

Emerging Therapies for Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia

Moderator

Thomas M. File, Jr, MD, MSc

Professor of Internal Medicine Northeast Ohio Medical University Rootstown, Ohio Chair, Infectious Disease Division Summa Health System Akron, Ohio

Panelist

Debra Goff, PharmD

Associate Professor The Ohio State University Wexner Medical Center Columbus, Ohio

HAP and VAP Are Among the Deadliest of Hospital-Acquired Infections

- Bacterial HAP and VAP combined are the leading cause of death among hospital-acquired infections, with mortality ranging from 20% to 50%
- 75% of healthcareassociated infections are resistant to first-line antibiotics

Magill SS, et al. N Engl J Med. 2014;370:1198-1208; Restrepo MI, et al. Infect Control Hosp Epidemiol. 2010;31:509-515.

Defining HAP and VAP*

- HAP occurs 48 hours or more after admission, and was not incubating at the time of admission
- VAP, a subset of HAP, occurs more than 48 to
 72 hours after endotracheal intubation

American Thoracic Society; Infectious Diseases Society of America. *Am J Respir Crit Care Med*. 2005;171:388-416.

^{*}Bacterial in origin.

Pathogens Most Commonly Associated With HAP and VAP

- Monomicrobial or polymicrobial
- Gram-negative bacilli
 - Enterobacteriaceae
 - Escherichia coli
 - Klebsiella pneumoniae
 - Enterobacter species
 - Nonfermenting organisms
 - Pseudomonas aeruginosa
 - Acinetobacter baumannii
- Gram-positive cocci: MRSA, Streptococcus species
 - ~50% of S aureus organisms are MRSA

Multidrug-resistant K pneumoniae bacteria

Magill SS, et al. N Engl J Med. 2014;370:1198-1208; Photo Credit: David Dorward; PhD; National Institute of Allergy and Infectious Diseases (NIAID).

When Should You Suspect Pneumonia?

- Diagnosis cannot be made on clinical features alone
- Suspect pneumonia when there is:
 - A new lung infiltrate
 - Clinical evidence that the infiltrate is infectious
 - New onset of fever
 - Purulent sputum
 - Leukocytosis
 - Decline in oxygenation
- Obtain specimens for microbiology

Rapid Diagnostic Methods for Nosocomial Pneumonia

- MALDI-TOF: rapid diagnostic test for pneumonia
 - Identifies bacteria, fungi, and mycobacteria isolated from cultures of sputum or BAL specimens in clinical microbiology laboratories
 - Fast, accurate, and helps to rule out infection
 - Does not identify resistance genes
 - Facilitates antimicrobial stewardship by allowing clinicians to target the precise pathogen, and in some cases narrow the spectrum of antimicrobial coverage
 - Shorter duration of therapy
 - Reduced resistance by de-escalating antibiotic therapy for gram-positive organisms

Singhal N, et al. Front Microbiol. 2015;6:1-16.

Novel Cephalosporins Coupled With a Beta-Lactamase Inhibitor*

- Current SOC: Combination therapy for a specific pathogen should be used
 judiciously in HAP, with consideration of short-duration aminoglycoside therapy,
 when used in combination with a β-lactam to treat P aeruginosa. Linezolid is an
 alternative to vancomycin. Colistin should be considered as therapy for patients
 with VAP due to a carbapenem-resistant Acinetobacter species^a
- Few agents are available with activity against resistant gram-negative organisms
- Overuse of carbapenems to treat resistant pathogens has contributed to the rise in carbapenemase-producing bacteria, especially Klebsiella pneumoniae, and prompted the development of novel agents with extended activity against ESBL-producing microorganisms
- Ceftazidime/avibactam
 - Carbapenemase producers and carbapenem-resistant Enterobacteriaceae (E coli, Klebsiella, and Enterobacter)
- Ceftolozane/tazobactam
 - MDR and extensively resistant Pseudomonas in critically-ill patients
 - ESBL-carrying organisms

^{*}Not approved by the FDA for the treatment of HAP or VAP.

a. American Thoracic Society; Infectious Diseases Society of America. Am J Respir Crit Care Med. 2005;171:388-416.

