Complexity modeling: Identify instability early

Michael R. Pinsky, MD

Biological systems are innately complex, display nonlinear
behavior, and respond to both disease and its treatment in similar
complex ways. Complex systems display self-organization and
predictive behavior along a range of possible states, often re-
ferred to as chaotic behavior, and can be both characterized and
quantified in terms of this chaotic behavior, which defined
strange attractors (p) and variability. In this context, disease can
be characterized as a difference in a disease state p and a healthy
p. Furthermore, effectiveness of treatment can be defined as a
minimization problem to decrease the phase-state difference
between disease and health p values, such that effective treat-

? analogous to
supermaneuvrability in jet
fighters? i.e., unstable, non-
linear aerodynamics

ment is defined as the ability to restore the healthy p. Importantly,
this approach will be effective without anything being known
about the physiologic processes that define health or disease. The
implication is that this approach is a powerful tool to define the
determinants of instability as compared with normal variability, to
answer why disease is not healthy, and to identify all potentially
effective treatment options independent of known pharmacology
and physiology. (Crit Care Med 2010; 38[Suppl.]:S649-S655)
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e live in a complex inter-

dependent physical world

in which seemingly mi-

nor actions at one end of
the globe can have profound effects on
the weather on the other side of the
world. Similarly, biological systems are
also highly interdependent and have
evolved with interconnectiveness that is
poorly understood, regulated in an in-
trinsic and reactive manner, altered by
trauma, disease, and aging, and influ-
enced in seemingly different ways by
medical treatments that display a dizzy-
ing degree of variability from one subject
to the next. This reality has been termed
the butterfly effect and underscores the
inability of physicians to accurately pre-
dict patient outcomes despite advanced
monitoring and knowledge of physiology.
Importantly, these realities have a sci-
ence devoted to them: complexity theory
and its schizophrenic twin, chaos, as
linked by fractal analysis. Recent ad-
vances in medicine by using tools devel-
oped to understand nonlinear complexity
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demonstrate its power in medicine. We
and others have used this approach to
diagnose cardiorespiratory insufficiency
at the bedside several hours (on average)
before conventional linear warning sys-
tems gave similar alerts. However, before
describing these approaches, a brief
primer on chaos, fractal geometry, and
complexity theory will make the vocabu-
lary and subsequent discussion clearer.
This review was gleaned as a distillate
from other sources and is in no way ex-
haustive or definitive, but it does cover
the major aspects of the field. Readers
interested in this topic are referred to
more advanced texts for greater discus-
sion of these concepts and their associ-
ated mathematical proofs (1-5).

A brief primer on chaos,
fractals, and complexity theory

Chaos Theory and the Butterfly Ef-
fect. The term butterfly effect itself is
related to the work of Edward Lorenz and
is based on chaos theory and a sensitive
dependence on initial conditions. It was
first described by Jacques Hadamard in
1890 and popularized by Pierre Duhem’s
1906 book La Théorie Physique: Son Ob-
Jjet et sa Structure, which holds that for
any given set of observations, there is an
innumerably large number of explana-
tions. The idea that one butterfly could
eventually have a far-reaching ripple ef-
fect on subsequent historic events seems
to have first appeared in a 1952 short
story by Ray Bradbury about time travel.
In 1961, Lorenz was using a numerical

computer model of 12 interconnected
equations derived from fluid mechanics
to predict weather patterns. When he reran
this weather prediction a second time, he
used a shortcut by entering 0.506 instead of
the full decimal 0.506127. The result was a
completely different weather scenario (6).
What he realized was a defining moment
in chaos theory and of a concept previ-
ously unknown. Specifically, systems in
which tiny variations in initial conditions
can produce large differences in later
states of the system are known as chaotic
systems. Lorenz noted that “one meteo-
rologist remarked that if the theory were
correct, one flap of a seagull’s wings
could change the course of weather for-
ever.” Later speeches and papers by
Lorenz used the more poetic butterfly to
replace the seagull, to the consternation
of ornithologists everywhere. According
to Lorenz, upon failing to provide a title
for a talk he was to present at the 139th
meeting of the American Association for
the Advancement of Science in 1972,
Philip Merilees concocted the title, Does
the Flap of a Butterfly’s Wings in Brazil
Set Off a Tornado in Texas? The Wikipe-
dia description of the butterfly effect
summarizes this concept as follows: “The
flapping wing represents a small change
in the initial condition of the system,
which causes a chain of events leading to
large-scale alterations of events. Had the
butterfly not flapped its wings, the trajec-
tory of the system might have been vastly
different. Although the butterfly does not
cause the tornado in the sense of provid-
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ing the energy for the tornado, it does
cause it in the sense that the flap of its
wings is an essential part of the initial
conditions resulting in a tornado, and
without that flap that particular tornado
would not have existed.”

