Pseudomonas aeruginosa virulence and therapy: Evolving translational strategies*

Jeffrey L. Veesenmeyer, BA; Alan R. Hauser, MD, PhD; Thiago Lisboa, MD; Jordi Rello, MD, PhD

Objective: Although most reviews of *Pseudomonas aeruginosa* therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjunctive therapies.

Data Source: Current literature regarding *P. aeruginosa* virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella.

Data Extraction and Synthesis: P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many *P. aeruginosa* virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus on much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjunctive therapies capable of improving outcomes.

Conclusions: Adjuvant therapies directed against virulence factors have the potential to improve outcomes in *P. aeruginosa* infections. (Crit Care Med 2009; 37:1777–1786)

KEY WORDS: *Pseudomonas aeruginosa*; virulence factors; type III secretion; quorum sensing; biofilms; flagella; adjunctive therapy

n intensive care units, *Pseudomonas aeruginosa* (PA) ranks among the top five organisms causing pulmonary, bloodstream, urinary tract, surgical site, and soft tissue infections (1). Current treatments, primarily antibiotics that kill or inhibit the growth of this bacterium (2), have been associated with unacceptably high rates of morbidity and mortality. The development of agents that antagonize virulence factors represents a novel and potentially fruitful approach to the treatment of severe infections caused by PA.

Any attempt to therapeutically target virulence determinants must build on a thorough understanding of host-pathogen interactions in PA infections (3). Interactions between PA virulence factors

*See also p. 1826.

From the Departments of Microbiology/Immunology (JLV, ARH) and Medicine (ARH), Northwestern University, Chicago, IL; and Critical Care Department and CIBER Enfermedades Respiratorias (CIBERES) (TL, JR), Joan XXIII University Hospital, University Rovira i Virgili & Pere Virgili Health Institut, Tarragona, Spain.

Supported in part by AGAUR 05SGR920 (JR), a grant from Marato TV3 (JR), and the National Institutes of Health (R01 Al053674, ARH).

Dr. Rello consulted for Intercell. The remaining authors have not disclosed any potential conflicts of interest.

For information regarding this article, E-mail: jrello.hj23.ics@gencat.cat

Copyright © 2009 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins

DOI: 10.1097/CCM.0b013e31819ff137

Crit Care Med 2009 Vol. 37, No. 5

and the host immune response dictate the severity and type of infection. Depending on the environmental conditions and the immune status of the host, PA can be a quiescent colonizer, a cause of chronic infection, or a highly virulent invader during acute infections (3). For example, in the respiratory tract PA may cause fulminant and acute ventilatorassociated pneumonia (VAP), be a colonizer in chronic obstructive pulmonary disease, or cause a chronic infection in cystic fibrosis (CF) patients, leading to slowly progressive deterioration of pulmonary function (3, 4). Bacterial surface factors, such as flagella, pili, and lipopolysaccharide, as well as active processes, such as the secretion of toxins, biofilm formation, and quorum sensing (QS), are virulence determinants that impact the outcome of PA infections (3, 5-7). Interaction with the host immune system via soluble and cell surface receptors (e.g., toll-like receptors) controls signaling molecules (e.g., cytokines) and modulates the host response, which impacts disease severity both by influencing the rate of bacterial clearance and by causing collateral damage to host tissues (3, 5-9).

Given the growing problem of antimicrobial resistance in PA (9-11), improving therapy has been designated a priority by the Antimicrobial Availability Task Force of the Infectious Diseases Society of America (2). Because of its resistance attributes, PA is the most common antibiotic-resistant pathogen isolated from VAP (12), with a significant attributable mortality (13, 14), even with early and optimal therapy (15). Unfortunately, the multifaceted resistance mechanisms possessed by PA have made the development of new antipseudomonal antibiotics challenging (16). Thus, there is a need for novel approaches for controlling these infections in the future.

Recent technological advances in areas, such as genomics, proteomics, and microscopy, have led to rapid progress in our understanding of PA pathogenicity. Scientists are now pushing these discoveries through the translational pipeline in the hope of developing new therapeutic agents useful in the treatment of PA infections. Although a large number of PA virulence determinants are being actively targeted (Table 1), here we will focus on four determinants: type III secretion, QS, biofilm formation, and flagella. We will highlight recent advances in our understanding of basic mechanisms underlying each of these virulence determinants and cite examples of how each is being targeted for therapeutic intervention.

Type III Secretion

PA secretes a number of toxins into the extracellular environment, but one

Table 1. Virulence determinants of PA that have been targeted for therapeutic intervention

Virulence Determinant	Туре	References Demonstrating Role in Pathogenicity ^a	Examples of Therapeutic Interventions	References Demonstrating Potential Utility ^a	Furthest Progress in Translational Efforts
Type IV pili	Surface appendage	Tang et al (125) Chi et al (126)	Active immunization	Kao et al127 Ohama et al (128)	Preclinical
Flagella	Surface appendage	Feldman et al (129) Balloy et al (130)	Active and passive immunization	Doring et al (124) Doring et al (131)	Phase III trial
Lipopolysaccharide	Outer membrane component	Danner et al (132) Moskowitz et al (133) Pier et al (134)	Active and passive immunization	Zuercher et al (135) Lang et al (136) Lai et al (137)	Phase III trial
Alginate	Cell surface exopolysaccharide	Simpson et al (138) Cabral et al (139)	Active and passive immunization	Kashef et al (140) Theilacker et al (141) Pier et al (142)	Phase I trial
Type III secretion	Secretion system	Shaver et al (20) Lee et al (143) Vance et al (144)	Active and passive immunization, small molecule inhibitors	Sawa et al (56) Neely et al (57)	Phase I/II trials
Elastase	Protease	Park et al (145) Azghani et al (146)	Active immunization	Matsumoto et al (147) Sokol et al (148)	Preclinical
Alkaline protease	Protease	Nicas et al (149) Guzzo et al (150)	Active immunization	Matsumoto et al (147)	Preclinical
Exotoxin A	Toxin	Nicas et al (149) Miyazaki et al (151)	Active and passive immunization	Denis-Mize et al (152) Hertle et al (153) El-Zaim et al (154)	Preclinical
Quorum-sensing	Cell-to-cell communication	Pearson et al (155) Rumbaugh et al (156)	Natural and synthetic inhibitors	See Table 2	Preclinical
Biofilms	Bacterial aggregates	Jesaitis et al (157) Cochran et al (158)	Antimicrobial coatings, small molecule inhibitors	See Table 3	Phase III trial

PA, Pseudomonas aeruginosa.

^aReferences are not comprehensive but show representative studies from the field. Adapted from Refs. 159–162.

set of toxins is injected directly into host cells. This occurs through a macromolecular syringe called a type III secretion system (TTSS) (17). This system is important in pathogenesis in a number of animal models of infections (18-20). The TTSS of PA consists of 36 coordinately regulated genes that encode components of the secretion apparatus and a translocon, and factors that regulate secretion (17, 21). The secretion apparatus exports toxins from across the bacterial cell envelope, whereas the translocon is responsible for injecting these toxins into the host cell (Fig. 1). Three proteins, PcrV, PopB, and PopD, are necessary for assembly of a competent translocon (22, 23). The secreted toxins themselves are referred to as effector proteins, and four of them have been identified to date: ExoS, ExoT, ExoU, and ExoY. The first three have been closely linked to virulence and will be discussed here.

