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Abstract

During critical illness, there are a multitude of forces such as antibiotic use, mechanical ventilation, diet changes
and inflammatory responses that could bring the microbiome out of balance. This so-called dysbiosis of the
microbiome seems to be involved in immunological responses and may influence outcomes even in individuals
who are not as vulnerable as a critically ill ICU population. It is therefore probable that dysbiosis of the microbiome
is a consequence of critical illness and may, subsequently, shape an inadequate response to these circumstances.
Bronchoscopic studies have revealed that the carina represents the densest site of bacterial DNA along healthy
airways, with a tapering density with further bifurcations. This likely reflects the influence of micro-aspiration as the
primary route of microbial immigration in healthy adults. Though bacterial DNA density grows extremely sparse at
smaller airways, bacterial signal is still consistently detectable in bronchoalveolar lavage fluid, likely reflecting the
fact that lavage via a wedged bronchoscope samples an enormous surface area of small airways and alveoli. The
dogma of lung sterility also violated numerous observations that long predated culture-independent microbiology.
The body’s resident microbial consortia (gut and/or respiratory microbiota) affect normal host inflammatory and
immune response mechanisms. Disruptions in these host-pathogen interactions have been associated with
infection and altered innate immunity.
In this narrative review, we will focus on the rationale and current evidence for a pathogenic role of the lung
microbiome in the exacerbation of complications of critical illness, such as acute respiratory distress syndrome and
ventilator-associated pneumonia.

Keywords: Pneumonia, Microbiome , Infection , Ventilator-associated pneumonia, Ventilator-associated
tracheobronchitis

Introduction
The normal microbiota is the ecological communities of
commensal, symbiotic and pathogenic microorganisms
whilst the microbiome comprises all of the genetic material
within a microbiota (the entire collection of microorganisms

in a specific niche, such as the human gut). This can also be
referred to as the metagenome of the microbiota [1, 2]. Ap-
proximately 100 billion microorganisms are found in the
body due to recent discoveries in molecular analysis such as
next-generation sequencing (NGS) and whole metagenome
shotgun sequencing (WMGS); there is an increasing body
of evidence pointing towards the dysbiosis that is often de-
fined as an ‘imbalance’ in the microbial community that is
associated with disease [3–5].
A microbiome is shaped by multiple factors including

the resident flora of the animate or inanimate vicinity
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and the external forces that modulate this flora [6]. It
becomes a changeable reflection of diversity, and so its
study can provide valuable insights into the factors that
drive that diversity [7]. Just as the study of global climate
or the roots of language requires input from around the
world, so the interpretation of the microbiome of an in-
dividual or a group of patients needs comprehensive
comparative data to generate insight [8, 9]. The variabil-
ity of the host microbiome—either in an individual pa-
tient over time in response to the pressures of illness
[10] or in a geographically localized population in re-
sponse to environmental—can yield important insight
into factors that can be manipulated to improve clinical
outcomes. Such factors include risk of infection, emer-
gence of resistance, spread from the environment, host
susceptibility and even the resilience of the health care
system [11].
In this narrative review, we will focus on the rationale

and current evidence for a pathogenic role of the lung
microbiome in the exacerbation of complications of crit-
ical illness, such as acute respiratory distress syndrome
(ARDS) and ventilator-associated pneumonia (VAP).

Is the lung sterile or not?
Though for years textbooks taught that ‘the normal lung
is free from bacteria’, this dogma was generally repeated
without citation or argument [12]. In retrospect, this
claim of lung sterility was remarkable: virtually no envir-
onment on earth exists that is so extreme in
temperature, pH, salinity or nutrient scarcity that micro-
bial communities cannot be detected [13]. Yet for more
than a century, it was taken as fact that the warm, wet
mucosa of the lower respiratory tract—mere inches
below the microbial reservoir of the pharynx—is an ex-
ception to this rule [14–18].
Each individual has a unique microbiota profile that