Ceftolozane/Tazobactam

- Ceftolozane/tazobactam
 - Tazobactam: (non-β-lactam β-lactamase inhibitor), especially against those belonging to the SHV-1 and TEM-1 groups
 - Combined with ceftolozane,
 is active against MDR
 Pseudomonas aeruginosa
 and ESBL-producing
 Enterobacteriaceae

Multidrug-resistant
Pseudomonas aeruginosa

Photo credit: US Centers for Disease Control and Prevention -- Medical Illustrator.

Ceftazidime/Avibactam

- Ceftazidime/avibactam
 - Avibactam (non-β-lactam β-lactamase inhibitor): restores in vitro activity of ceftazidime against class A, class C, and some class D β-lactamase-producing pathogens
 - In vitro activity against Ambler classes A and C β-lactamases, including KPC and some class D enzymes
 - Combined with ceftazidime, restores in vitro activity against ESBL-producing Enterobacteriaceae and MDR Pseudomonas aeruginosa

Carbapenem-resistant Enterobacteriaceae

Photo credit: US Centers for Disease Control and Prevention -- Medical Illustrator.

Case 1 59-Year-Old Man With Chronic Bronchiectasis Admitted for CHF

- Green sputum
- New onset fever
- Pulmonary infiltrate on hospital day 4
- Multiple courses of antibiotic therapy within past year, some in past month
 - Piperacillin/tazobactam
 - Meropenem
 - Inhaled colistin

Case 1 (cont) Basic Principles of Treatment and Management

- Recognize the variability in bacteriology from unit to unit in the hospital
 - Know the local microbiology and susceptibility patterns
- Effective initial treatment is critical
 - Avoid undertreatment or inadequate treatment
 - Do not delay treatment
 - Avoid overuse of antibiotics; dose for shorter duration
 - Tailor the therapy to the culture results
 - In some cases, de-escalating therapy may be necessary

Case 1 (cont) Deciding on Antimicrobial Therapy

- Multiple risk factors for MDROs: multiple courses of broad-spectrum antibiotics and multiple hospital admissions
- Consider prominent local pathogens and susceptibility patterns and prior sputum culture results and susceptibility
 - With history of bronchiectasis, patient may have a relapse of prior infection
- Assess Gram stain
- Target MDROs
 - MRSA → vancomycin, linezolid, or telavancin if either 1 of the initial agents was unsuitable
 - Gram-negative bacilli → antipseudomonal β-lactam + aminoglycoside or fluoroquinolone
 - Panresistant organisms → consider colistin, polymyxin, or new combination agent

Case 1 (cont) Options for Treatment of Pneumonia Due to Panresistant Pseudomonas Aeruginosa

- Patient was initiated on meropenem 2 g q8h and colistin + linezolid to cover suspected MRSA
- Sputum culture grew a MDR -- Pseudomonas aeruginosa and MRSA
 - No other antimicrobial options available
 - Administered high-dose ceftolozane/tazobactam to cover MDRO + colistin

Case 2 52-Year-Old Man in the ICU on Mechanical Ventilation

- Postoperative day 5: ruptured diverticular abscess
- On piperacillin/tazobactam
- Prior admission 2 months ago for an acute exacerbation of COPD
- Developed new-onset fever, new pulmonary infiltrates, new leukocytosis (WBC = 18,000 mcL)
- ET aspirate: new purulent secretions;
 Gram stain shows gram-negative bacilli
- Treated with meropenem and an aminoglycoside
- Culture revealed carbapenemresistant Klebsiella pneumoniae

Photo credit: Thomas M. File, Jr, MD, MSc.

Case 2 (cont) The Challenge of Carbapenem-Resistant Klebsiella Pneumoniae

- Switch to ceftazidime/avibactam* to provide coverage against KPCs/CREs
 - Monotherapy vs in combination with aminoglycoside or colistin?
 - Difficult case due to heterogeneity of patient population
 - No guidance available from RCTs
- Applying genetic mechanisms and rapid testing may help guide future therapy

^{*}Not approved by the FDA for the treatment of HAP or VAP.