ExoS and ExoT are closely related bifunctional toxins that encode both Rho GTPase activating protein activity and ADP-ribosyltransferase activity (24–26). These activities work in concert to disrupt the host cell actin cytoskeleton, block phagocytosis, and cause cell death (27). Whereas the *exoT* gene is found in

all PA strains, the exoS gene is present in approximately 70% of clinical isolates (28). Recent efforts have focused on the intracellular localization of ExoS. Once injected inside of host cells, ExoS localizes transiently to the plasma membrane and then traffics to the membranes of internal organelles, such as endosomes and the Golgi/endoplasmic reticulum (ER) (29). Intracellular membrane localization was critical for the ADP-ribosyltransferase activity, whereas plasma membrane localization was essential for the Rho GTPase activating protein activity of the toxin (29, 30). Interestingly, the ADP-ribosyltransferase activity portion of ExoS (and presumably also of ExoT) only becomes activated upon interaction with a host-derived cofactor identified as a 14-3-3 protein (also termed FAS for Factor Activating ExoS) (Fig. 1) (31-35). 14-3-3 proteins are abundant and serve as scaffold for the colocalization of numerous host cell constituents (36). ExoS, thus, illustrates the propensity of type III effector proteins to hijack host processes and factors, using them to subvert the injected cell.

ExoU is the most virulent of the PA type III effector proteins. The gene encoding this toxin is found in approximately 30% of clinical isolates (28). This potent cytotoxin encodes phospholipase A₂ activity but only after interaction with a host cell cofactor (37, 38). Recently Sato et al (39) demonstrated that superoxide dismutase 1 was such a cofactor (Fig. 1). Like ExoS, ExoU localizes to the plasma membrane but uses an unrelated membrane localization domain to do so (40). ExoU may damage host tissues in multiple ways. Its phospholipase A2 activity leads to rapid cell death, perhaps by direct dissolution of the plasma membrane (37, 38, 41), but its phospholipase activity may also stoke the inflammatory fire during infection by generating arachidonic acid, which serve as substrate for the cyclooxygenase and lipoxygenase pathways (42). The net result is production of large amounts of prostaglandins, such as PGE₂ and PGI₂ (42), which may in turn contribute to the excessive inflammation, increased tissue damage, and bacterial dissemination of infections caused by ExoU-secreting strains (6).

Considerable progress has been made in understanding the regulation of type III secretion in PA. Previous research identified ExsA as a global activator of this system that binds to the promoters responsible for expression of type III se-

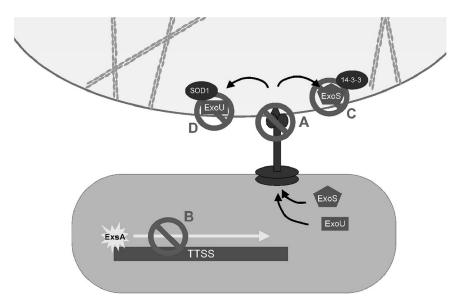


Figure 1. The type III secretion system of *Pseudomonas aeruginosa*. The transcriptional activator ExsA controls expression of the type III secretion regulon, including the genes encoding the effector proteins ExoS and ExoU. On contact with a host cell, induction of the type III secretion system (*TTSS*) occurs and secretion is activated. ExoS and ExoU are injected through the needle apparatus into the host cell, where they initially localize to the plasma membrane. At some point, each interacts with its respective cofactor (14-3-3 protein for ExoS, superoxide dismutase 1 [*SOD1*] for ExoU) and subsequently targets host cell substrates. Four points for potential therapeutic interventions are indicated: "A" represents the targeting of PcrV, a protein necessary for the translocation of effector proteins across the host cell plasma membrane, by antibodies. "B" represents the inhibition of ExsA binding to TTSS promoters by inhibitors. "C" and "D" represent inhibition by small molecules of the enzymatic activities of ExoS and ExoU, respectively.

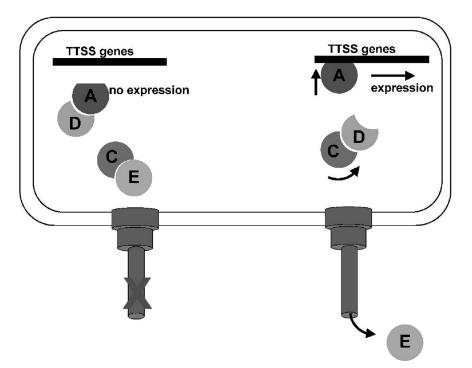


Figure 2. Regulation of *Pseudomonas aeruginosa* type III secretion genes. The left side of the figure represents regulation of type III secretion system (*TTSS*) genes in the absence of active protein secretion. In this case, ExsE ("E") is not secreted but rather is available to bind and sequester ExsC ("C"). This frees ExsD ("D") to bind and sequester ExsA ("A"), preventing ExsA from activating TTSS promoters and expressing TTSS genes. The right side of the figure represents regulation of TTSS genes during active secretion. In this situation, ExsE is secreted outside the bacterium through the type III secretion needle, freeing ExsC to bind and sequester ExsD. ExsD is, thus, unable to bind ExsA, which in turn is available to bind to TTSS genes and facilitate expression of the corresponding genes. In this way, expression of TTSS genes is synchronized with secretion of TTSS proteins.

Crit Care Med 2009 Vol. 37, No. 5

cretion genes (43, 44). The complex upstream regulatory network that controls ExsA is now being elucidated and involves at least three "catch and release" proteins (ExsC, ExsD, and ExsE) that work in concert to ensure that ExsA is only available to induce expression of this system when secretion is actively occurring (Fig. 2) (45–51).

Translation of our knowledge of the PA TTSS to the clinical setting is crucial for evaluating the potential of type III secretion neutralizing strategies as effective therapies. In this regard, it is promising that type III secretion proteins are expressed during human infections and that the results of studies of humans with PA infections mimic those of animal models (10-11, 52, 53). For example, the presence of a functional TTSS was associated with bacterial persistence in the lungs (and, therefore, perhaps clinical recurrence), higher relapse rates, and increased mortality in patients with acute respiratory infections caused by PA (10-11, 54). Furthermore, secretion of type III proteins was associated with increased mortality in patients with a high bacterial burden in respiratory secretions but who failed to meet clinical criteria for the diagnosis of VAP (55). Thus, the PA TTSS appears to have both pathogenic and prognostic significance in human infections.

Given the importance of type III secretion in the pathogenesis of PA infections, it is not surprising that efforts have been made to design reagents to disrupt it. A significant amount of effort has gone toward developing antibodies and vaccines that target the type III secretion apparatus itself and, therefore, prevent secretion (Fig. 1) (18, 56-61). Sawa et al (56) demonstrated that antibodies targeting PcrV, a protein believed to be located at the tip of the secretion apparatus, prevented effective type III secretion and resulted in increased survival and decreased lung injury in a mouse model of acute pneumonia. This same group found that passive anti-PcrV immunization protected against fatal PA challenge in a burned mouse model of infection (57). Using anti-PcrV IgG in a model of septic shock associated with Pseudomonas-induced lung injury also demonstrated a decrease in lung injury, bacteremia, and plasma tumor necrosis factor- α levels as well as improvement in hemodynamic parameters (58). Further clinical studies are underway to evaluate the usefulness of

Table 2. Inhibitors of PA quorum sensing

Class	Examples	Mechanism	References
Autoinducer analogs	Cyclopentanol, cyclopentylamide, and cyclohexanone compounds, tetrazole derivatives	Block autoinducer receptor	163–169, 100
Structurally unrelated autoinducer antagonists	4-Nitro-pyridine- <i>N</i> -oxide, triphenyl compound	Block autoinducer receptor	168, 169
Natural compounds	Products from fungi (penicillic acid), marine macroalga (furanone derivatives), garlic, medicinal plants	Decrease concentration of autoinducer receptor, unknown	84-87, 97, 98 168, 170-173
Enzymes	AHL-lactonase, AHL-acylase	Degrade autoinducers	82, 83
Antibiotics, metabolic compounds	Azithromycin, triclosan, S-adenosylhomocysteine, S-adenosylcysteine, sinefungin	Inhibit synthesis of autoinducer	81, 174, 175

PA, Pseudomonas aeruginosa; AHL, acyl homoserine lactone.

PcrV-specific antibodies as an adjunctive therapy in the clinical setting.

