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Pseudomonas aeruginosa virulence and therapy: Evolving
translational strategies*
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I n intensive care units, Pseudomo-
nas aeruginosa (PA) ranks among
the top five organisms causing pul-
monary, bloodstream, urinary tract,

surgical site, and soft tissue infections (1).
Current treatments, primarily antibiotics
that kill or inhibit the growth of this bac-
terium (2), have been associated with un-
acceptably high rates of morbidity and
mortality. The development of agents that
antagonize virulence factors represents a
novel and potentially fruitful approach to the
treatment of severe infections caused by PA.

Any attempt to therapeutically target
virulence determinants must build on a
thorough understanding of host-patho-
gen interactions in PA infections (3). In-
teractions between PA virulence factors

and the host immune response dictate
the severity and type of infection. De-
pending on the environmental conditions
and the immune status of the host, PA
can be a quiescent colonizer, a cause of
chronic infection, or a highly virulent
invader during acute infections (3). For
example, in the respiratory tract PA may
cause fulminant and acute ventilator-
associated pneumonia (VAP), be a colo-
nizer in chronic obstructive pulmonary
disease, or cause a chronic infection in
cystic fibrosis (CF) patients, leading to
slowly progressive deterioration of pul-
monary function (3, 4). Bacterial surface
factors, such as flagella, pili, and lipopoly-
saccharide, as well as active processes,
such as the secretion of toxins, biofilm
formation, and quorum sensing (QS), are
virulence determinants that impact the
outcome of PA infections (3, 5–7). Inter-
action with the host immune system via
soluble and cell surface receptors (e.g.,
toll-like receptors) controls signaling
molecules (e.g., cytokines) and modu-
lates the host response, which impacts
disease severity both by influencing the
rate of bacterial clearance and by causing
collateral damage to host tissues (3, 5–9).

Given the growing problem of antimi-
crobial resistance in PA (9–11), improv-
ing therapy has been designated a priority
by the Antimicrobial Availability Task
Force of the Infectious Diseases Society

of America (2). Because of its resistance
attributes, PA is the most common anti-
biotic-resistant pathogen isolated from
VAP (12), with a significant attributable
mortality (13, 14), even with early and
optimal therapy (15). Unfortunately, the
multifaceted resistance mechanisms pos-
sessed by PA have made the development
of new antipseudomonal antibiotics chal-
lenging (16). Thus, there is a need for
novel approaches for controlling these in-
fections in the future.

Recent technological advances in areas,
such as genomics, proteomics, and micros-
copy, have led to rapid progress in our
understanding of PA pathogenicity. Scien-
tists are now pushing these discoveries
through the translational pipeline in the
hope of developing new therapeutic agents
useful in the treatment of PA infections.
Although a large number of PA virulence
determinants are being actively targeted
(Table 1), here we will focus on four deter-
minants: type III secretion, QS, biofilm for-
mation, and flagella. We will highlight re-
cent advances in our understanding of
basic mechanisms underlying each of these
virulence determinants and cite examples
of how each is being targeted for therapeu-
tic intervention.

Type III Secretion

PA secretes a number of toxins into
the extracellular environment, but one
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Objective: Although most reviews of Pseudomonas aeruginosa
therapeutics focus on antibiotics currently in use or in the pipe-
line, we review evolving translational strategies aimed at using
virulence factor antagonists as adjunctive therapies.

Data Source: Current literature regarding P. aeruginosa viru-
lence determinants and approaches that target them, with an
emphasis on type III secretion, quorum-sensing, biofilms, and
flagella.

Data Extraction and Synthesis: P. aeruginosa remains one of
the most important pathogens in nosocomial infections, with high
associated morbidity and mortality. Its predilection to develop
resistance to antibiotics and expression of multiple virulence
factors contributes to the frequent ineffectiveness of current

therapies. Among the many P. aeruginosa virulence determinants
that impact infections, type III secretion, quorum sensing, biofilm
formation, and flagella have been the focus on much recent
investigation. Here we review how increased understanding of
these important bacterial structures and processes has enabled
the development of novel approaches to inhibit each. These
promising translational strategies may lead to the development of
adjunctive therapies capable of improving outcomes.

