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OVERVIEW

The gut has been hypothesized to be the motor of multiple organ dysfunction syn-
drome (MODS) for the past quarter century.1–3 Whereas initial theories of gut and crit-
ical illness suggested that hyperpermeability resulted in bacterial translocation into the
systemic circulation, the reality is significantly more complex than was hypothesized
originally. All elements of the gut—the epithelium, the immune system, and the micro-
biome—are impacted by critical illness and can, in turn, propagate a pathologic host
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KEY POINTS

! The gut is composed of an epithelium, adaptive immune system, and microbiome. Each
plays a crucial role in the maintenance of health and the pathophysiology of critical illness.

! Toxic mediators travel through mesenteric lymphatics, causing remote inflammatory
injury. Preclinical trials have demonstrated that ligation of the lymph duct can prevent
lung injury caused by gut-derived factors.

! Gut integrity is compromised in critical illness with increases in apoptosis and perme-
ability. Multiple preclinical studies have demonstrated that targeting gut epithelial integrity
results in improved survival in critical illness.

! The microbiome can alter its behavior based on environmental cues. Preventing bacteria
from becoming virulent or reprogramming them to a nonvirulent phenotype may revolu-
tionize the treatment of gut-derived sepsis.

! Outside of enteral nutrition, no treatment targeting the gut is currently widely used in the
intensive care unit. Multiple techniques for modulating the microbiome are of potential in-
terest as therapeutics.
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response. Further, alterations in the gut can lead to both local and distant insults, via
alterations in homeostatic processes and defense mechanisms as well as release of
toxic mediators into both the mesenteric lymph and the systemic circulation. Although
considerable effort has been put into directly targeting the gut for therapeutic gain in
critical illness, the results to date have been modest. This review focuses on the
cellular and molecular underpinnings of how the gut functions as the motor of
MODS, as well as clinical ways in which the gut can, at least in part, be potentially
manipulated for therapeutic gain.

THE GUT IN HEALTH
Epithelium

The gut contains a single layer epithelium with a myriad of important functions. It pro-
vides a large surface area—estimated to be approximately 32m2 or one-half the size of
a badminton court4—for use in nutrient absorption and preventing entrance of patho-
gens from its lumen. Microscopically, the gut is in a state of constant renewal from the
multipotent stem cells near the crypt base. These give rise to daughter cells, which
then give rise to 4 major intestinal cell types: (a) enterocytes, which absorb nutrients
andmake up greater than 90%of intestinal epithelial cells, (b) mucus-producing goblet
cells, (c) hormone-producing enteroendocrine cells, and (d) defensin-producing Pan-
eth cells that protect intestinal stems cells and play a role in intestine–microbiota inter-
actions.5 Unlike other cells in the gut that migrate upward along the villus, Paneth cells
migrate downward toward the crypt base. The journey from cell birth, differentiation,
and migration along the villus to cell loss via either apoptosis or luminal sloughing of
intact cells takes only 5 to 7 days in a healthy human.

Immune System

The intestine is the largest lymphoid organ of the body.6 It contains 4 immune cell
compartments: Peyer’s patches, the lamina propria, mesenteric lymph nodes, and
intraepithelial lymphocytes. Peyer’s patches come in contact with luminal antigens
and direct antigen-presenting cells to the mesenteric lymph nodes. This sets off the
immune differentiation of T and B cells in the draining nodes. The highly complicated
gut mucosal immune system plays a myriad of roles in host defense including (but not
limited to) antigen recognition, presentation, amplification of antigen-specific
response, and production of cytokines and chemokines.7

Microbiome

There are 10 times more bacterial cells in a human than host cells—100 trillion bacteria
to 10 trillion human cells.8 Under normal conditions, there is a well-tolerated symbiotic
relationship between the human host and its microbiome, which has a robust diversity,
with the predominant species being Bacteroides and Firmicutes. With the recent ex-
plosion in our (still nascent) understanding of the microbiome, it has become apparent
that the diversity of an individual’s microbiota depends on a wide variety of factors
starting from the type of birth they underwent (vaginal or Cesarean section) to the
diet they eat to their age to even the pets they have.9

PRECLINICAL INSIGHTS INTO THE ROLE OF THE GUT AS THE MOTOR OF MULTIPLE
ORGAN DYSFUNCTION SYNDROME
The Gut Lymph Hypothesis