It is useful to give concrete examples
to serve as illustration. One could plot a
simple time series of values based on a
formulax, , ; = ax,[l — x2ly + 1/bz,
where x, is a variable x at time £, @ and b
are constants, and y and z are related to x
by the formula x = c(y/z). If we use a
number less than 1 as the initial x value,
say 0.6200, and plot out the resultant x-y
values, they would plot out a pathway
that seems erratic but nevertheless be-
haves in a remarkably predictable pat-
tern. Plotting the same time series but
using 0.6201 as the starting value, merely
1072 of a decimal point less, would show
initially similar trends for the first 23
iterations but then diverge widely from
the first series. Although initially the two
graphs initially behave in a similar fash-
ion, they rapidly diverge and seem to bear
no relation to each other in terms of
where they are at a specific point in time
though they both track identical space,
sort of like electrons around a nucleus.
This quality defines that in non-linear
systems the actual state one finds oneself
is extremely sensitive on initial condi-
tions. Second, despite apparent random
behavior by the two graphs, they are both
described by the same simple equation
thus their behavior is highly determinis-
tic. Accordingly, in chaos theory, three
types of behaviors can be defined: peri-
odic, which repeat themselves over some
finite time interval, chaotic, which, while
deterministic, demonstrate complex be-
havior and do not repeat themselves, and
random, which are unpredictable and
non-deterministic (7). Furthermore, the
general shape of the two graphs is nearly
identical, so while the exact position of a
subject at any timepoint cannot be pre-
dicted with accuracy, one can accurately
predict the phase space into which this
subject will travel. This aspect of nonlin-
ear systems is called aperiodic behavior.

Thus, chaos is not random but rather
a highly structured behavior that is com-
pletely dependent on earlier states. This
point has profound implications for sci-
ence in general, and medicine in partic-
ular. Because the behavior is so sensitive
on the initial state and since that may
vary among subjects, even knowing ex-
actly how systems interact, such as auto-
nomic tone and blood pressure or heart
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rate, one is still unable to predict with
any accuracy the behavior of the system.
This is because of the inability in know-
ing the initial state with the degree of
accuracy necessary to minimize subse-
quent variance. Regrettably, the intensive
care unit bedside approach of trying to
make measurements to within “an ac-
ceptable degree of measurement error”
will not allow accurate predictions of sub-
sequent behavior. Thus, highly predictive
models of critical illness cannot rely on
simple linear models of stimulus-re-
sponse or output proportional to some
degree of input but must embrace com-
plexity in the development of predictive
models. This is the logic for applying
complexity modeling to identify the phys-
iologic state and, by inference, disease.

Linear and Nonlinear Systems. Dy-
namics is the study of how a system
changes with time, and hemodynamics is
the study of how cardiovascular systems
change with time. Systems are either lin-
ear or nonlinear. A simple linear system
is completely described by linear equa-
tions, such as x, , ; = ax, + ¢, where x,
is a variable x at time #, and ¢ and ¢ are
constants. Importantly, linear relation-
ships define straight-line relations where
an increase in one value results in a pro-
portional change in another. Another
characteristic of a linear system is that
the variables in a linear system are not
interdependent. Thus, the overall behav-
ior of any linear system containing many
variables is the sum of the individual
components. Relevant to life, linear sys-
tems are predictable at a given time if
earlier conditions are known. Although
linear systems are common in industry
(e.g., internal combustion engine power
output vs. piston gas flux), they are ex-
tremely rare in nature. Still, we teach
physiology by using rules that presume
hemodynamics and pharmacokinetics are
linear. Drug metabolism is an example of
linear mechanics. The determinants of
drug levels in the blood include the initial
loading dose and subsequent doses and
their timing, route of administration, vol-
ume of distribution, and rate of metabo-
lism or clearance. However, the volume
of distribution is independent of the
clearance rate, and both can be calculated
independently of each other because they
each reflect linear systems.