Measuring the Success of Antimicrobial Stewardship Programs

- Emphasize protecting antibiotics vs restricting them
- The high cost of resistance
 - Patients infected with MDROs have longer hospital LOS and higher cost of care
- Antimicrobial stewardship teams have been effective in interpreting rapid diagnostic tests appropriately and applying swift intervention to ensure better patient outcomes
- Track metrics for cost of resistance
 - Ventilator days
 - Overall hospital LOS, infection-related hospital LOS
 - ICU LOS: decreasing ICU LOS by 1 to 2 days can almost justify the cost of any new antimicrobial
 - Infection-related mortality
 - Clinical and microbiologic cure rates

The Role of Rapid Diagnostic Tests in Antimicrobial Stewardship A Key Success Factor

 Rapid identification and appropriate interpretation of diagnostic tests → more appropriate and timely therapy → improved outcomes Adding a New Antibiotic to the Hospital Formulary
Hospital Process Should Not Be Part of the Problem

Make drugs available at point of care: on the shelf **Optimize EMR** Provide feedback, ordering for timely encourage responsible initiation of drugs antibiotic use 1-on-1 education of Use local microbiology medical staff about data new antibiotics

De-escalation A Critical Component of Antimicrobial Stewardship

- Narrowing the antimicrobial spectrum by changing from a broad-spectrum agent to a narrow-spectrum agent or eliminating a drug from combination therapy
- Should ideally occur as soon as possible after availability of culture results
- Benefits
 - Reduced bacterial resistance
 - Decreased incidence of bacterial, viral, and fungal superinfections
 - Limited exposure to unnecessary drug therapy and the associated risks, eg -- Clostridium difficile infection
 - Decreased costs

Duration of Antibiotic Therapy

- Even for serious infections (ie, HABP or VABP) the ideal duration of therapy is 7 to 8 days
- If patients are stabilized, treating them longer than necessary may increase the selection of pressure for resistance and adverse events such as Clostridium difficile infection

Use of Procalcitonin in Reducing Duration of Antibiotic Therapy

- Observational, historical control study to assess the impact of using PCT levels
 - Procalcitonin correlates with bacterial load and responds very quickly to reduction in bacterial load
 - Increased confidence in decision to stop antibiotics when level decreases significantly
- Findings
 - Duration of antibiotic use decreased by 3.3 days (F = .0238)
 - Hospital LOS decreased by 4.3 days (P = .029)
 - Rate of readmission to hospital decreased by 16% (P = .055)
 - 30-day readmission for infection to hospital decreased by 24% (P = .001)

Other Treatment Options for HAP and VAP Due to MRDOs

- Optimize PK/PD
 - Extended infusion; continuous infusion; higher doses for β-lactams (eg, cefepime, ampicillin/sulbactam)^{a-d}
- Consider using older drugs (colistin IV) pathogens are susceptible to
- Reserve new drugs to meet the challenge of MDROs
 - Ceftolozane/tazobactam
 - Ceftazidime/avibactam
- Combination therapy
 - Colistin, carbapenems
- Alternative administration
 - Aerosolized drugs
 - Aminoglycosides, colistin
- a. Courter JD, et al. *Pediatr Blood Cancer*. 2009;53:379-385; b. Bauer KA, et al. *Antimicrob Agents Chemother*. 2013;57:2907-2912; c. Chastre J, et al. *Crit Care Med*. 2008;36:1089-1096; d. Betrosian AP, et al. *Scand J Infect Dis*. 2007;39:38-43.

Extended-Infusion Antibiotic Therapy for Gram-Negative Infections

 Clinical and economic outcomes for patients with P aeruginosa bacteremia and/or pneumonia who received cefepime via intermittent vs extended infusion

Clinical or economic outcome	Intermittent infusion, % (n = 54)	Extended infusion, % (n = 33)	P Value
Mortality	20	3	.03
ICU LOS, days	18.5	8	.04
Total hospital costs, \$	51,231	28,048	.13
Infection-related hospital costs, \$	15,322	13,736	.78

Bauer KA, et al. Antimicrob Agents Chemother. 2013;57:2907-2912.

Summary

- Timely, effective empiric therapy for HABP and VABP is critical, but providers must know which agents are available and the susceptibilities of the pathogens they need to target
- Rapid diagnostic testing can identify pathogens in a timely fashion to deliver effective, targeted therapy
- Optimizing antibiotic therapy (appropriate agent, duration, dose, de-escalation, and timing) may help to reduce the development of MDROs
- Antimicrobial stewardship encourages the protection of vs the restriction of new antibiotics