plays many specific functions in host nutrient metabolism,
maintenance of structural integrity and protection against
pathogens. There is not a unique optimal microbiota com-
position as it can be different for each individual [19, 20].
Thus, the ‘revolution’ in culture-independent microbiol-
ogy has merely confirmed with certainty what has long
been inferred indirectly: human lungs are constantly ex-
posed to environmental bacteria. To date, more than 30
studies have used sensitive, culture-independent tech-
niques to study lung bacteria in healthy volunteers, and
none has failed to detect a distinct bacterial signal [21].
The viability of bacteria in healthy lungs has been con-
firmed via advanced cultivation [22] and indirectly vali-
dated via correlation with healthy alveolar immune tone
in humans and mice [23, 24].
Some of the confusion regarding the existence of lung

microbiota reflects flawed parallels with the lower gut
microbiome, which represents a wholly different ecosystem

with radically different ecologic forces. Whereas the gut
lumen is densely populated by dense communities’ bacteria,
lung microbiota is scarce and associated with mucosal sur-
faces. Whereas gut communities are relatively stable day-
to-day, reflecting stable selective pressure on resident bac-
teria, lung communities are in constant turnover, with their
identities and burdened determined by the relative balance
of immigration (via microaspiration and mucosal disper-
sion) and elimination (via cough and mucociliary clear-
ance). Whereas the gut microbiome is nutrient-rich and
characterized by intense metabolic competition amongst
dense communities, the lung microenvironment is
nutrient-poor, and the primary competition is between im-
migrating pharyngeal microbes and locally calibrated alveo-
lar and airway host defences attempting to minimize their
outgrowth [24, 25]. These ecologic differences between the
lower gut and the lungs erode somewhat in conditions of
acute and chronic disease: the influx of mucus and protein-
rich oedema provide nutrient sources for bacteria, and
once-transient bacteria become resident, shaped by select-
ive pressure.
Further confusion arose via misinterpretation of clin-

ical culture protocols, which have been optimized for de-
tection of respiratory pathogens, not the ‘background’
microbiota of uninfected patients. Sequencing-based
studies have revealed that the normal microbiota of
healthy lungs closely resembles that of the oropharynx
[26–28] and, whilst commonly cultured, are routinely
dismissed by clinical microbiology laboratories as ‘nor-
mal oral flora’.
Bronchoscopic studies have revealed that the carina

represents the densest site of bacterial DNA along
healthy airways, with a tapering density with further bi-
furcations [28]. This likely reflects the influence of
micro-aspiration as the primary route of microbial im-
migration in healthy adults. Though bacterial DNA
density grows extremely sparse at smaller airways, bac-
terial signal is still consistently detectable in bronchoal-
veolar lavage fluid, likely reflecting the fact that lavage
via a wedged bronchoscope samples an enormous sur-
face area of small airways and alveoli. Bacterial commu-
nities within the lungs of healthy volunteers are
relatively homogenous; the bacteria of a given individ-
ual’s right middle lobe far more closely those of the
same individual’s left upper lobe than do other individ-
uals’ right middle lobe (i.e. intraindividual similarity is
greater than interindividual similarity) [27].

How to study the lung microbiome?
High densities of bacteria are always present on the skin,
in the mouth, and in the upper respiratory tract. For this
reason, it is important to avoid contamination with com-
mensal bacteria from other sites when taking samples for
investigation of the lower respiratory tract microbiome
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[29, 30]. Since samples from the lower respiratory tract
may have a low biomass, it increases the risk for contam-
ination that can occur at any time from sampling to se-
quencing [31, 32].
The first molecular techniques used for studying the

bacterial microbiome in humans were based on 16S
rRNA gene sequencing many years ago which is an ap-
propriate method to assess diversity on taxonomic levels
above species level. A limitation of 16S rRNA gene se-
quencing is that whilst bacteria can normally be identi-
fied on genus and family level, species identification
usually requires simultaneous evaluation of several genes
[33–35]. Newer technology of whole genome sequencing
and metagenomics has shown better definition of the
gut microbiome and what has currently been shown of
the lung microbiome will also be significantly updated
by these newer sequencing technologies [36–38].
An important matter is that when studying the lung