Conclusions: Adjuvant therapies directed against virulence
factors have the potential to improve outcomes in P. aeruginosa
infections. (Crit Care Med 2009; 37:1777–1786)
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set of toxins is injected directly into host
cells. This occurs through a macromolec-
ular syringe called a type III secretion
system (TTSS) (17). This system is im-
portant in pathogenesis in a number of
animal models of infections (18–20). The
TTSS of PA consists of 36 coordinately
regulated genes that encode components
of the secretion apparatus and a translo-
con, and factors that regulate secretion
(17, 21). The secretion apparatus exports
toxins from across the bacterial cell en-
velope, whereas the translocon is respon-
sible for injecting these toxins into the
host cell (Fig. 1). Three proteins, PcrV,
PopB, and PopD, are necessary for assem-
bly of a competent translocon (22, 23).
The secreted toxins themselves are re-
ferred to as effector proteins, and four of
them have been identified to date: ExoS,
ExoT, ExoU, and ExoY. The first three
have been closely linked to virulence and
will be discussed here.

ExoS and ExoT are closely related bi-
functional toxins that encode both Rho
GTPase activating protein activity and
ADP-ribosyltransferase activity (24–26).
These activities work in concert to dis-
rupt the host cell actin cytoskeleton,
block phagocytosis, and cause cell death
(27). Whereas the exoT gene is found in

all PA strains, the exoS gene is present in
approximately 70% of clinical isolates
(28). Recent efforts have focused on the
intracellular localization of ExoS. Once
injected inside of host cells, ExoS local-
izes transiently to the plasma membrane
and then traffics to the membranes of
internal organelles, such as endosomes
and the Golgi/endoplasmic reticulum
(ER) (29). Intracellular membrane local-
ization was critical for the ADP-ribosyl-
transferase activity, whereas plasma
membrane localization was essential for
the Rho GTPase activating protein activ-
ity of the toxin (29, 30). Interestingly, the
ADP-ribosyltransferase activity portion of
ExoS (and presumably also of ExoT) only
becomes activated upon interaction with
a host-derived cofactor identified as a 14-
3-3 protein (also termed FAS for Factor
Activating ExoS) (Fig. 1) (31–35). 14-3-3
proteins are abundant and serve as scaf-
fold for the colocalization of numerous
host cell constituents (36). ExoS, thus,
illustrates the propensity of type III effec-
tor proteins to hijack host processes and
factors, using them to subvert the in-
jected cell.

ExoU is the most virulent of the PA
type III effector proteins. The gene en-
coding this toxin is found in approxi-

mately 30% of clinical isolates (28). This
potent cytotoxin encodes phospholipase
A2 activity but only after interaction with
a host cell cofactor (37, 38). Recently
Sato et al (39) demonstrated that super-
oxide dismutase 1 was such a cofactor
(Fig. 1). Like ExoS, ExoU localizes to the
plasma membrane but uses an unrelated
membrane localization domain to do so
(40). ExoU may damage host tissues in
multiple ways. Its phospholipase A2 activ-
ity leads to rapid cell death, perhaps by
direct dissolution of the plasma mem-
brane (37, 38, 41), but its phospholipase
activity may also stoke the inflammatory
fire during infection by generating ara-
chidonic acid, which serve as substrate
for the cyclooxygenase and lipoxygenase
pathways (42). The net result is produc-
tion of large amounts of prostaglandins,
such as PGE2 and PGI2 (42), which may
in turn contribute to the excessive in-
flammation, increased tissue damage,
and bacterial dissemination of infections
caused by ExoU-secreting strains (6).