Efforts have also been directed at developing inhibitors that block other aspects of the PA TTSS. For example, small molecule inhibitors of ExoU's phospholipase A_2 activity and ExoS's ADPribosyltransferase activity activity have been identified and designated pseudolipasin and exosin, respectively (62, 63). Likewise, inhibitors of ExsA, a regulator necessary to express all TTSS genes, have also been identified (64). Each of these compounds provided protection from killing in models of PA infection.

Quorum Sensing

Like people, PA bacteria behave differently depending on whether they are alone or in a crowd. They accomplish this by using an intercellular signaling process called QS (65). In QS, small compounds called autoinducers are released by bacteria into the environment. Autoinducer concentrations are then sensed by neighboring bacteria to infer the density of the local bacterial population and to regulate gene expression accordingly. PA QS systems regulate about 350 genes (6% of the PA genome) and play a role in the regulation of a wide variety of processes including biofilm formation and production of numerous toxins (66-73). Given this regulatory breadth, it is not surprising that QS plays an essential role in virulence (74). Two primary QS systems were initially identified in PA, the las and the rhl systems (66-68, 75). More recently, a third QS system was identified in PA, referred to as the Pseudomonas Quinolone Signal (PQS) (76). PQS is controlled by *las* system and itself regulates the *rhl* system, suggesting that it acts as link between the two systems.

Just as many environmental organisms synthesize antibiotics to gain an advantage over microbial competitors, some also produce enzymes that degrade the QS autoinducer signals of other species of bacteria (77). Recent evidence suggests that mammalian cells too have developed such capabilities. Paraoxonases (PONs) are mammalian enzymes that are capable of degrading PA autoinducer molecules and thereby have the potential to disrupt QS (78-80). Treatment of PA with PON-containing serum inhibited biofilm formation, which requires functional QS (79). Thus, these enzymes may play an important role in host defense against PA.

Numerous approaches have been successfully used to inhibit QS in culture and in vivo model systems (Table 2). For example, triclosan, an antimicrobial substance used in soaps, toothpaste, cleansers, and deodorants, has been shown to inhibit the synthesis of autoinducer (81). The anti-QS strategies of bacteria themselves have been exploited. Expression of bacterial enzymes that degrade autoinducers resulted in decreased production of QS-regulated toxins by PA (82, 83). In another approach, natural and synthetic compounds have been screened for their utility in preventing the interaction between the autoinducer and its receptor. Much effort has been directed toward furanones, compounds produced by marine macroalga with anti-fouling properties (84). Although naturally occurring furanones lacked substantial activity, modified furanone compounds inhibited QS and increased bacterial clearance in a mouse model of infection (85-87). Further investigations are necessary to determine whether these approaches will prove efficacious in inhibiting QS in human infections.

Biofilms

Biofilms are bacterial cities, highly organized, microbial communities encased in a polysaccharide matrix and attached to a surface (88). When that surface is a surgical implant, endotracheal tube, catheter, or the airways of individuals with CF, biofilms become a medical problem. They are highly resistant to antimicrobial agents, which occurs by a number of mechanisms that are now becoming clear. When dispersed and grown on agar, a subpopulation of PA bacteria from biofilms will form dwarf colonies referred to as small-colony variants (SCVs). These colonies consist of highly adherent antibiotic-resistant variants implicated in persistent infections (89). Several groups have isolated SCVs of PA from biofilms as well as the respiratory tracts of individuals with CF (90-92). A genetic basis for antibiotic resistance of biofilms was identified by Mah et al (93). By performing a genetic screen for loss of antibiotic resistance in biofilms, they identified the gene ndvB. Biofilms formed by a PA strain containing a disrupted copy of the *ndvB* gene were more susceptible to antibiotics. The authors hypothesized that NdvB encodes a periplasmic glucan that physically interacts with and sequesters antibiotics, preventing them from reaching their target sites (93).

Given their importance in PA pathogenesis, biofilms have been an obvious target for efforts aimed at therapeutic interventions (Table 3). One approach has been to block the earliest step in biofilm

Table 3. Approaches to preventing or disrupting PA biofilm	Table 3.	Approaches	to	preventing	or	disrupting	PA	biofilm
--	----------	------------	----	------------	----	------------	----	---------

Approach	Examples	Mechanism	References	
Antimicrobial coating of medical devices	Silver, chlorhexidine	Prevent biofilm formation by killing bacteria and preventing bacterial adherence	94, 95, 176	
Iron limitation	Lactoferrin, transferrin	Prevent adherent bacteria from forming biofilms	96, 177	
Iron excess	$FeCl_3$, $Fe_2(SO4)_3$	Prevent biofilm formation, disrupt preformed biofilms	178, 179	
QS inhibitors	Furanone, patulin and penicillic, plant lactones	Prevent biofilm formation, decrease biofilm resistance to tobramycin	97, 98, 100, 85, 86, 180	
Subinhibitory levels of antibiotics	Macrolides, mupirocin	Delay biofilm formation, decrease biofilm resistance to tobramycin, alter biofilm architecture, decrease polysaccharide content	181–184	
Inhibitors from natural products	Marine alkaloid derivatives, ursene triterpenes from tropical tree	Prevent biofilm formation, disperse preformed biofilms	185–187	
Inhibitors from random compound screens	Å	Prevent biofilm attachment and formation	188	
Metal chelators	EDTA	Killing and dispersal of bacteria in biofilms	101	
Electrical current		Enhanced susceptibility of biofilm to biocides	104, 105	
Mucolytic agent	Ambroxol	Decreased synthesis of alginate	189	
Degradation of polysaccharide	Alginate lyase	Enhanced susceptibility of biofilm to aminoglycosides	102, 103	
Activation of endogenous dispersal mechanisms	Nitric oxide	Disruption of preformed biofilms	106	

PA, Pseudomonas aeruginosa.

formation: bacterial attachment. For example, coating of endotracheal tubes with silver was associated with a delay in bacterial colonization, reduced bacterial burdens in mechanically ventilated patients, and a reduction in the incidence of VAP (94, 95). Several groups have targeted the processes necessary for biofilms to evolve into mature structures, such as quorum-sensing and iron acquisition (96, 97). Others have identified natural or synthetic compounds that prevent biofilm formation (98-100). Efforts have also been directed at disrupting already formed biofilms by using compounds toxic to bacteria within these structures (101), by degrading the polysaccharide matrix (102, 103), by applying electrical current (104, 105), and by inducing bacterial dispersal from biofilms (106). Each of these approaches has the potential to be prophylactically or therapeutically useful.

Flagella

The flagellum of PA is required for swimming motility but also plays crucial roles in biofilm dispersal and adhesion to the surface of host cells (107–109). The significance of these processes in pathogenesis is underscored by the loss of virulence of nonflagellated mutants in models of acute infection (110, 111). During infection flagellin, the primary structural component of the flagellum is recognized by Toll-like receptor 5 on the surface of host cells. Thus, toll-like receptor 5 is used by the host as a surveillance mechanism to detect invading PA bacteria and in turn trigger the immune response by inducing the synthesis of cytokines, such as tumor necrosis factor, interleukin-6, and interleukin-8 (112–115).

Despite the importance of flagella in acute infection, PA actually down-regulates expression of flagellin over the course of chronic infection in the CF lung, perhaps to evade the host immune response (116, 117). The mechanism of this down-regulation is now being elucidated and is reminiscent of that described for type III secretion (Fig. 2). Elastase released by neutrophils in respiratory mucus degrades the flagellar hook protein FlgE at the bacterial surface (118). In the absence of FlgE, the flagellar apparatus is no longer competent for export, and the otherwise secreted anti-sigma factor FliM accumulates within the bacterium and binds to FliA. Sequestration of FliA prevents expression of flagellar genes normally targeted by this transcriptional activator, resulting in the absence of flagella (119). An additional mechanism by which flagella are downregulated during chronic infection is the accumulation of mutations in the *fleQ* gene, which encodes a major regulator of the flagellar regulon (120).