microbiome, the pathogens and host response needs to
be simultaneously studied by molecular methods, for in-
stance, microbial metagenomics and transcriptomics.
Langelier et al. [39] performed in almost 100 patients
with acute respiratory failure (ARF) metagenomic next-
generation sequencing (mNGS) on endotracheal aspi-
rates (ETA) and simultaneously assessed pathogens, the
airway microbiome and the host transcriptome. This
study found that a single streamlined protocol offering
an integrated genomic portrait of pathogen, microbiome
and host transcriptome represents a new tool for diag-
nosis in lower respiratory tract infections (LRTI).
The progress in molecular microbiology has developed

very fast in the last years and several rapid technologies
will provide biological signals taking into account the
interaction of the host (e.g. via digital enzyme-linked im-
munosorbent assay (ELISA) [40]) and the microbes (e.g.
via nanorod-PCR [41]). Another technology is microgas
chromatography for the analysis of bacterial function
and virulence and metabolic indices of the host response
on exhaled breath [42, 43].
The field of lung microbiome is no longer limited by

the speed of sequencing, processing, or measurement,
but rather our ability to make sense of the high-
dimensional data we generate.

Lung microbiome in ARDS
ARDS is a complication of critical illness characterized
by protein-rich pulmonary oedema, hypoxaemia and al-
veolar inflammation. Alveolar inflammation, damage and
subsequent oedema may be initiated by a change in pul-
monary microbiome, or a change in lung microbiome
may be initiated by an alveolar nutrient available after
the onset of oedema [2]. Even though ARDS is tradition-
ally not considered to be related to microbial changes in
the lung, these physiological considerations resulted in

the hypothesis that pathogenic bacteria may be present
in the lung of patients with ARDS.
Kyo et al. [44] analysed the lung microbiome from the

bronchoalveolar lavage fluid (BALF) of patients with
ARDS found that lung bacterial burden (16S rRNA gene
copy numbers tended to be increased) tended to be in-
creased, and the alpha diversity (copy numbers and rela-
tive abundance of betaproteobacteria) was significantly
decreased in ARDS patients.
In an experimental mouse model of lung injury follow-

ing abdominal sepsis induced by cecal ligation and punc-
ture, the lung microbiome was enriched with gut
bacteria [3]. How did these bacteria get there? It is hy-
pothesized that bacteria can translocate from the gut
into the lymphatic system and portal circulation during
critical illness [4]. If so, these changes should also be ob-
served in patients on the ICU. Indeed, enrichment of gut
bacteria was also observed in BALF from ARDS patients
[3]. Gut bacteria and more specifically Enterobacterieae
enrichment in patients with ARDS were confirmed in a
second observational cohort study [5]. Both studies were
performed in a selective cohort of patients with potential
biases of prolonged antibiotic exposure before measure-
ment. In a more recent study conducted in Europe, pa-
tients who were treated with selective decontamination
of the digestive tract (SDD) during admission at the
ICU, but were not treated with antibiotics prior to ICU
admission, validated the specific enrichment of Entero-
bacterieae in the lungs of ARDS patients [45].
Taken together, the current body of evidence suggests

that amplification of Enterobacterieae in the lung is
strongly associated with ARDS. This association is not
sufficiently explained by potential confounders such as
geographical location of sampling, exposure to antibiotic
therapy, amplification protocols or exact definitions of
ARDS. The evidence for consistent dysbiosis in lung
microbiome is actually stronger for ARDS than for most
other respiratory diseases, where other microbes are
enriched in different studies. However, no causal link be-
tween dysbiosis of the lung microbiome and develop-
ment of lung injury has been established. This link
needs to be further explored before we can conclude
that lung microbiome dysbiosis is a potential target for
treatment (Fig. 1).