Considerable progress has been made
in understanding the regulation of type
III secretion in PA. Previous research
identified ExsA as a global activator of
this system that binds to the promoters
responsible for expression of type III se-

Table 1. Virulence determinants of PA that have been targeted for therapeutic intervention

Virulence
Determinant Type

References Demonstrating
Role in Pathogenicitya

Examples of Therapeutic
Interventions

References Demonstrating
Potential Utilitya

Furthest Progress in
Translational Efforts

Type IV pili Surface appendage Tang et al (125)
Chi et al (126)

Active immunization Kao et al127
Ohama et al (128)

Preclinical

Flagella Surface appendage Feldman et al (129)
Balloy et al (130)

Active and passive
immunization

Doring et al (124)
Doring et al (131)

Phase III trial

Lipopolysaccharide Outer membrane
component

Danner et al (132)
Moskowitz et al (133)
Pier et al (134)

Active and passive
immunization

Zuercher et al (135)
Lang et al (136)
Lai et al (137)

Phase III trial

Alginate Cell surface
exopolysaccharide

Simpson et al (138)
Cabral et al (139)

Active and passive
immunization

Kashef et al (140)
Theilacker et al (141)
Pier et al (142)

Phase I trial

Type III secretion Secretion system Shaver et al (20)
Lee et al (143)
Vance et al (144)

Active and passive
immunization, small
molecule inhibitors

Sawa et al (56)
Neely et al (57)

Phase I/II trials

Elastase Protease Park et al (145)
Azghani et al (146)

Active immunization Matsumoto et al (147)
Sokol et al (148)

Preclinical

Alkaline protease Protease Nicas et al (149)
Guzzo et al (150)

Active immunization Matsumoto et al (147) Preclinical

Exotoxin A Toxin Nicas et al (149)
Miyazaki et al (151)

Active and passive
immunization

Denis-Mize et al (152)
Hertle et al (153)
El-Zaim et al (154)

Preclinical

Quorum-sensing Cell-to-cell
communication

Pearson et al (155)
Rumbaugh et al (156)

Natural and synthetic
inhibitors

See Table 2 Preclinical

Biofilms Bacterial aggregates Jesaitis et al (157)
Cochran et al (158)

Antimicrobial coatings,
small molecule
inhibitors

See Table 3 Phase III trial

PA, Pseudomonas aeruginosa.
aReferences are not comprehensive but show representative studies from the field. Adapted from Refs. 159–162.
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cretion genes (43, 44). The complex up-
stream regulatory network that controls
ExsA is now being elucidated and involves
at least three “catch and release” proteins
(ExsC, ExsD, and ExsE) that work in con-
cert to ensure that ExsA is only available
to induce expression of this system when
secretion is actively occurring (Fig. 2)
(45–51).

Translation of our knowledge of the
PA TTSS to the clinical setting is crucial
for evaluating the potential of type III
secretion neutralizing strategies as effec-
tive therapies. In this regard, it is prom-
ising that type III secretion proteins are
expressed during human infections and
that the results of studies of humans with
PA infections mimic those of animal
models (10–11, 52, 53). For example, the
presence of a functional TTSS was asso-
ciated with bacterial persistence in the
lungs (and, therefore, perhaps clinical re-
currence), higher relapse rates, and in-
creased mortality in patients with acute
respiratory infections caused by PA (10–
11, 54). Furthermore, secretion of type
III proteins was associated with increased
mortality in patients with a high bacterial
burden in respiratory secretions but who
failed to meet clinical criteria for the di-
agnosis of VAP (55). Thus, the PA TTSS
appears to have both pathogenic and
prognostic significance in human infec-
tions.

Given the importance of type III secre-
tion in the pathogenesis of PA infections,
it is not surprising that efforts have been
made to design reagents to disrupt it. A
significant amount of effort has gone to-
ward developing antibodies and vaccines
that target the type III secretion appara-
tus itself and, therefore, prevent secretion
(Fig. 1) (18, 56–61). Sawa et al (56) dem-
onstrated that antibodies targeting PcrV,
a protein believed to be located at the tip
of the secretion apparatus, prevented ef-
fective type III secretion and resulted in
increased survival and decreased lung in-
jury in a mouse model of acute pneumo-
nia. This same group found that passive
anti-PcrV immunization protected
against fatal PA challenge in a burned
mouse model of infection (57). Using an-
ti-PcrV IgG in a model of septic shock
associated with Pseudomonas-induced
lung injury also demonstrated a decrease
in lung injury, bacteremia, and plasma
tumor necrosis factor-� levels as well as
improvement in hemodynamic parame-
ters (58). Further clinical studies are un-
derway to evaluate the usefulness of