Although 40% of PA isolates from patients with CF do not produce flagella, this virulence factor is still thought to be necessary for the initial infection of these patients (121). Animal models have demonstrated that antibodies against the flagellum, induced by either active or passive immunization, are protective (122, 123). Prevention of PA lung infection by immunization against flagellar antigens might, therefore, be a suitable adjunctive therapy in individuals with CF. A recent randomized placebo-controlled trial of 483 patients with CF found a 34% reduction in infection episodes over a 2-year period in those immunized with a bivalent flagella vaccine (124).

Future Directions

It is anticipated that novel therapeutic interventions based on PA virulence factors (Table 1) will become a part of standard clinical practice. These interventions will take one of two forms: First is vaccination of high-risk patient populations. Further studies will be necessary to evaluate the role of flagella vaccines in specific patient groups and to further define the dose and immunization schedule for optimal induction of long-lasting serum titers of antiflagellar IgG. Second, immunotherapies and inhibitors may be useful agents in the prevention of high burden colonization or the treatment of

infection. For example, such agents may be administered alone to colonized patients undergoing mechanical ventilation or as adjuncts to conventional antibiotics in patients who have already developed VAP. Although much additional work is required, the utility of targeting PA virulence factors is already being borne out by such interventions as silver-coated endotracheal tubes and the flagella vaccine.

REFERENCES

- Trautmann M, Lepper PM, Haller M: Ecology of *Pseudomonas aeruginosa* in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. *Am J Infect Control* 2005; 33:S41–S49
- Talbot GH, Bradley J, Edwards JE Jr, et al: Bad bugs need drugs: An update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. *Clin Infect Dis* 2006; 42:657–668
- Sadikot RT, Blackwell TS, Christman JW, et al: Pathogen-host interactions in *Pseudomonas aeruginosa* pneumonia. *Am J Respir Crit Care Med* 2005; 171:1209–1223
- Wine J: The genesis of cystic fibrosis in lung disease. J Clin Invest 1999; 103:309–312
- Kipnis E, Sawa T, Wiener-Kronish J: Targeting mechanisms of *Pseudomonas aeruginosa* pathogenesis. *Med Mal Infect* 2006; 36:78–91
- Kurahashi K, Kajikawa O, Sawa T, et al: Pathogenesis of septic shock in *P. aeruginosa* pneumonia. *J Clin Invest* 1999; 104: 743–750
- Kudoh I, Wiener-Kronish JP, Hashimoto S, et al: Exoproduct secretions of *P. aeruginosa* strains influence severity of alveolar epithelial injury. *Am J Physiol* 1995; 268: 181–186
- Lorenz E, Chemotti DC, Vandal K, et al: Toll-like receptor 2 represses nonpilus adhesion-induced signaling in acute infections with the Pseudomonas aeruginosa pilA mutant. *Infect Immun* 2004; 72: 4561–4569
- Schultz MJ, Rijneveld W, Floruin S, et al: Role of interleukin-1 in the pulmonary immune response during *Pseudomonas aeruginosa* pneumonia. *Am J Physiol Lung Cell Mol Physiol* 2002; 282:285–290
- Hauser AR, Cobb E, Bodi M, et al: Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by *Pseudomonas aeruginosa. Crit Care Med* 2002; 30:521–528
- Roy-Burman A, Savel RH, Racine S, et al: Type III protein secretion is associated with death in lower respiratory and systemic *Pseudomonas aeruginosa* infections. J Infect Dis 2001; 183:1767–1774
- 12. Rello J, Diaz E: Pneumonia in the intensive

care unit. *Crit Care Med* 2003; 31: 2544–2551

- Rello J, Rue M, Jubert P, et al: Survival in patients with nosocomial pneumonia: Impact of the severity of illness and the etiologic agent. *Crit Care Med* 1997; 25: 1862–1867
- Rello J, Jubert P, Valles J, et al: Evaluation of outcome for intubated patients with pneumonia due to *Pseudomonas aeruginosa*. *Clin Infect Dis* 1996; 23:973–978
- Fagon JY, Chastre J, Vuagnat A, et al: Nosocomial pneumonia and mortality among patients in intensive care units. *JAMA* 1996; 275:866–869
- Rice LB: Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis 2006; 43(Suppl 2):S100–S105
- Frank DW: The exoenzyme S regulon of *Pseudomonas aeruginosa. Mol Microbiol* 1997; 26:621–629
- Holder IA, Neely AN, Frank DW: PcrV immunization enhances survival of burned *Pseudomonas aeruginosa*-infected mice. *Infect Immun* 2001; 69:5908–5910
- Finck-Barbançon V, Goranson J, Zhu L, et al: ExoU expression by *Pseudomonas aeruginosa* correlates with acute cytotoxicity and epithelial injury. *Mol Microbiol* 1997; 25:547–557
- Shaver CM, Hauser AR: Relative contributions of *Pseudomonas aeruginosa* ExoU, ExoS, and ExoT to virulence in the lung. *Infect Immun* 2004; 72:6969-6977
- Coburn B, Sekirov I, Finlay BB: Type III secretion systems and disease. *Clin Microbiol Rev* 2007; 20:535–549
- Yahr TL, Mende-Mueller LM, Friese MB, et al: Identification of type III secreted products of the *Pseudomonas aeruginosa* exoenzyme S regulon. *J Bacteriol* 1997; 179: 7165–7168
- Hauser AR, Fleiszig S, Kang PJ, et al: Defects in type III secretion correlate with internalization of *Pseudomonas aeruginosa* by epithelial cells. *Infect Immun* 1998; 66: 1413–1420
- 24. Goehring UM, Schmidt G, Pederson KJ, et al: The N-terminal domain of *Pseudomonas aeruginosa* exoenzyme S is a GTPaseactivating protein for Rho GTPases. J Biol Chem 1999; 274:36369–36372
- Deng Q, Sun J, Barbieri JT: Uncoupling Crk signal transduction by Pseudomonas exoenzyme T. J Biol Chem 2005; 280:35953–35960
- Sun J, Barbieri JT: Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J Biol Chem 2003; 278:32794–32800
- Barbieri JT, Sun J: Pseudomonas aeruginosa ExoS and ExoT. Rev Physiol Biochem Pharmacol 2004; 152:79–92
- Feltman H, Schulert G, Khan S, et al: Prevalence of type III secretion genes in clinical and environmental isolates of *Pseudomonas*

aeruginosa. Microbiology 2001; 147: 2659–2669

- 29. Zhang Y, Barbieri JT: A leucine-rich motif targets *Pseudomonas aeruginosa* ExoS within mammalian cells. *Infect Immun* 2005; 73:7938–7945
- Zhang Y, Deng Q, Porath JA, et al: Plasma membrane localization affects the RhoGAP specificity of Pseudomonas ExoS. *Cell Microbiol* 2007; 9:2192–2201
- Ottmann C, Yasmin L, Weyand M, et al: Phosphorylation-independent interaction between 14–3-3 and exoenzyme S: From structure to pathogenesis. *EMBO J* 2007; 26:902–913
- 32. Fu H, Coburn J, Collier RJ: The eukaryotic host factor that activates exoenzyme S of *Pseudomonas aeruginosa* is a member of the 14–3-3 protein family. *Proc Natl Acad Sci USA* 1993; 90:2320–2324
- 33. Zhang L, Wang H, Liu D, et al: Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49. *J Biol Chem* 1997; 272:13717–13724
- 34. Masters SC, Pederson KJ, Zhang L, et al: Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of *Pseudomonas aeruginosa*. *Biochemistry* 1999; 38:5216–5221
- Coburn J, Kane AV, Feig L, et al: *Pseudo-monas aeruginosa* exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. *J Biol Chem* 1991; 266: 6438-6446
- Aitken A: 14-3-3 proteins: A historic overview. Semin Cancer Biol 2006; 16:162–172
- Sato H, Frank DW: ExoU is a potent intracellular phospholipase. *Mol Microbiol* 2004; 53:1279–1290
- Phillips RM, Six DA, Dennis EA, et al: In vivo phospholipase activity of the *Pseudomonas aeruginosa* cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. *J Biol Chem* 2003; 278: 41326–41332
- Sato H, Feix JB, Frank DW: Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. *Biochemistry* 2006; 45:10368–10375
- Rabin SD, Veesenmeyer JL, Bieging KT, et al: A C-terminal domain targets the *Pseudomonas aeruginosa* cytotoxin ExoU to the plasma membrane of host cells. *Infect Immun* 2006; 74:2552–2561
- Rabin SDP, Hauser AR: Functional regions of the *Pseudomonas aeruginosa* cytotoxin ExoU. *Infect Immun* 2005; 73:573–582
- Saliba AM, Nascimento DO, Silva MC, et al: Eicosanoid-mediated proinflammatory activity of *Pseudomonas aeruginosa* ExoU. *Cell Microbiol* 2005; 7:1811–1822
- Yahr TL, Hovey AK, Kulich SM, et al: Transcriptional analysis of the *Pseudomonas aeruginosa* exoenzyme S structural gene. *J Bacteriol* 1995; 177:1169–1178
- 44. Hovey A, Frank DW: Analyses of the DNAbinding and transcriptional activation properties of ExsA, the transcriptional activator