However, nonlinear systems occur more
commonly in pature. Examples include the
innate immune response to foreign anti-
gen, blood flow distribution, heart rate vari-
ability (HRV), and localized cortical neuro-

logic activity. Just like the weather, the
behavior of a nonlinear system may be im-
possible to accurately predict. Because non-
linear systems behave in a chaotic fashion,
such systems are difficult if not impossible
to understand by using simple linear mod-
els. This reality underlying the difficulties
underlying research into complex systems
like heart failure, sepsis, and multiple sys-
tems organ failure. Thus, if we are to truly
understand disease and its response to
therapy, we require a new set of modeling
tools and mathematical principles to be
able to understand and predict biological
behaviors. The initial model developed by
Lorenz to explain chaotic behavior required
only three interconnected equations:

dx/dt = —o (x; + yy)
dy/dt = —x, 2z, + r xy — Y,
dz/dt = x,y, — b 2,

for variables x, y, and z and constants o,
r, and b, where o is called the Prandtl
number and p the Rayleigh number. All
values of o, p, and B exceed 0, but usually
o = 10, B = 8/3, and p is variable. The
system exhibits chaotic behavior for p =
28 but displays knotted periodic orbits for
other values. All three equations are in-
terdependent having, at a minimum,
variables x and y in x, y, and z space
(three dimensional). Plotting real values
of these equations relative to a specific
system, like blood flow or blood pressure,
describes each system’s aperiodic behav-
ior. A system that is plotted through all
its potential states is called its phase
space. Of importance, when plotting such
phase space, it may describe one of three
different patterns. The behavior may sim-
plify down to a constant repeated value,
at which time the system is said to be in
a steady state. Furthermore, it may create
a racetrack of cycling values over time
referred to as periodic behavior. Both
steady-state and periodic behavior regions
in phase space are known as atfractors.
However, more commonly, the solution to
the equations creates an ever-changing pat-
tern that resembles a butterfly-like figure
that never exceeds certain values but never
repeats itself either (Fig. 1). The butterfly
shape is called a Lorenz strange attrac-
tor. It also defines the third law of chaos,
namely, that chaotic systems “are con-
fined to a certain range of values and the
value of the system does not repeat.”
Such constant variation that occurs
within_defined limits is the rule rather
than the exception in nature. HRV and
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Figure 1. This figure, made using p = 28, o = 10 and B = 8/3, shows three time segments of the
evolution of trajectories in the Lorenz attractor. Reproduced from Wikipedia [Lorenz attractor] with
permission.

varying breathing patterns represent two
obvious examples, but blood pressure
variability, microcirculatory flow phase
among capillaries, and ventricular con-
traction synchrony also represent Lorenz
strange attractors (8-12).

Fractal Geometry. The Lorenz strange
attractor is one example of a fractal ob-
ject. In 1975 Mandelbrot described the
concept of fractals as the geometry of
irregular shapes that look the same on all
scales of length (13). A fractal structure
exhibits self-similarity, i.e., no matter
how closely one inspects it, a structure is
apparent on a small scale that is identical
to the large-scale structure of the object.
A geometric example of a fractal is pro-
vided by the Koch snowflake (Fig. 2).
Start with an equilateral triangle, and,
taking the middle third of each side, at-
tach an equilateral triangle with sides one
third the length of the large triangle. The
result is a Star of David. The process is
repeated on all 12 sides of the star and
then repeated again on all straight sides
of the new figure, and so on indefinitely.
No matter what scale of length under
which one examines the snowflake, it will
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have the same appearance. In biology the
obvious examples of fractal structure are
the vascular tree, repeatedly branching
and dividing from aorta to the smallest
capillary, and the bronchial tree down from
the trachea to the alveolar ducts (14).
Complexity Theory. Complexity deals
with the capacity of systems composed of
simple units at any level (atoms, mole-
cules, neurons, computer processors, or
people) to self-organize and evolve in
time. This has been the topic of several
novels and a few recent movies expanding
on the potential that self-organization
implies. In reality, self-organization sur-
rounds us at all levels, and it is this self-
organization that allows complexity the-
ory to be used to predict state and thus
identify instability in at-risk patients. The
concept is that by following a set of amaz-
ingly simple rules, entire armies of ter-
mites create defined structures in a
matter of minutes. In medicine, the tra-
ditional macroscopic descriptions of
signs and symptoms have given way dur-
ing the latter part of the 20th century to
pathologic descriptions of microorgan-
isms, cellular processes, and organ-

