » consensual diagnostic work up should be proposed in reactive HS

- 3. Consensual recomendations should be developed:
 - First line therapy: what one should do beyond empiricism? Etoposide: how and how much?
 - Therapeutical trials should evaluate targeted therapies: anti-interferon, alemtuzumab, anti-IL1/anakinra...

Laurence Fardet
Service de Dermatologie
Hôpital Henri Mondor

Sébastien Rivière
Service de Médecine Interne

Christophe Marzac Laboratoire d'Hématologie Hôpital Saint-Antoine - Paris

Elie Azoulay Service de Réanimation

Lionel Galicier
Service d'Immunopathologie
Hôpital Saint-Louis - Paris

Abdelghani Bouchekioua Marc Arca Suella Martino Grégory Manuceau

Unité 1170 Institut Gustave Roussy Villejuif

Olivier Lambotte
Nathalie Lerolle
Service de Médecine Interne
Hôpital Bicêtre
Le Kremlin-Bicêtre