of the *Pseudomonas aeruginosa* exoenzyme S regulon. *J Bacteriol* 1995; 177:4427–4436

- Yahr TL, Wolfgang MC: Transcriptional regulation of the *Pseudomonas aeruginosa* type III secretion system. *Mol Microbiol* 2006; 62:631–640
- McCaw ML, Lykken GL, Singh PK, et al: ExsD is a negative regulator of the *Pseudo-monas aeruginosa* type III secretion regulon. *Mol Microbiol* 2002; 46: 1123–1133
- Dasgupta N, Lykken GL, Wolfgang MC, et al: A novel anti-anti-activator mechanism regulates expression of the *Pseudomonas* aeruginosa type III secretion system. *Mol Microbiol* 2004; 53:297–308
- Ha UH, Kim J, Badrane H, et al: An in vivo inducible gene of *Pseudomonas aeruginosa* encodes an anti-ExsA to suppress the type III secretion system. *Mol Microbiol* 2004; 54:307–320
- Goranson J, Hovey AK, Frank DW: Functional analysis of exsC and exsB in regulation of exoenzyme S production by *Pseudomonas aeruginosa*. J Bacteriol 1997; 179: 1646–1654
- Urbanowski ML, Lykken GL, Yahr TL: A secreted regulatory protein couples transcription to the secretory activity of the *Pseudomonas aeruginosa* type III secretion system. *Proc Natl Acad Sci USA* 2005; 102: 9930–9935
- 51. Rietsch A, Vallet-Gely I, Dove SL, et al: ExsE, a secreted regulator of type III secretion genes in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci USA* 2005; 102: 8006–8011
- 52. Moss J, Ehrmantraut ME, Banwart BD, et al: Sera from adult patients with cystic fibrosis contain antibodies to *Pseudomonas aeruginosa* type III apparatus. *Infect Immun* 2001; 69:1185–1188
- 53. Wong-Beringer A, Wiener-Kronish J, Lynch S, et al: Comparison of type III secretion system virulence among fluoroquinolonesusceptible and -resistant clinical isolates of *Pseudomonas aeruginosa. Clin Microbiol Infect* 2008; 14:330–336
- 54. El Solh AA, Akinnusi ME, Wiener-Kronish JP, et al: Persistent infection with *Pseudomonas aeruginosa* in ventilator-associated pneumonia. *Am J Respir Crit Care Med* 2008; 178:513–519
- Zhuo H, Yang K, Lynch SV, et al: Increased mortality of ventilated patients with endotracheal *Pseudomonas aeruginosa* without clinical signs of infection. *Crit Care Med* 2008; 36:2495–2503
- 56. Sawa T, Yahr T, Ohara M, et al: Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. *Nature Med* 1999; 5:392–398
- Neely AN, Holder IA, Wiener-Kronish JP, et al: Passive anti-PcrV treatment protects burned mice against *Pseudomonas aeruginosa* challenge. *Burns* 2005; 31:153–158
- 58. Shime N, Sawa T, Fujimoto J, et al: Therapeutic administration of anti-PcrV F(ab')(2)

in sepsis associated with *Pseudomonas* aeruginosa. J Immunol 2001; 167: 5880–5886

- 59. Faure K, Fujimoto J, Shimabukuro DW, et al: Effects of monoclonal anti-PcrV antibody on *Pseudomonas aeruginosa*-induced acute lung injury in a rat model. *J Immune Based Ther Vaccines* 2003; 1:1–9
- Frank DW, Vallis A, Wiener-Kronish JW, et al: Generation and characterization of a protective monoclonal antibody to *Pseudomonas aeruginosa* PcrV. J Infect Dis 2002; 186:64–73
- 61. Imamura Y, Yanagihara K, Fukuda Y, et al: Effect of anti-PcrV antibody in a murine chronic airway *Pseudomonas aeruginosa* infection model. *Eur Respir J* 2007; 29: 965–968
- Lee VT, Pukatzki S, Sato H, et al: Pseudolipasin A is a specific inhibitor for phospholipase A2 activity of *Pseudomonas aeruginosa* cytotoxin ExoU. *Infect Immun* 2007; 75:1089–1098
- 63. Arnoldo A, Curak J, Kittanakom S, et al: Identification of small molecule inhibitors of *Pseudomonas aeruginosa* exoenzyme S using a yeast phenotypic screen. *PLoS Genet* 2008; 4:e1000005
- 64. Draper MP, Garrity-Ryan LK, Donovan P, et al: A novel anti-virulence approach for treatment of pneumonia caused by *Pseudomonas aeruginosa* 47th ASM Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago 2007, pp Abstract F2-968^a
- Juhas M, Eberl L, Tummler B: Quorum sensing: the power of cooperation in the world of Pseudomonas. *Environ Microbiol* 2005; 7:459–471
- 66. Ochsner UA, Koch AK, Fiechter A, et al: Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in *Pseudomonas aeruginosa*. *J Bacteriol* 1994; 176:2044–2054
- 67. Latifi A, Winson MK, Foglino M, et al: Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in *Pseudomonas aeruginosa* PAO1. *Mol Microbiol* 1995; 17:333–343
- 68. Winson MK, Camara M, Latifi A, et al: Multiple *N*-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in *Pseudomonas aeruginosa. Proc Natl Acad Sci USA* 1995; 92:9427–9431
- 69. Brint JM, Ohman DE: Synthesis of multiple exoproducts in *Pseudomonas aeruginosa* is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. *J Bacteriol* 1995; 177:7155–7163
- Toder DS, Gambello MJ, Iglewski BH: Pseudomonas aeruginosa LasA: A second elastase under the transcriptional control of lasR. *Mol Microbiol* 1991; 5:2003–2010
- 71. Passador L, Cook JM, Gambello MJ, et al: Expression of *Pseudomonas aeruginosa* vir-