Koch Snowflake

A

Figure 2. Fractal geometry with increasing com-
plexity shown as a Koch snowflake.

system interactions. Although the reduc-
tionist approach has been successful to
date and forms the majority of logic used
at present in scientific publications, it
cannot provide a complete description of
the universe, our own world, populations,
organisms, or subatomic particles.
Reductionist science depends on ana-
lyzing objects and phenomena in isola-
tion. This is the essence of laboratory
science, wherein a complex relationship
is artificially abstracted into simple yes-
no, up-down solutions to a high degree of
accuracy. For example, a myocardial in-
farction is assessed relative to the inter-
action between energy delivery (blood
flow) and metabolic demand (myocardial
oxygen requirements). However, as de-
scribed below, most myocardial infarc-
tions present specific signature changes
in R-R intervals long before any actual
flow-induced ischemic changes occur to
the cardiac myocytes. Expanding on this
further, the stress causing the myocardial
infarction has known external contribu-
tors, like social stressors, depression, and
personality characteristics. Although pay-
ing lip service to these factors, reduction-
ism usually excludes all but the most direct
factors in defining ischemic risk and out-
come from an acute coronary syndrome.
The central feature of complex sys-
tems is their inherent ability to self-
organize. This is referred to as emergent
behavior. This collective behavior of com-
plex systems occurs spontaneously. What
can emergent systems do that other sys-
tems cannot? First of all, they are robust
and resilient. There is no single point of
failure, so if a single unit fails, becomes
lost, or is stolen, the system still works.
Second, they are well suited to the real
world. Human-engineered systems may
be optimal but often require effort to
design and are fragile in the face of
changing conditions. Importantly, com-
plex systems do not need to have com-
plete knowledge or understanding to
achieve a goal. Finally, they find a reason-
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able solution quickly and then optimize.
Since, in the real world, time matters,
this quality is extremely well suited for
adaptive biological systems because deci-
sions need to be taken while they are still
relevant. For example, computer algo-
rithms tend to not produce a useful result
until they are complete; for an organism
this may be too late. Complexity theory
attempts to analyze this self-organization
aspect of dynamics and use it to define
useful and maladaptive behaviors. Be-
cause order emerges spontaneously in
complex systems, this will have a survival
advantage for that system in a changing
environment. I previously used to claim
that infelligence was the ability of an or-
ganism to adapt to a changing environ-
ment. That definition must now be modi-
fied to say that intelligence is the effective
use of complexity by a biological system to
adapt to a changing environment.

From a Darwinian perspective, there is
a clear survival advantage for an organ-
ism which remains in a state capable of
self-organization so that it may adapt.
From the above discussion about chaos
theory, it is clear that such systems fol-
low nonlinear dynamics and their pro-
cesses are interconnected. In essence, we
have just described the human body.
However, chaos and continued adapta-
tion are energy-requiring processes; al-
though adaptive, they are by their very
nature not stable but are in a type of
equilibrium. Clearly, certain biological
processes do better when their behavior
is well defined, such as bone stiffness,
muscle-ligament orientation, and neu-
ron-vascular reflex arcs. On the other
hand, other systems such as thought, the
immune system, and blood flow distribu-
tion require a more adaptive perspective
to sustain a survival advantage.

The Edge of Chaos. From the above
discussion it is clear that some systems
function better when they are constantly
changing, whereas others do best in a
more stable state. From this perspective
came the concept of living at the edge of
chaos. The paradox created by the above
construct is that if a complex system gen-
erates order spontaneously, then how
does it avoid becoming too ordered and
lose its future ability to adapt? Similarly,
if it is too disordered, it would not have
the minimal structure necessary to sus-
tain complex functions, such as blood
flow and thermal regulation. How is it
that complex systems avoid the extremi-
ties of stability and random behavior? In
his book At Home in the Universe, Kauf-
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man (2) proposes that life should be con-
sidered a complex ordered system sitting
near the transition between order and
chaos. Such a placement of life would
have many advantages. It would allow for
rapid sensing of change and coordinate
adaptation with a minimal amount of de-
lay and cost, while providing enough
structure to insure stability. If this hy-
pothesis is correct, then it would drasti-
cally change the concept of evolution as
postulated by Darwin. Darwinian evolu-
tion opines that random mutations occur
in the species which are either adaptive
or maladaptive. Those that are adaptive
and provide a survival advantage are
passed on to their offspring, whereas
those that are not adaptive die off before
having offspring. Mutations by this pro-
cess are random events of nature. How-
ever, if complexity theory is correct, then
life arose not randomly as a few nucleic
acids formed by thermoelectric activity in
the primordial swamp but by spontane-
ous organization. Accordingly, the result-
ant life forms would not be accidents of
nature but the product of the environ-
ment that they were born into. Although
creationists will have my head for this, it
allows for an accelerated evolution of spe-
cies beyond that predicted by random

mutations and without intelligent design.