Lung microbiome during nosocomial LRTI
In ecological terms, pneumonia can be described as the
collapse of local microbiome diversity and the emer-
gence of a dominant pathogen [46]. Several studies have
therefore hypothesized that the lung changes consider-
ably during nosocomial lower respiratory tract infec-
tions. Some critically ill patients can develop pneumonia
due to their clinical condition such as patients with is-
chaemic stroke and/or with loss of neurological control

Martin-Loeches et al. Critical Care          (2020) 24:537 Page 3 of 9

John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




of the respiratory system. These clinical conditions can
be associated to reduced airway clearance and increased
bacterial translocation and therefore can develop more
often respiratory infections [47]. So, the more appropri-
ate question is ‘do patients that develop pneumonia have
more dysbiosis of the lung microbiome than mechanic-
ally ventilated ICU patients who do not develop pneu-
monia’? Two studies addressed this problem. The first
included consecutive patients at risk for pneumonia with
a duration of mechanical ventilation of more than 7 days
[48]. Endotracheal aspirates were performed every third
day and the microbial composition was evaluated with
16S sequencing. There was a small, but significant in-
crease in the change in beta-diversity (change in diversity
of species from one environment to another) in patients
who went on to develop pneumonia as compared to pa-
tients who did not develop any signs of infection and were
not colonized by any bacteria according to traditional bac-
terial cultures. The composition of the microbiome in
these patients also showed a slight enrichment of Pseudo-
monadales. A second study conducted had a similar
design and showed no difference in the change of micro-
biome during mechanical ventilation between patients
who did and did not develop pneumonia [49]. As dis-
cussed in the accompanying editorial, the results from
these studies have elegantly shown that it is time to let go
of any simplistic view of VAP pathogenesis [10]. One con-
clusion might be that LRTI cannot simply be defined as a
collapse of bacterial ecology as this is present also in part
of the patients without pneumonia who do not show any

signs of pneumonia. One could also argue that the studies
did not sample the alveolar space and additional studies
with BALF are needed to confirm or discard these find-
ings. Furthermore, evaluation of microbial composition
may be more useful in establishing the presence of a
pathogen in patients who already have a clinical suspicion
of pneumonia. Indeed, with pre-test probability, metage-
nomics may provide valuable information on the pathogen
causing pneumonia [11]. Future studies have to consider
these possibilities before we disregard the lung micro-
biome in nosocomial pneumonia.

Gut-lung axis and the possible interventions
In the critically ill, changes in the microbiome in all hab-
itats, including the lungs, are particularly striking. Due
to the devastating consequences of untreated severe in-
fections, broad eradication is accepted as lesser evil and
collateral damage on beneficial or commensal microbes
is generally accepted. However, the potential long-term
consequences of unwarranted side effects on the micro-
biome warrant a reassessment of the microbiome as a
diagnostic or even therapeutic target. For example, dys-
biosis of the gut microbiome itself has been described as
a predictive factor for late-onset neonatal sepsis [50]
suggesting that the microbiome can serve at least as a
biomarker to predict ensuing nosocomial infection.
Moreover, albeit solid data are still missing to support
interventions to restore a healthy microbiome, the strat-
egy holds promise to impact on incidence and outcome
of nosocomial infection and ensuing organ injury,

Fig. 1 Algorithm of dysbiosis pathways in patients with pneumonia, ARDS and influence of mechanical ventilation. ARDS, acute respiratory
distress syndrome
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including ARDS [51, 52]. In the light of a better under-
standing of off-target effects of broad-spectrum antibiotics
on the microbiome, the liberal administration of antibi-
otics must be discussed against more sophisticated inter-
ventions to treat the bacterial infection (non-antibiotic
therapies such as bacteriophages) or manipulation of the
microbiome to make the residing communities more re-
silient (for example probiotics). In particular, the need to
combine multiple anti-infective compounds in the light of
diagnostic uncertainty might outweigh the benefit of early
source control and explain controversial results for ag-
gressive antibiotic strategies. For instance, in a before-and-
after study Hranjec et al. reported that the subgroup with
least benefit from ‘calculated’ broad-spectrum antibiotics
were patients presenting with septic shock, i.e. those in
which the current paradigm would expect the highest
need to initiate early anti-infective therapy [53]. Thus, a
holistic approach taking the microbiome into consider-
ation carries the potential to initiate a paradigm shift in
the treatment of infections in the ICU.
As discussed in the previous paragraphs, the lung dys-