Given the overwhelming number of bacteria that reside in the intestine, the initial hy-
pothesis for why the gut is the motor of MODS was whole bacteria translocation that
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spread via portal circulation. Although bacterial translocation clearly occurs in some
preclinical models of critical illness,10 human data have generally remained inconclu-
sive or not supportive of this as a common phenomenon seen in critically ill patients,
although it likely occurs in select pathophysiologic conditions.11,12 A search for how
intestine-derived mediators caused distant injury led to the gut–lymph hypothesis.
This theory postulates that toxic mediators from the gut travel throughmesenteric lym-
phatics toward the lung where they cause remote injury. Several lines of investigation
support the importance of the gut-derived lymph as being physiologically important.
When the mesenteric lymph duct is ligated in multiple models of critical illness, lung
injury and neutrophil activation are abrogated or prevented and, importantly, mortality
is diminished or prevented.13,14 Additionally, when mesenteric lymph from rats under-
going trauma/hemorrhagic shock is injected into nonmanipulated rats, the rats
receiving the injection develop lung injury similar to shock rats.15 Of note, gut-
derived lymph typically does not contain intact bacteria, endotoxin, or cytokines but
rather contains protein or lipid factors that stimulate Toll-like receptor 4, leading to
activation of inflammatory neutrophils in the lung. Although not a part of the gut–lymph
hypothesis, it has also been shown that gut-specific deletion of Mttp (a protein
required for chylomicron assembly) improves survival in septic mice subjected to
Pseudomonas aeruginosa pneumonia,16 although aged animals with the identical ge-
netic knockout have lower survival when subjected to the same insult.17

Apoptosis

Cell death via apoptosis is an evolutionarily conserved process that is important for
normal development and function. However, gut epithelial apoptosis seems to be
detrimental after the onset of sepsis. Both preclinical mouse models of sepsis and au-
topsy studies of patients who died in the intensive care unit (ICU) demonstrate a
marked upregulation in gut epithelial apoptosis compared with those who die without
sepsis.18,19 Gut-specific overexpression of the antiapoptotic protein Bcl-2 has been
shown to decrease sepsis-induced intestinal epithelial apoptosis and importantly
improve survival in murine models of both cecal ligation and puncture and P aerugi-
nosa pneumonia.20,21 Notably, this beneficial effect of Bcl-2 overexpression is abro-
gated in septic mice with cancer, suggesting that alterations in the host response
caused by comorbidities can impact gut apoptosis.22

There is evidence that cross-talk exists between the intestinal epithelium and im-
mune system in sepsis that results in changes in gut epithelial apoptosis. Although
the presence or absence of lymphocytes does not impact gut epithelial apoptosis un-
der basal conditions, sepsis-induced gut epithelial apoptosis is significantly higher in
Rag"/– mice (which lack lymphocytes) than wild-type mice, suggesting that lympho-
cytes play an antiapoptotic role in the gut epithelium that is, unmasked in sepsis.23

Subset analysis demonstrates that CD41 T cells are responsible for the antiapoptotic
effect of the adaptive immune system on the gut epithelium. In addition, when Bcl-2 is
overexpressed in myeloid cells, there is a decrease in the amount of gut epithelial
apoptosis after sepsis, in addition to improved survival.24

Hyperpermeability

The intestinal epithelium consists of only a single layer of cells that is responsible for
maintaining a permaselective barrier that, in a simplistic description, is charged with
keeping out the bad and letting in the good. It performs these functions via cell–cell
intramembrane protein interactions within the tight junction.25 There are several fam-
ilies of intramembrane proteins (claudins, occludin, tricellulin, junctional adhesion
molecule), as well as intracellular connector proteins (zonula occludins, myosin light
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chain) that link the tight junction to the intracellular cytoskeleton and allow for modu-
lation of the space.26,27 Alteration of this space can lead to changes in intestinal
permeability, and there is significant evidence that intestinal permeability is increased
after sepsis and MODS.28,29

There is increasing preclinical evidence that targeting tight junctions directly or indi-
rectly might have beneficial effects in critical illness. When myosin light chain kinase is
activated, it phosphorylates themyosin light chain causing contraction of the cytoskel-
eton, increasing the intercellular space and thereby increasing permeability. Inhibiting
myosin light chain kinase in mice in the setting of binge alcohol ingestion and burn
injury decreases bacterial translocation and intestinal cytokine production to levels
seen in sham animals, associated with a prevention in injury-induced alterations in
tight junction expression and localization.30,31 A broader strategy involves targeting
global intestinal integrity. Epidermal growth factor is a cytoprotective peptide that ex-
hibits trophic and healing effects on the intestinal mucosa. When mice are given sys-
temic epidermal growth factor after the onset of either cecal ligation and puncture or P
aeruginosa pneumonia, they have improved or normalized permeability, apoptosis,
proliferation, and villus length. Importantly, this is associated with a significant
improvement in survival, even if the drug is initiated 24 hours after the onset of
sepsis.32,33 This improvement in survival seems to be mediated through the gut as
transgenic mice with enterocyte-specific overexpression of epidermal growth factor
have the same improvement in intestinal integrity and survival after sepsis as those
that receive systemic epidermal growth factor.34