Using complexity theory to
define health and identify
disease

Traditional medical teaching has al-
ways held that health represents a steady
state at rest, whereas disease reflects the
wildly uncontrolled and deregulated pro-
cesses of maladaptation. However, under
normal resting conditions, healthy reac-
tive biological processes, such as the ner-
vous, immune, and hemodynamic sys-
tems, are not static and unchanging but,
as will be shown below, display continual
change of a minor but characteristic na-
ture. Importantly, this reality flies in the
face of traditional views that health is
defined by a steady-state equilibrium. In
fact, normal homeostasis is often a rest-
less search of physiologic systems, such
as blood pressure and blood flow distri-
bution, for the optimal state within
boundaries from which to operate. These
slight variations may seem random but,
when analyzed by using complexity the-
ory that quantifies order and entropy, can
be clearly demonstrated to be chaotic.
Interestingly, the traditional concept of
disease is that it fluctuates widely,

whereas studies of disease using complex-
ity theory demonstrate that, if anything,
disease is characterized by a loss of chaos
and an increasingly constant behavior. In
a sense, disease reflects a loss of the ability
to adapt. Similarly, external stressors such
as exercise, thermal challenge (hypo- or
hyperthermia), and anxiety (15) markedly
decrease the intrinsic variance of many bi-
ological systems including the immune,
vascular, and limbic systems. Clearly, there
is no condition more stable and static than
death. This may be the reason why subjects
with depression have an increased risk of
cancer and infection and why a positive
attitude is an important component of the
arsenal for recovery. For a detailed discus-
sion of this topic and specific references,
the reader is referred to recent review arti-
cles (16, 17).

HRV. Perhaps the most widely studied
example of the clinical utility of complex-
ity theory comes from its use in identify-
ing those subjects at risk of an impending
acute coronary syndrome. Cardiologists
have long been interested in studying
cardiac rhythm and examining the R-R
interval variation, referred to as HRV.
HRV is currently quantified in the time
domain and by using Fourier analysis in
the frequency domain. However, both of
these forms of quantification reflect lin-
ear analysis (18, 19). Time domain analy-
sis is based on statistical manipulation of
R-R intervals, whereas frequency domain
analysis (or spectral analysis) looks at the
variability around a particular heart rate
value. A spectrum of values is produced
with peaks around highly variable values,
such as respiratory frequency, as this re-
flects the normal autonomic influence of
respiration on vagal tone. Spontaneous
inspiration causes immediate vagal with-
drawal and cardiac acceleration, referred
to as respiratory sinus arrhythmia. This
can be quantified by using Fourier trans-
formations of the R-R intervals into the
time domain and examining the harmon-
ics coincident with the respiratory rate.
This approach demonstrated that diabetic
neuropathy first manifests itself as loss of
respiratory sinus arrhythmia; its re-
emergence coincides with recovery of
tight glucose control (20). Similarly, car-
diac transplantation, which creates a de-
nervated heart, does not completely abol-
ish respiratory sinus arrhythmia but does
reduce its power by 100-fold (21). These
linear modeling methods provide excel-
lent analyses of such periodic influences
on heart rate. However, there are also
nonperiodic influences such as exercise,
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iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User

iAnnotate User


Poincare Analysis of R-R Intervals

a Normal sinus rhythm

b Acute atrial fibrillation

¢ Chronic atrial fibrillation
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Figure 3. Hypothetical Poincare analysis of R-R intervals for normal sinus rhythm (@) acute atrial
fibrillation (), and chronic atrial fibrillation (c). Note the order seen for the R-R intervals during acute
atrial fibrillation (chaotic), whereas chronic atrial fibrillation has random R-R intervals.

thermal stress, psychological state, and
baroreceptor activity, which are not char-
acterized by this form of analysis because
they do not take into account beat-to-
beat variations in heart rate.