biosis seems to be common in the ICU and enrichment
of gut bacteria might be an important contributor to the
development of lung injury and infection (Fig. 2). The
relationship between gut and lung microbiome is de-
scribed as the gut-lung axis [54]. Because the gut micro-
biome can be targeted directly or indirectly with
therapeutic interventions, this is an area of active study.
Investigations have thus far fallen into two specific path-
ways—first, using probiotics to help restore a pre-
morbid microbiome, or second, to use antibiotics

through an SDD approach to target specific families of
organisms so as to alter the microbiome in possibly
beneficial ways. Further novel pharmacologic options
that have direct gut microbiome modifying effects are
also under development, including faecal transplantation
as a possible novel treatment for microbiota dysregula-
tion (considering the immune system during faecal
microbiota transplantation for Clostridioides difficile in-
fection [55] and for the decolonization of antibiotic-
resistant bacteria in the gut [56]). One of the major chal-
lenges of studying the effect of these interventions is the
huge variability in the gut microbiome of critically ill pa-
tients, even during the first days of ICU admission [57].
Furthermore, any beneficial effect of these interventions
on the microbiome has yet to be assessed formally in a
prospective, large-scale, randomized manner. Attempt-
ing to attribute a causal impact of microbiome modifica-
tions upon clinical outcomes has been difficult to tease
out as to whether changes in the microbiome are merely
surrogates of some other mechanistic pathway that leads
to improved clinical outcomes [58].

Probiotics
Fundamentally, probiotics in critical illness aim to pro-
vide bacteria that may have been eradicated during the
pre- and early phases of critical illness [59]. This eradica-
tion may be through administering antibiotics early in
critical illness, which have been shown to greatly modify
the gut microbiome [60]. Alternatively, the mere onset
of critical illness—be it sepsis, ARDS or any number of
conditions, is associated with alterations of the gut

Fig. 2 Island model for the development of lung injury based on sites of dysbiosis
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microbiome, which may be independent of antibiotic ad-
ministration [61]. Regardless, the stated goal of probiotic
administration is to restore a pre-morbid microbiome—
primarily to the gut, but partially to other microbiome
communities through generalized cross-talk [62].
Through yet-unknown mechanisms, administering
Lactobacillus or Bifidobacterium species through a pro-
biotic may increase the diversity of microbial species in
the gut, although more studies with rigorous outcome
determinations are required [63]. In the critically ill, ran-
domized studies and meta-analyses of randomized trials
demonstrate a possible benefit of probiotic administra-
tion on the outcome of ventilator-associated pneumonia,
without a difference in mortality [64, 65], with a major
challenge being a lack of standardization in dosing and
composition of probiotic products [66]. Larger scale
studies are nearing completion and further data on the
impact of microbiome modifications are forthcoming in
the years ahead [59].

Selective digestive decontamination
Selective digestive decontamination, a regimen of
prophylactic antibiotic administration, has been shown
in small series to result in important alterations in gut
microbiota, when compared with controls [67]. These
changes are typically related to increasing selection for
resistant organisms and decreased microbiome diversity,
per a number of different metrics. Given a possible
benefit on patient mortality in some randomized trials
[68, 69], exploring the specific impact of this strategy on
the microbiome, and related clinical outcomes, is a vital
area for further study. Additionally, given burgeoning
evidence of crosstalk between the lung and gut microbial
communities, the impact of either of these strategies on
the non-gut microbiome communities in the critically ill
patient remains under-investigated.
Given the apparent conflicting goals of SDD and pro-

biotic administration in the critically ill as it relates to
the microbiome, the role of co-administration may be
difficult to conceive. However, most currently used SDD
regimens are unlikely to affect the administered pro-
biotic agent, and this may be a strategy for further inves-
tigation in targeted patients [70]. Both SDD and
probiotics appear to mediate their effect on patient-
related outcomes through reducing the incidence of
ventilator-associated pneumonia, speaking to a crucially
under-investigated relationship between the two micro-
biome communities and host immunology, a tantalizing
area for future research.