Figure 1. The type III secretion system of Pseudomonas aeruginosa. The transcriptional activator
ExsA controls expression of the type III secretion regulon, including the genes encoding the effector
proteins ExoS and ExoU. On contact with a host cell, induction of the type III secretion system (TTSS)
occurs and secretion is activated. ExoS and ExoU are injected through the needle apparatus into the
host cell, where they initially localize to the plasma membrane. At some point, each interacts with its
respective cofactor (14-3-3 protein for ExoS, superoxide dismutase 1 [SOD1] for ExoU) and subse-
quently targets host cell substrates. Four points for potential therapeutic interventions are indicated:
“A” represents the targeting of PcrV, a protein necessary for the translocation of effector proteins
across the host cell plasma membrane, by antibodies. “B” represents the inhibition of ExsA binding to
TTSS promoters by inhibitors. “C” and “D” represent inhibition by small molecules of the enzymatic
activities of ExoS and ExoU, respectively.

Figure 2. Regulation of Pseudomonas aeruginosa type III secretion genes. The left side of the figure
represents regulation of type III secretion system (TTSS) genes in the absence of active protein
secretion. In this case, ExsE (“E”) is not secreted but rather is available to bind and sequester ExsC
(“C”). This frees ExsD (“D”) to bind and sequester ExsA (“A”), preventing ExsA from activating TTSS
promoters and expressing TTSS genes. The right side of the figure represents regulation of TTSS genes
during active secretion. In this situation, ExsE is secreted outside the bacterium through the type III
secretion needle, freeing ExsC to bind and sequester ExsD. ExsD is, thus, unable to bind ExsA, which
in turn is available to bind to TTSS promoters and facilitate expression of the corresponding genes. In
this way, expression of TTSS genes is synchronized with secretion of TTSS proteins.
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PcrV-specific antibodies as an adjunctive
therapy in the clinical setting.

Efforts have also been directed at de-
veloping inhibitors that block other as-
pects of the PA TTSS. For example, small
molecule inhibitors of ExoU’s phospho-
lipase A2 activity and ExoS’s ADP-
ribosyltransferase activity activity have
been identified and designated pseudo-
lipasin and exosin, respectively (62, 63).
Likewise, inhibitors of ExsA, a regulator
necessary to express all TTSS genes, have
also been identified (64). Each of these
compounds provided protection from
killing in models of PA infection.

Quorum Sensing

Like people, PA bacteria behave differ-
ently depending on whether they are
alone or in a crowd. They accomplish this
by using an intercellular signaling pro-
cess called QS (65). In QS, small com-
pounds called autoinducers are released
by bacteria into the environment. Auto-
inducer concentrations are then sensed
by neighboring bacteria to infer the
density of the local bacterial population
and to regulate gene expression accord-
ingly. PA QS systems regulate about
350 genes (6% of the PA genome) and
play a role in the regulation of a wide
variety of processes including biofilm
formation and production of numerous
toxins (66 –73). Given this regulatory
breadth, it is not surprising that QS
plays an essential role in virulence (74).
Two primary QS systems were initially
identified in PA, the las and the rhl
systems (66 – 68, 75). More recently, a
third QS system was identified in PA,
referred to as the Pseudomonas Quino-
lone Signal (PQS) (76). PQS is con-
trolled by las system and itself regulates

the rhl system, suggesting that it acts
as link between the two systems.

Just as many environmental organ-
isms synthesize antibiotics to gain an ad-
vantage over microbial competitors,
some also produce enzymes that degrade
the QS autoinducer signals of other spe-
cies of bacteria (77). Recent evidence sug-
gests that mammalian cells too have de-
veloped such capabilities. Paraoxonases
(PONs) are mammalian enzymes that are
capable of degrading PA autoinducer
molecules and thereby have the potential
to disrupt QS (78–80). Treatment of PA
with PON-containing serum inhibited
biofilm formation, which requires func-
tional QS (79). Thus, these enzymes may
play an important role in host defense
against PA.