Using nonlinear dynamics as a model-
ing tool, several groups have examined
the intrinsic R-R variability of normal
sinus rhythm (Fig. 3) (19, 22). Using
Poincare plot analysis to analyze R-R in-
terval variations, Woo et al (23) demon-
strated that the complexity seen in nor-
mal subjects was lost in heart failure
independent of changes in heart rate.
Poincare plotting examines the frequency
of one event with the next and then that
one to its subsequent event. Relevant to
acute medicine, decreases in HRV occur
not only with aging and congestive heart
failure but also with sudden cardiac death
(24-26). HRV can be quantified by many
means. The simplest is the sb of the mean
of all nonectopic R-R intervals. Loss of
the low-frequency HRV by Fourier anal-
ysis is also a measure of decreased com-
plexity. Myocardial infarction decreases
HRV and, at the extreme, is associated
with sudden cardiac death (27).

A low HRV (as measured by the sp of
the mean of all nonectopic R-R intervals)
is strongly associated with mortality, in-
dependent of other indices such as ejec-
tion fraction or exercise tolerance. It is
now widely accepted that myocardial in-
farction causes a decreased HRV and that
this, in turn, is associated with sudden
cardiac death. Although these changes
define that complexity is lost in disease,
its usefulness primarily comes from pre-
dicting events and identifying disease
before treatments to reverse processes be-
come ineffective. Thus, the focus on HRV
analysis has been on identifying those
patients who develop arrhythmias and

Crit Care Med 2010 Vol. 38, No. 10 (Suppl.)

those at increased risk of sudden cardiac
death. Several methods have been pro-
posed (28-30) but, regrettably, no non-
invasive technique is presently accurate
enough to be used as a bedside tool. An-
alyzing the variability of the Q-T interval
does however seem promising.

Several investigators have opined that
although complexity theory dictates that
chaotic states are exquisitely sensitive to
their initial state, making accurate pre-
dictions of outcome impossible, that
same sensitivity makes them highly sus-
ceptible to control with minor interven-
tions. In support of that concept, cardiac
pacing at times defined by a computer
program that analyzed the R-R interval
changes and paced to offset chaos pro-
gression prevented asystole in an isolated
cardiac muscle preparation prone to car-
diac toxicity, whereas fixed pacing had no
effect (12). Whether or not such analyses
can be applied to intact hearts in situ
remains to be seen.

Complexity modeling and sepsis

Sepsis, septic shock, and the develop-
ment of multiple organ failure reflect the
major challenge confronting critical care
medicine specialists since the start of
their specialty (31). Perhaps the most ex-
citing, although most speculative, of the
applications of nonlinear dynamics to
medicine has been its integration into a
model of the pathogenesis of multiple
organ dysfunction. In this regard,
Burykin and Buchman (32) have been
thought leaders in this field. Our under-
standing of most of the complex pro-
cesses associated with critical illnesses
comprises grouping symptoms and signs
and calling them syndromes. Thus, we
understand acute lung injury as the acute

respiratory distress syndrome and multi-
ple seemingly unrelated organ failures as-
sociated with profound critical illness as
multiple organ dysfunction syndrome
(MODS). Because these syndromes com-
monly occur in critically ill patients and
when present are associated with in-
creased mortality, they are presumed to
follow common pathways that include ac-
tivation of the inflammatory systems.
Our thinking on this process has slowly
evolved. First, MODS was thought to in-
volve a massive proinflammatory re-
sponse. However, it was subsequently
shown that persistence of a generalized
inflammatory response, rather than its
magnitude, was the primary driver for its
development (33). Subsequent studies re-
vealed that MODS was associated as
much with immune suppression as the
proinflammatory state alone, as the anti-
inflammatory processes overwhelmed
normal innate immune defenses (34, 35).
This evolved to an understanding that
mitochondrial damage and apoptosis
were central effector arms in the process
of death from critical illness (36). Con-
sidering the complexity of these biologi-
cal systems, their interconnectivity, the
differing states in which patients present,
and their baseline physiologic state be-
fore therapy, is there any surprise that
monotherapy with even the most poten-
tial anti-inflammatory and immuno-
modulating agents is only minimally ef-
fective at best?