Other treatments
Novel pharmacologic agents have also been suggested as
modifiers for the gut microbiome but have yet to be for-
mally tested in the critically ill. Butyrate, a large bowel

microbial fermentation product, is being investigated in
pre-clinical trials as a specific modifier of gut-derived
regulatory T cells [71]. Administering a sialic acid
analogue is being investigated as to whether it may re-
duce the burden of antibiotic-associated pathogens such
as C. difficile by altering metabolic pathways [72]. Older
drugs such as metformin may have a role, with their
demonstrated effects on altering the gut microbiome in
patients with diabetes [73].
The lung microbiome is clearly more difficult to target

than the gut microbiome due to the lack of routine ad-
ministration of bacteria and bacterial products into the
airways. The low biomass environment may also cause
the lung microbiome to be more prone to infection in-
duced by the introduction of, for example, probiotics.
Therefore, direct intervention in the lung microbiome
may be sought via the alteration of regional growth con-
ditions via the availability of nutrients or through immu-
nomodulation. An example is the administration of
macrolides in chronic obstructive pulmonary disease
(COPD): there is a selection for anti-inflammatory mi-
crobial metabolites and an alteration of the lung micro-
biome [74].
All of these possible interventions speak to the import-

ance of achieving a better understanding of the gut-lung
axis in critical illness. As this understanding evolves, the
possibility of personalizing interventions for individual
microbiome communities, or widespread initiation of in-
terventions such as SDD or probiotics, would be possible.

The need for a network to support activities
Whilst patient-to-patient or staff-to-patient transmission
of infection occurs within the intensive care unit, most
nosocomial infections in critically ill patients arise
through the invasion of normal host defences by bacteria
and fungi that have become a part of an altered micro-
biome—either by changes in numbers or by the incorp-
oration of species from the environment [75]. The
hospital environment itself acquires a microbiome that
reflects the patients that have been in it, and environ-
mental reservoirs such as sinks, plumbing, work surfaces,
and equipment can become reservoirs of resistant organ-
isms that can infect the critically ill [76].
The inherent variability of the microbiome, therefore,

provides an opportunity to study not only the individual
patient, but also the forces in the environment that
shape patient’s outcome, and to identify specific oppor-
tunities where the persistence and transmission of path-
ogens can be prevented or minimized. Because of the
high prevalence of nosocomial infection, the environ-
mental concentration of causative pathogens and the
multiple risk factors for exposure, the ICU provides a
unique opportunity for intensive study of the micro-
biome and its role in the establishment and transmission
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of resistant organisms. With the emergence of new
models of global acute care research collaboration
through the International Forum for Acute Care Trialists
(InFACT; www.InFACTglobal.org), and the launch of an
InFACT initiative to leverage ICU data to understand
variability in patterns of resistance through the Anti-
microbial Resistance in Intensive Care (AMRIC)
initiative.

Conclusion
In previous years, we believed that the normal lung was
free from bacteria. Certainly, some features in the re-
spiratory tract such as temperature, pH and nutrients
were not beneficial for microbial growth. During critical
illness, antibiotic use, mechanical ventilation, diet
changes and inflammatory responses can bring the
microbiome to dysbiosis.
With the use of molecular techniques, we have had

the opportunity to study the lung microbiome and not
only in the microbial aspect but also in the responses
from the host. One of the most important aspects to
better determine the physiopathology of host-pathogen
interaction in pulmonary complications such as ARDS
and VA-LRTI is the gut-lung axis. Further study of pa-
tients with disease in the respiratory tract will help us to
better determine microbial diversity and constitution
when comparing healthy and diseased subjects.
Dysbiosis and analysis of extra-pulmonary microbiome

have helped to understand the complex interaction of
bacterial clearance in the lung tissue and the off-target
effects of broad-spectrum antibiotics on the microbiome.
Through therapies targeting host-pathogen interaction

and the development of advance molecular testing, we
will be able to have a deeper understanding in the ana-
lysis of the lung microbiome.
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