Altering the Microbiome

There is increasing recognition that microbes are not inherently good or bad, but rather
alter their behavior based on their environment. Bacteria that are present in someone’s
healthy microbiome for decades can became virulent if environmental cues suggest
an advantage to them. Further, simply the presence of bacteria that can cause fatal
disease does not inherently implicate them as being pathologic. For example, P aer-
uginosa injected into the cecum of mice undergoing a sham operation and subse-
quently removed can be injected into the peritoneum of a control mouse without
causing any disease. In contrast, if P aeruginosa is injected in the cecum of mice sub-
jected to a nonlethal partial hepatectomy and subsequently removed and injected into
a control mouse peritoneum, the resulting mortality is 100%.35 The ability of bacteria
to sense host stress, their own environment, and surrounding bacterial density and
alter their virulence in response has profound clinical implications.36,37 This is because
microbial identification without attention to its virulence may not be sufficient for treat-
ing critically ill patients while the simple presence of bacteria is not inherently harmful.
In addition, virulent bacteria can potentially cause MODS without systemic dissemina-
tion. Thus, a potential complementary approach to improving the antibiotic pipeline
and preventing antimicrobial resistance is to prevent bacteria from becoming virulent
or reprogramming them to a nonvirulent phenotype. A preclinical example of this is
seen with administration of a nonantibiotic, high-molecular-weight polymer that pro-
tects mice inoculated with typically virulent organisms from mortality by altering their
phenotype.38 A further example of the how the host response is altered by the micro-
biome can be seen when studying germ free mice, which are raised in microisolator
cages and lack an endogenous microflora. When germ-free mice are given P aerugi-
nosa pneumonia, they have a significantly higher mortality compared with wild-type
mice39; however, germ-free mice subjected to hemorrhagic shock or ischemia–reper-
fusion injuries have an improved survival compared with mice with intact, normal gut
microflora.40,41
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GUT FAILURE IN CRITICALLY ILL PATIENTS
Clinical Diagnosis of Gut Failure

Symptoms of gut failure in the ICU are nonspecific and are not included currently in
severity scoring symptoms such as the Sequential Organ Failure Assessment score.
A recent prospective multicenter study of 377 patients in the ICU requiring mechanical
ventilation sought to determine whether 6 gastroenterological symptoms, namely,
high gastric residual volumes, absent bowel sounds, vomiting/regurgitation, diarrhea,
bowel distension, and gastrointestinal bleeding, could predict patient outcome.42

None of the symptoms43 alone was an independent predictor of mortality. However,
when 3 or more symptoms were present at day 1 of ICU stay, there was a 3-fold in-
crease in the risk of mortality.
Additionally, analysis of patient stool samples has shown promise in predicting out-

comes. In a study of nearly 500 stool samples from an ICU cohort with sepsis, it was
determined that when fecal pH goes up or down by 1, the incidence of bacteremia
more than triples and mortality more than doubles.44 Further, a decrease in obligate
and facultative anaerobes has been shown to correlate with increased risk of mortality
in patients with the systemic inflammatory response syndrome, whereas a depleted or
single pattern fecal stain for bacteria is associated with a greater risk of mortality in
MODS compared with a diverse pattern.43

Although not commonly used clinically, biomarkers have shown significant promise in
diagnosing gut failure. The concentration of plasma citrulline is a marker of enterocyte
functional metabolic mass, so decreased serum citrulline is a potential marker of intesti-
nal damage. Further, intestinal fatty acid-binding protein is localized in enterocytes and is
releasedafter enterocytedamage, so an increase in this protein is alsoa potentialmarker
of intestinal damage. The importance of both citrulline and intestinal fatty acid binding
protein was recently shown in a series of more than 100 medical intensive care unit
patients, of which 15% had septic shock and 20% had acute respiratory distress syn-
drome.45 Increased intestinal fatty acidbindingproteinon ICUadmissionwasassociated
with catecholamine support, higher lactate, higher Sequential OrganFailure Assessment
score, andhigher InternationalNormalizedRatio,whereasdecreasedcitrullinewasasso-
ciated with higher intraabdominal pressure, greater C-reactive protein concentration,
and more frequent antibiotic use. Alterations in both were associated with greater
28-day mortality. Of note, 2 additional studies found increased serum intestinal fatty
acid binding protein in patients with acute mesenteric ischemia.46,47

TARGETING THE MICROBIOME

Clinical strategies aimed at augmenting, decreasing, or transplanting the microbiome
are all used in clinical practice to varying degrees. Despite the widely varying intellec-
tual basis for each of these as a potential therapeutic, each has shown some potential
benefit, although their efficacy and potential unwanted side effects remain incom-
pletely understood.