Numerous approaches have been suc-
cessfully used to inhibit QS in culture
and in vivo model systems (Table 2). For
example, triclosan, an antimicrobial sub-
stance used in soaps, toothpaste, cleans-
ers, and deodorants, has been shown to
inhibit the synthesis of autoinducer (81).
The anti-QS strategies of bacteria them-
selves have been exploited. Expression of
bacterial enzymes that degrade autoin-
ducers resulted in decreased production
of QS-regulated toxins by PA (82, 83). In
another approach, natural and synthetic
compounds have been screened for their
utility in preventing the interaction be-
tween the autoinducer and its receptor.
Much effort has been directed toward
furanones, compounds produced by ma-
rine macroalga with anti-fouling proper-
ties (84). Although naturally occurring
furanones lacked substantial activity,
modified furanone compounds inhibited
QS and increased bacterial clearance in a
mouse model of infection (85–87). Fur-

ther investigations are necessary to deter-
mine whether these approaches will
prove efficacious in inhibiting QS in hu-
man infections.

Biofilms

Biofilms are bacterial cities, highly or-
ganized, microbial communities encased
in a polysaccharide matrix and attached
to a surface (88). When that surface is a
surgical implant, endotracheal tube,
catheter, or the airways of individuals
with CF, biofilms become a medical prob-
lem. They are highly resistant to antimi-
crobial agents, which occurs by a number
of mechanisms that are now becoming
clear. When dispersed and grown on agar,
a subpopulation of PA bacteria from bio-
films will form dwarf colonies referred to
as small-colony variants (SCVs). These
colonies consist of highly adherent anti-
biotic-resistant variants implicated in
persistent infections (89). Several groups
have isolated SCVs of PA from biofilms as
well as the respiratory tracts of individu-
als with CF (90–92). A genetic basis for
antibiotic resistance of biofilms was iden-
tified by Mah et al (93). By performing a
genetic screen for loss of antibiotic resis-
tance in biofilms, they identified the gene
ndvB. Biofilms formed by a PA strain con-
taining a disrupted copy of the ndvB gene
were more susceptible to antibiotics. The
authors hypothesized that NdvB encodes
a periplasmic glucan that physically in-
teracts with and sequesters antibiotics,
preventing them from reaching their tar-
get sites (93).

Given their importance in PA patho-
genesis, biofilms have been an obvious
target for efforts aimed at therapeutic in-
terventions (Table 3). One approach has
been to block the earliest step in biofilm

Table 2. Inhibitors of PA quorum sensing

Class Examples Mechanism References

Autoinducer analogs Cyclopentanol, cyclopentylamide, and
cyclohexanone compounds,
tetrazole derivatives

Block autoinducer
receptor

163–169, 100

Structurally unrelated autoinducer
antagonists

4-Nitro-pyridine-N-oxide, triphenyl
compound

Block autoinducer
receptor

168, 169

Natural compounds Products from fungi (penicillic acid),
marine macroalga (furanone
derivatives), garlic, medicinal plants

Decrease concentration of
autoinducer receptor,
unknown

84–87, 97, 98 168, 170–173

Enzymes AHL-lactonase, AHL-acylase Degrade autoinducers 82, 83
Antibiotics, metabolic compounds Azithromycin, triclosan,

S-adenosylhomocysteine,
S-adenosylcysteine, sinefungin

Inhibit synthesis of
autoinducer

81, 174, 175

PA, Pseudomonas aeruginosa; AHL, acyl homoserine lactone.
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formation: bacterial attachment. For ex-
ample, coating of endotracheal tubes
with silver was associated with a delay in
bacterial colonization, reduced bacterial
burdens in mechanically ventilated pa-
tients, and a reduction in the incidence of
VAP (94, 95). Several groups have tar-
geted the processes necessary for biofilms
to evolve into mature structures, such as
quorum-sensing and iron acquisition (96,
97). Others have identified natural or
synthetic compounds that prevent bio-
film formation (98 –100). Efforts have
also been directed at disrupting already
formed biofilms by using compounds
toxic to bacteria within these structures
(101), by degrading the polysaccharide
matrix (102, 103), by applying electrical
current (104, 105), and by inducing bac-
terial dispersal from biofilms (106). Each
of these approaches has the potential to
be prophylactically or therapeutically
useful.