ulence genes requires cell-to-cell communication. *Science* 1993; 260:1127–1130

- Chapon-Herve V, Akrim M, Latifi A, et al: Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in *Pseudomonas aeruginosa*. *Mol Microbiol* 1997; 24:1169–1178
- Schuster M, Lostroh CP, Ogi T, et al: Identification, timing, and signal specificity of *Pseudomonas aeruginosa* quorum-controlled genes: A transcriptome analysis. *J Bacteriol* 2003; 185:2066–2079
- 74. Bjarnsholt T, Givskov M: The role of quorum sensing in the pathogenicity of the cunning aggressor *Pseudomonas aeruginosa*. Anal Bioanal Chem 2007; 387: 409–414
- Gambello MJ, Iglewski BH: Cloning and characterization of the *Pseudomonas aeruginosa* lasR gene, a transcriptional activator of elastase expression. *J Bacteriol* 1991; 173:3000–3009
- Pesci EC, Milbank JB, Pearson JP, et al: Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. *Proc Natl Acad Sci USA* 1999; 96: 11229–11234
- 77. Dong YH, Wang LY, Zhang LH: Quorumquenching microbial infections: Mechanisms and implications. *Philos Trans R Soc Lond B Biol Sci* 2007; 362:1201–1211
- Stoltz DA, Ozer EA, Ng CJ, et al: Paraoxonase-2 deficiency enhances *Pseudomonas aeruginosa* quorum sensing in murine tracheal epithelia. *Am J Physiol Lung Cell Mol Physiol* 2007; 292:L852–L860
- Ozer EA, Pezzulo A, Shih DM, et al: Human and murine paraoxonase 1 are host modulators of *Pseudomonas aeruginosa* quorumsensing. *FEMS Microbiol Lett* 2005; 253: 29–37
- Yang F, Wang LH, Wang J, et al: Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. *FEBS Lett* 2005; 579:3713–3717
- Hoang TT, Schweizer HP: Characterization of *Pseudomonas aeruginosa* enoyl-acyl carrier protein reductase (FabI): A target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. *J Bacteriol* 1999; 181:5489–5497
- Reimmann C, Ginet N, Michel L, et al: Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in *Pseudomonas aeruginosa* PAO1. *Microbiology* 2002; 148: 923–932
- Lin YH, Xu JL, Hu J, et al: Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. *Mol Microbiol* 2003; 47:849–860
- 84. Wu H, Song Z, Hentzer M, et al: Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in *Pseudomonas aeruginosa* lung infection in mice. J Antimicrob Chemother 2004; 53:1054–1061
- 85. Hentzer M, Wu H, Andersen JB, et al: At-

tenuation of *Pseudomonas aeruginosa* virulence by quorum sensing inhibitors. *EMBO J* 2003; 22:3803–3815

- Hentzer M, Riedel K, Rasmussen TB, et al: Inhibition of quorum sensing in *Pseudomonas aeruginosa* biofilm bacteria by a halogenated furanone compound. *Microbiology* 2002; 148:87–102
- Kim C, Kim J, Park HY, et al: Furanone derivatives as quorum-sensing antagonists of *Pseudomonas aeruginosa*. Appl Microbiol Biotechnol 2008; 80:37–47
- Hoiby N, Krogh Johansen H, Moser C, et al: *Pseudomonas aeruginosa* and the in vitro and in vivo biofilm mode of growth. *Mi- crobes Infect* 2001; 3:23–35
- Proctor RA, von Eiff C, Kahl BC, et al: Small colony variants: A pathogenic form of bacteria that facilitates persistent and recurrent infections. *Nat Rev Microbiol* 2006; 4:295–305
- Haussler S, Ziegler I, Lottel A, et al: Highly adherent small-colony variants of *Pseudomonas aeruginosa* in cystic fibrosis lung infection. *J Med Microbiol* 2003; 52: 295–301
- 91. Deziel E, Comeau Y, Villemur R: Initiation of biofilm formation by *Pseudomonas aeruginosa* 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. *J Bacteriol* 2001; 183:1195–1204
- 92. Kirisits MJ, Prost L, Starkey M, et al: Characterization of colony morphology variants isolated from *Pseudomonas aeruginosa* biofilms. *Appl Environ Microbiol* 2005; 71: 4809–4821
- Mah TF, Pitts B, Pellock B, et al: A genetic basis for *Pseudomonas aeruginosa* biofilm antibiotic resistance. *Nature* 2003; 426: 306–310
- 94. Kollef MH, Afessa B, Anzueto A, et al: Silvercoated endotracheal tubes and incidence of ventilator-associated pneumonia: The NAS-CENT randomized trial. *JAMA* 2008; 300: 805–813
- 95. Rello J, Kollef M, Diaz E, et al: Reduced burden of bacterial airway colonization with a novel silver-coated endotracheal tube in a randomized multiple-center feasibility study. *Crit Care Med* 2006; 34:2766–2772
- 96. Singh PK, Parsek MR, Greenberg EP, et al: A component of innate immunity prevents bacterial biofilm development. *Nature* 2002; 417:552–555
- Rasmussen TB, Skindersoe ME, Bjarnsholt T, et al: Identity and effects of quorumsensing inhibitors produced by Penicillium species. *Microbiology* 2005; 151:1325–1340
- Adonizio A, Kong KF, Mathee K: Inhibition of quorum sensing-controlled virulence factor production in *Pseudomonas aeruginosa* by South Florida plant extracts. *Antimicrob Agents Chemother* 2008; 52:198–203
- Hu JF, Garo E, Goering MG, et al: Bacterial biofilm inhibitors from Diospyros dendo. *J Nat Prod* 2006; 69:118–120

- 100. Geske GD, Wezeman RJ, Siegel AP, et al: Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 2005; 127:12762–12763
- 101. Banin E, Brady KM, Greenberg EP: Chelator-induced dispersal and killing of *Pseudomonas aeruginosa* cells in a biofilm. *Appl Environ Microbiol* 2006; 72:2064–2069
- 102. Alkawash MA, Soothill JS, Schiller NL: Alginate lyase enhances antibiotic killing of mucoid *Pseudomonas aeruginosa* in biofilms. *APMIS* 2006; 114:131–138
- 103. Hatch RA, Schiller NL: Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 1998; 42:974–977
- 104. Blenkinsopp SA, Khoury AE, Costerton JW: Electrical enhancement of biocide efficacy against *Pseudomonas aeruginosa* biofilms. *Appl Environ Microbiol* 1992; 58: 3770–3773
- 105. Jass J, Lappin-Scott HM: The efficacy of antibiotics enhanced by electrical currents against *Pseudomonas aeruginosa* biofilms. *J Antimicrob Chemother* 1996; 38: 987–1000
- 106. Barraud N, Hassett DJ, Hwang SH, et al: Involvement of nitric oxide in biofilm dispersal of *Pseudomonas aeruginosa*. J Bacteriol 2006; 188:7344–7353
- 107. Arora SK, Ritchings BW, Almira EC, et al.: The *Pseudomonas aeruginosa* flagellar cap protein, FliD, is responsible for mucin adhesion. *Infect Immun* 1998; 66:1000–1007
- 108. Gewirtz AT, Navas TA, Lyons S, et al: Cutting edge: Bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. *J Immunol* 2001; 167:1882–1885
- 109. O'Toole GA, Kolter R: Flagellar and twitching motility are necessary for *Pseudomonas aeruginosa* biofilm development. *Mol Microbiol* 1998; 30:295–304
- 110. Montie TC, Doyle-Huntzinger D, Craven RC, et al: Loss of virulence associated with absence of flagellum in an isogenic mutant of *Pseudomonas aeruginosa* in the burnedmouse model. *Infect Immun* 1982; 38: 1296–1298
- 111. Fleiszig SM, Arora SK, Van R, et al: FlhA, a component of the flagellum assembly apparatus of *Pseudomonas aeruginosa*, plays a role in internalization by corneal epithelial cells. *Infect Immun* 2001; 69:4931–4937
- 112. Zhang J, Xu K, Ambati B, et al: Toll-like receptor 5-mediated corneal epithelial inflammatory responses to *Pseudomonas aeruginosa* flagellin. *Invest Ophthalmol Vis Sci* 2003; 44:4247–4254
- 113. Hayashi F, Smith KD, Ozinsky A, et al: The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. *Nature* 2001; 410:1099–1103
- 114. Rumbo M, Nempont C, Kraehenbuhl JP, et al: Mucosal interplay among commensal and pathogenic bacteria: Lessons from