Godin and Buchman (37) address this
problem by using complexity modeling.
They reasoned that because the order and
stability found in biological systems de-
pends on the connections between the
system’s constituents, the progression
from an initial systemic inflammatory re-
sponse to MODS abolishes the connec-
tions between organs, resulting in a loss
of complexity. If so, then linkage between
HRV and breathing is lost, baroreceptor
tone sensing and vasomotor tone is lost,
and endocrine homeostasis is blunted. All
these effects are central characteristics of
septic shock and MODS. The strength of
their reasoning came with the final step
in their logic. They predicted that irre-
versibility may be due either to irrevers-
ible organ damage or to irreversible ef-
fects on connections. This implies that, to
restore health, we need not only restore
organs to a functional state, but also re-
store a state of connectedness between
individual organs. In support of this con-
cept, liver transplant patients with acute
rejection and acute respiratory distress
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Heart rate-breathing rate groupings by health
and disease in a cohort of patients at risk for instability

min BR

max BR

median BR

b

a5

‘Normal
high HR events
high BR events

BR

HR (bpm)

Figure 4. Analysis of 671 step-down unit patients continuous recordings of probability (a) probability
(prob) distribution for breathing rate (BR) or respiratory rate of normal subjects (shaded area + SD)
and unstable subjects, minimum (min), median, and maximum (max) values and (b) BR-heart rate
(HR) groupings per patient for normal patients, those with high heart rate, and those with high BR.

syndrome may completely recover within
hours of receiving a new liver, which pre-
sumably alters the toxic effects of the
interconnectivity.

Based on this logic we have studied
the interconnections among heart rate,
respiratory rate, pulse oxygen saturation
(Spo,), and blood pressure in patients at
risk of developing cardiorespiratory in-
sufficiency (38). In collaboration with Ox-
ford BioSignals, we used their complexity
model of instability defined as the BioSig-
nals index (BSI). The data fusion method
used to calculate BSI utilizes neural net-
working to develop a probabilistic model
of normality in four dimensions, previ-
ously learned from a representative sam-
ple of a 150-patient training set. Variance
from this data set is used to evaluate the
probability that the patient-derived vital
signs are considered normal. The gener-
ated BSI ranges from 0 (no abnormality)
to 10 (severe abnormalities in all vari-
ables). A BSI of =3 is deemed to reflect
significant cardiorespiratory instability
requiring medical attention (39). Using
this method, we studied all 326 patients
admitted to one step-down unit over an
8-wk period, reflecting over 18,000 hrs of
continuous monitoring. The nursing staff
was blinded to the BSI data. Medical
emergency team activation occurred
seven times during this study interval. In
each case the BSI signal would have
alerted the nurses to the patient’s insta-
bility a minimum of 30 mins beforehand
and with a mean lead time of 6.2 hrs.
Furthermore, the patterns of heart rate-
respiratory rate between groups differed
depending on whether or not they were
unstable, having either primary cardiac
problems or respiratory problems (Fig.
4). As shown in Figure 4, both the prob-
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ability of a given heart rate distribution
and the heart rate-respiratory rate group-
ings between stable step-down unit pa-
tients and those with instability were
markedly different. These data suggest
that dynamics of linkage between desper-
ate physiologic variables exist during dis-
ease, and these linkages may be used to
identify patients and define their primary
illness. The potential application of this
approach in the monitoring of the crit-
ically ill patient population remains
untapped.

CONCLUSION

Nonlinear dynamics and complexity
modeling reflect new and powerful tools
that may allow us to see into the soul of
disease. Complex systems are highly de-
pendent upon initial state in determining
the final state and are self-organizing.
Thus, treatments may not need to fully
restore health but merely make disease
less attractive to the system for it to re-
store itself. The sensitivity of these forms
of analyses to define state and its change
should also allow for a more specific anal-
ysis of the effectiveness of novel and ex-
isting treatments and, as alluded to
above, should define potential treatments
not previously considered. Because one
cannot use reductionist thinking to un-
derstand complex systems and their re-
sponses to change, it is important to un-
derstand and use these approaches
proactively in the study of critical illness
and its response to therapy. However, al-
though complexity modeling can define
complex systems and predict with accu-
racy the probability of events, they do
require external validation as to what is
considered good or bad. They allow linear

descriptions of nonlinear issues without
any insight into the processes that define
a given physiologic state. Thus, without
context this characterization of state, ei-
ther health or disease, is purely descrip-
tive and arbitrary.
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