Probiotics, Prebiotics, and Synbiotics

Becausemicrobial diversity has been shown to be associated with outcomes in critical
illness, the concept of augmenting “good” bacteria and restoring microbial ecology is
potentially beneficial with the goal of restoring a normal, diverse flora. This can be
done in a number of complementary ways: (a) probiotics are exogenous live organ-
isms, (b) prebiotics are nondigestible nutrients that stimulate commensal bacterial
growth, and (c) synbiotics are a combination of probiotics and prebiotics. The theo-
retic benefit of each of these is multifactorial, including local release of antimicrobial
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factors, maintenance of gut barrier integrity, competition for epithelial adherence, pre-
vention of bacterial translocation, and modulation of the local immune response.48

Two recent meta-analyses of probiotics in more than 1000 patients in the ICU demon-
strate a decrease in the incidence of ventilator-associated pneumonia, with one
showing a decreased length of stay.49,50 No alteration in mortality was noted. It should
be noted that the largest trial of probiotics to date showed increased mortality (16% vs
6%) in 296 patients with severe pancreatitis.51 However, this trial has been heavily crit-
icized,52 and does not seem to be representative of other studies of probiotics. Mul-
tiple questions remain before augmenting the microbiome gaining widespread usage
as a strategy to improve outcomes in the ICU. These include what (if any) the optimal
probiotic agent is, if combinations of agents are more beneficial, if synbiotics are su-
perior to probiotics alone, what the ideal “dose”, is and what the long-term safety pro-
file is.

Selective Decontamination of the Digestive Tract

In contrast with augmenting the microbiome, selective decontamination of the diges-
tive tract (SDD) seeks to preferentially minimize pathogenic enteral bacteria. The goal
of this practice is to eradicate oropharyngeal and intestinal carriage of pathogenic mi-
croorganisms without adversely impacting the remaining microbiome on either the pa-
tient level or the ICU level. SDD includes 3 components: (a) 4 to 5 days of parenteral
antibiotics (cefotaxime in previously healthy patients, combination therapy or anti-
pseudomonal cephalosporin in patients with chronic disease), (b) nonabsorbable
enteral antibiotics given via nasoenteric tube given throughout the ICU stay, and (c)
pastes or gels applied to the oropharynx.53 It should be noted that the term “selective”
is a bit of a misnomer, because this approach targets both normal and abnormal flora,
and does not cover multiple low-level pathogens.
For a practice that is used rarely worldwide (with certain exceptions), the data on

SDD are both robust and impressive. In fact, it is a great paradox that the sheer volume
of studies on this practice might be greater (and more supportive) than in almost any
aspect of critical care, yet this has not translated to a change in clinical practice. Spe-
cifically, there have been more than 60 randomized controlled trials and more than 10
metaanalyses on SDD in more than 15,000 patients, demonstrating a reduction of
lower airway infection of 72% and bloodstream infection by 37%.54,55

Given this significant literature, why is SDD not used more commonly used? The
answer relates exclusively to concerns related to the development of antibiotic resis-
tance. Although the majority of studies examining this issue have not demonstrated
the development of resistance (although a few have), these have generally been per-
formed in ICUs that have low levels of antibiotic resistance at baseline.56 With
increasing attention being paid to antibiotic stewardship and resistance worldwide,
the fear that widespread antibiotic usage for preventive purposes will induce new
and difficult or impossible to treat “superbugs” has limited adoption of SDD. Further,
with an increased understanding of the importance of microbial health and diversity, it
is currently unclear how these are impacted by the use of SDD in critically ill patients.

Fecal Transplant

There has recently been an explosion of interest in fecal microbiota transplant, where
stool from a healthy donor is given to a recipient with the goal of restoring the micro-
biome to its homeostatic state seen in health. Although multiple indications are
currently being studied, the most convincing data are in recurrent Clostridium difficile
infection, where cure rates are 3 times higher than seen with conventional medical
therapy without apparent side effects.57 To date, fecal transplant is not typically
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used in critically ill patients because antibiotic use (which is common in the ICU) would
immediately change the microbial components of a patient’s stool (either from donor
or recipient) after the transplant.

Nutrition

Although a comprehensive review of nutritional support is outside the scope of this re-
view, it is worth emphasizing the importance of nutritional support in the ICU, as one of
the major roles of the healthy intestine is to absorb nutrients. Enteral nutrition is pref-
erable to parenteral nutrition because enteral nutrition has beneficial effects on gut-
associated lymphoid tissue and mucosal health, and not does have the increased
risk of infection associated with parenteral nutrition. Enteral nutrition should be initi-
ated within 48 hours of ICU admission if possible.
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