flagellin and Toll-like receptor 5. *FEBS Lett* 2006; 580:2976–2984

- 115. Zhang Z, Louboutin JP, Weiner DJ, et al: Human airway epithelial cells sense *Pseudomonas aeruginosa* infection via recognition of flagellin by Toll-like receptor 5. *Infect Immun* 2005; 73:7151–7160
- 116. Wolfgang MC, Jyot J, Goodman A, et al: *Pseudomonas aeruginosa* regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. *Proc Natl Acad Sci USA* 2004; 101: 6664–6668
- 117. Palmer KL, Mashburn LM, Singh PK, et al: Cystic fibrosis sputum supports growth and cues key aspects of *Pseudomonas aeruginosa* physiology. *J Bacteriol* 2005; 187: 5267–5277
- 118. Sonawane A, Jyot J, During R, et al: Neutrophil elastase, an innate immunity effector molecule, represses flagellin transcription in *Pseudomonas aeruginosa*. *Infect Immun* 2006; 74:6682–6689
- 119. Jyot J, Sonawane A, Wu W, et al: Genetic mechanisms involved in the repression of flagellar assembly by *Pseudomonas aeruginosa* in human mucus. *Mol Microbiol* 2007; 63:1026–1038
- 120. Smith EE, Buckley DG, Wu Z, et al: Genetic adaptation by *Pseudomonas aeruginosa* to the airways of cystic fibrosis patients. *Proc Natl Acad Sci USA* 2006; 103:8487–8492
- 121. Mahenthiralingam E, Campbell ME, Speert DP: Nonmotility and phagocytic resistance of *Pseudomonas aeruginosa* isolates from chronically colonized patients with cystic fibrosis. *Infect Immun* 1994; 62:596–605
- 122. Landsperger WJ, Kelly-Wintenberg KD, Montie TC, et al: Inhibition of bacterial motility with human antiflagellar monoclonal antibodies attenuates *Pseudomonas aeruginosa*-induced pneumonia in the immunocompetent rat. *Infect Immun* 1994; 62: 4825–4830
- 123. Holder IA, Naglich JG: Experimental studies of the pathogenesis of infections due to *Pseudomonas aeruginosa*: Immunization using divalent flagella preparations. *J Trauma* 1986; 26:118–122
- 124. Doring G, Meisner C, Stern M: A doubleblind randomized placebo-controlled phase III study of a *Pseudomonas aeruginosa* flagella vaccine in cystic fibrosis patients. *Proc Natl Acad Sci USA* 2007; 104:11020–11025
- 125. Tang H, Kays M, Prince A: Role of *Pseudo-monas aeruginosa* pili in acute pulmonary infection. *Infect Immun* 1995; 63: 1278–1285
- 126. Chi E, Mehl T, Nunn D, et al: Interaction of Pseudomonas aeruginosa with A549 pneumocyte cells. Infect Immun 1991; 59: 822–828
- 127. Kao DJ, Churchill ME, Irvin RT, et al: Animal protection and structural studies of a consensus sequence vaccine targeting the receptor binding domain of the type IV pilus of *Pseudomonas aeruginosa*. J Mol Biol 2007; 374:426–442

- 128. Ohama M, Hiramatsu K, Miyajima Y, et al: Intratracheal immunization with pili protein protects against mortality associated with *Pseudomonas aeruginosa* pneumonia in mice. *FEMS Immunol Med Microbiol* 2006; 47:107–115
- 129. Feldman M, Bryan R, Rajan S, et al: Role of flagella in pathogenesis of *Pseudomonas* aeruginosa pulmonary infection. *Infect Im*mun 1998; 66:43–51
- Balloy V, Verma A, Kuravi S, et al: The role of flagellin versus motility in acute lung disease caused by *Pseudomonas aeruginosa. J Infect Dis* 2007; 196:289–296
- 131. Doring G, Dorner F: A multicenter vaccine trial using the *Pseudomonas aeruginosa* flagella vaccine IMMUNO in patients with cystic fibrosis. *Behring Inst Mitt* 1997; 98: 338–344
- 132. Danner RL, Natanson C, Elin RJ, et al: *Pseudomonas aeruginosa* compared with *Escherichia coli* produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. *Chest* 1990; 98:1480–1487
- 133. Moskowitz SM, Ernst RK, Miller SI: PmrAB, a two-component regulatory system of *Pseudomonas aeruginosa* that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 2004; 186:575–579
- 134. Pier GB, Ames P: Mediation of the killing of rough, mucoid isolates of *Pseudomonas aeruginosa* from patients with cystic fibrosis by the alternative pathway of complement. J Infect Dis 1984; 150:223–228
- 135. Zuercher AW, Horn MP, Que JU, et al: Antibody responses induced by long-term vaccination with an octovalent conjugate *Pseudomonas aeruginosa* vaccine in children with cystic fibrosis. *FEMS Immunol Med Microbiol* 2006; 47:302–308
- 136. Lang AB, Rudeberg A, Schoni MH, et al: Vaccination of cystic fibrosis patients against *Pseudomonas aeruginosa* reduces the proportion of patients infected and delays time to infection. *Pediatr Infect Dis J* 2004; 23:504–510
- 137. Lai Z, Kimmel R, Petersen S, et al: Multivalent human monoclonal antibody preparation against *Pseudomonas aeruginosa* derived from transgenic mice containing human immunoglobulin loci is protective against fatal pseudomonas sepsis caused by multiple serotypes. *Vaccine* 2005; 23: 3264–3271
- Simpson JA, Smith SE, Dean RT: Scavenging by alginate of free radicals released by macrophages. *Free Radic Biol Med* 1989; 6:347–353
- 139. Cabral DA, Loh BA, Speert DP: Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosisi by human neutrophils and macrophages. Paediatr Res 1987; 22: 429–431
- 140. Kashef N, Behzadian-Nejad Q, Najar-Peerayeh S, et al: Synthesis and characterization of *Pseudomonas aeruginosa* alg-

inate-tetanus toxoid conjugate. J Med Microbiol 2006; 55:1441–1446

- 141. Theilacker C, Coleman FT, Mueschenborn S, et al: Construction and characterization of a *Pseudomonas aeruginosa* mucoid exopolysaccharide-alginate conjugate vaccine. *Infect Immun* 2003; 71:3875–3884
- 142. Pier GB, Boyer D, Preston M, et al: Human monoclonal antibodies to *Pseudomonas aeruginosa* alginate that protect against infection by both mucoid and nonmucoid strains. *J Immunol* 2004; 173:5671–5678
- 143. Lee VT, Smith RS, Tummler B, et al: Activities of *Pseudomonas aeruginosa* effectors secreted by the type III secretion system in vitro and during infection. *Infection and immunity* 2005; 73:1695–1705
- 144. Vance RE, Rietsch A, Mekalanos JJ: Role of the type III secreted exoenzymes S, T, and Y in systemic spread of *Pseudomonas aeruginosa* PAO1 in vivo. *Infect Immun* 2005; 73:1706–1713
- 145. Park PW, Pier GB, Hinkes MT, et al: Exploitation of syndecan-1 shedding by *Pseudo*monas aeruginosa enhances virulence. Nature 2001; 411:98–102
- 146. Azghani AO: Pseudomonas aeruginosa and epithelial permeability: Role of virulence factors elastase and exotoxin A. Am J Respir Cell Mol Biol 1996; 15:132–140
- 147. Matsumoto T, Tateda K, Furuya N, et al: Efficacies of alkaline protease, elastase and exotoxin A toxoid vaccines against gutderived *Pseudomonas aeruginosa* sepsis in mice. J Med Microbiol 1998; 47:303–308
- 148. Sokol PA, Kooi C, Hodges RS, et al: Immunization with a *Pseudomonas aeruginosa* elastase peptide reduces severity of experimental lung infections due to *P. aeruginosa* or Burkholderia cepacia. *J Infect Dis* 2000; 181:1682–1692
- 149. Nicas T, Iglewski BH: The contribution of exoproducts to virulence of *Pseudomonas* aeruginosa. Can J Microbiol 1985; 31: 387–392
- 150. Guzzo J, Pages JM, Duong F, et al: *Pseudo-monas aeruginosa* alkaline protease: Evidence for secretion genes and study of secretion mechanism. *J Bacteriol* 1991; 173: 5290–5297
- 151. Miyazaki S, Matsumoto T, Tateda K, et al: Role of exotoxin A in inducing severe *Pseudomonas aeruginosa* infections in mice. *J Med Microbiol* 1995; 43:169–175
- 152. Denis-Mize KS, Price BM, Baker NR, et al: Analysis of immunization with DNA encoding *Pseudomonas aeruginosa* exotoxin A. *FEMS Immunol Med Microbiol* 2000; 27: 147–154
- 153. Hertle R, Mrsny R, Fitzgerald DJ: Dualfunction vaccine for *Pseudomonas aeruginosa*: Characterization of chimeric exotoxin A-pilin protein. *Infect Immun* 2001; 69: 6962–6969
- 154. El-Zaim HS, Chopra AK, Peterson JW, et al: Protection against exotoxin A (ETA) and *Pseudomonas aeruginosa* infection in mice

with ETA-specific antipeptide antibodies. Infect Immun 1998; 66:5551–5554

- 155. Pearson JP, Feldman M, Iglewski BH, et al: *Pseudomonas aeruginosa* cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. *Infect Immun* 2000; 68:4331–4334
- 156. Rumbaugh KP, Griswold JA, Iglewski BH, et al: Contribution of quorum sensing to the virulence of *Pseudomonas aeruginosa* in burn wound infections. *Infect Immun* 1999; 67:5854–5862
- 157. Jesaitis AJ, Franklin MJ, Berglund D, et al: Compromised host defense on *Pseudomo-nas aeruginosa* biofilms: Characterization of neutrophil and biofilm interactions. *J Immunol* 2003; 171:4329–4339
- Cochran WL, McFeters GA, Stewart PS: Reduced susceptibility of thin *Pseudomonas aeruginosa* biofilms to hydrogen peroxide and monochloramine. *J Appl Microbiol* 2000; 88:22–30
- 159. Doring G, Pier GB: Vaccines and immunotherapy against *Pseudomonas aeruginosa*. *Vaccine* 2008; 26:1011–1024
- 160. Mandell GL, Bennett JE, Dolin R: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, Sixth Edition. Philadelphia (PA): Elsevier; 2005
- Holder IA. Pseudomonas immunotherapy: A historical overview. Vaccine 2004; 22: 831–839
- 162. Rumbaugh KP, Sawa T, Wiener-Kronish JP: New perspectives on prevention and management of *Pseudomonas aeruginosa* infections. In: Severe Infections Caused by *Pseudomonas aeruginosa*. Edited by Hauser AR, Rello J, vol. 7. Boston: Kluwer Academic Publishers, 2003, pp 183–201
- 163. Persson T, Hansen TH, Rasmussen TB, et al: Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 2005: 3:253–262
- 164. Smith KM, Bu Y, Suga H: Library screening for synthetic agonists and antagonists of a *Pseudomonas aeruginosa* autoinducer. *Chem Biol* 2003; 10:563–571
- 165. Smith KM, Bu Y, Suga H: Induction and inhibition of *Pseudomonas aeruginosa* quorum sensing by synthetic autoinducer analogs. *Chem Biol* 2003; 10:81–89
- 166. Ishida T, Ikeda T, Takiguchi N, et al: Inhibition of quorum sensing in *Pseudomonas aeruginosa* by *N*-acyl cyclopentylamides. *Appl Environ Microbiol* 2007; 73:3183–3188
- 167. Muh U, Schuster M, Heim R, et al: Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-highthroughput screen. Antimicrob Agents Chemother 2006; 50:3674–3679
- 168. Rasmussen TB, Bjarnsholt T, Skindersoe ME, et al: Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. *J Bacteriol* 2005; 187:1799–1814
- 169. Muh U, Hare BJ, Duerkop BA, et al: A struc-

turally unrelated mimic of a *Pseudomonas aeruginosa* acyl-homoserine lactone quorum-sensing signal. *Proc Natl Acad Sci USA* 2006; 103:16948–16952

- 170. Manefield M, Rasmussen TB, Henzter M, et al: Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. *Microbiology* 2002; 148:1119–1127
- 171. Hjelmgaard T, Persson T, Rasmussen TB, et al: Synthesis of furanone-based natural product analogues with quorum sensing antagonist activity. *Bioorg Med Chem* 2003; 11:3261–3271
- 172. Bjarnsholt T, Jensen PO, Burmolle M, et al: *Pseudomonas aeruginosa* tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. *Microbiology* 2005; 151: 373–383
- 173. Bjarnsholt T, Jensen PO, Rasmussen TB, et al: Garlic blocks quorum sensing and promotes rapid clearing of pulmonary *Pseudomonas aeruginosa* infections. *Microbiology* 2005; 151:3873–3880
- 174. Tateda K, Comte R, Pechere J-C, et al: Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001; 45:1930–1933
- 175. Parsek MR, Val DL, Hanzelka BL, et al: Acyl homoserine-lactone quorum-sensing signal

generation. *Proc Natl Acad Sci USA* 1999; 96:4360–4365

- 176. Veenstra DL, Saint S, Saha S, et al: Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: A meta-analysis. *JAMA* 1999; 281:261–267
- 177. Ardehali R, Shi L, Janatova J, et al: The effect of apo-transferrin on bacterial adhesion to biomaterials. *Artif Organs* 2002; 26: 512–520
- 178. Yang L, Barken KB, Skindersoe ME, et al: Effects of iron on DNA release and biofilm development by *Pseudomonas aeruginosa*. *Microbiology* 2007; 153:1318–1328
- 179. Musk DJ, Banko DA, Hergenrother PJ: Iron salts perturb biofilm formation and disrupt existing biofilms of *Pseudomonas aeruginosa*. Chem Biol 2005; 12:789–796
- 180. Cartagena E, Colom OA, Neske A, et al: Effects of plant lactones on the production of biofilm of *Pseudomonas aeruginosa*. *Chem Pharm Bull* 2007; 55:22–25
- Gillis RJ, Iglewski BH: Azithromycin retards *Pseudomonas aeruginosa* biofilm formation. J Clin Microbiol 2004; 42:5842–5845
- 182. Yasuda H, Ajiki Y, Koga T, et al: Interaction between biofilms formed by *Pseudomonas aeruginosa* and clarithromycin. *Antimicrob Agents Chemother* 1993; 37:1749–1755

- Wozniak DJ, Keyser R: Effects of subinhibitory concentrations of macrolide antibiotics on *Pseudomonas aeruginosa*. Chest 2004; 125: 62S–69S.
- 184. Ishikawa J, Horii T: Effects of mupirocin at subinhibitory concentrations on biofilm formation in *Pseudomonas aeruginosa*. *Chemotherapy* 2005; 51:361–362
- 185. Huigens RW III, Ma L, Gambino C, et al: Control of bacterial biofilms with marine alkaloid derivatives. *Mol Biosyst* 2008; 4:614–621
- 186. Huigens RW III, Richards JJ, Parise G, et al: Inhibition of *Pseudomonas aeruginosa* biofilm formation with Bromoageliferin analogues. J Am Chem Soc 2007; 129: 6966-6967
- 187. Richards JJ, Ballard TE, Melander C: Inhibition and dispersion of *Pseudomonas aeruginosa* biofilms with reverse amide 2-aminoimidazole oroidin analogues. Org Biomol Chem 2008; 6:1356–1363
- 188. Junker LM, Clardy J: High-throughput screens for small-molecule inhibitors of *Pseudomonas aeruginosa* biofilm development. *Antimicrob Agents Chemother* 2007; 51:3582–3590
- Li F, Yu J, Yang H, et al: Effects of ambroxol on alginate of mature *Pseudomonas aeruginosa* biofilms. *Curr Microbiol* 2008; 57:1–7