Flagella

The flagellum of PA is required for
swimming motility but also plays crucial
roles in biofilm dispersal and adhesion to
the surface of host cells (107–109). The
significance of these processes in patho-
genesis is underscored by the loss of vir-
ulence of nonflagellated mutants in mod-
els of acute infection (110, 111). During
infection flagellin, the primary structural

component of the flagellum is recognized
by Toll-like receptor 5 on the surface of
host cells. Thus, toll-like receptor 5 is
used by the host as a surveillance mech-
anism to detect invading PA bacteria and
in turn trigger the immune response by
inducing the synthesis of cytokines, such
as tumor necrosis factor, interleukin-6,
and interleukin-8 (112–115).

Despite the importance of flagella in
acute infection, PA actually down-regu-
lates expression of flagellin over the
course of chronic infection in the CF
lung, perhaps to evade the host immune
response (116, 117). The mechanism of
this down-regulation is now being eluci-
dated and is reminiscent of that described
for type III secretion (Fig. 2). Elastase
released by neutrophils in respiratory
mucus degrades the flagellar hook pro-
tein FlgE at the bacterial surface (118). In
the absence of FlgE, the flagellar appara-
tus is no longer competent for export,
and the otherwise secreted anti-sigma
factor FliM accumulates within the bac-
terium and binds to FliA. Sequestration
of FliA prevents expression of flagellar
genes normally targeted by this tran-
scriptional activator, resulting in the ab-
sence of flagella (119). An additional
mechanism by which flagella are down-
regulated during chronic infection is the
accumulation of mutations in the fleQ
gene, which encodes a major regulator of
the flagellar regulon (120).

Although 40% of PA isolates from pa-
tients with CF do not produce flagella,
this virulence factor is still thought to be
necessary for the initial infection of these
patients (121). Animal models have dem-
onstrated that antibodies against the fla-
gellum, induced by either active or pas-
sive immunization, are protective (122,
123). Prevention of PA lung infection by
immunization against flagellar antigens
might, therefore, be a suitable adjunctive
therapy in individuals with CF. A recent
randomized placebo-controlled trial of
483 patients with CF found a 34% reduc-
tion in infection episodes over a 2-year
period in those immunized with a biva-
lent flagella vaccine (124).

Future Directions

It is anticipated that novel therapeutic
interventions based on PA virulence fac-
tors (Table 1) will become a part of stan-
dard clinical practice. These interven-
tions will take one of two forms: First is
vaccination of high-risk patient popula-
tions. Further studies will be necessary to
evaluate the role of flagella vaccines in
specific patient groups and to further de-
fine the dose and immunization schedule
for optimal induction of long-lasting se-
rum titers of antiflagellar IgG. Second,
immunotherapies and inhibitors may be
useful agents in the prevention of high
burden colonization or the treatment of

Table 3. Approaches to preventing or disrupting PA biofilms

Approach Examples Mechanism References

Antimicrobial coating of medical
devices

Silver, chlorhexidine Prevent biofilm formation by killing bacteria
and preventing bacterial adherence

94, 95, 176

Iron limitation Lactoferrin, transferrin Prevent adherent bacteria from forming biofilms 96, 177
Iron excess FeCl3, Fe2(SO4)3 Prevent biofilm formation, disrupt preformed

biofilms
178, 179

QS inhibitors Furanone, patulin and
penicillic, plant lactones

Prevent biofilm formation, decrease biofilm
resistance to tobramycin

97, 98, 100, 85, 86, 180

Subinhibitory levels of antibiotics Macrolides, mupirocin Delay biofilm formation, decrease biofilm
resistance to tobramycin, alter biofilm
architecture, decrease polysaccharide content

181–184

Inhibitors from natural products Marine alkaloid derivatives,
ursene triterpenes from
tropical tree

Prevent biofilm formation, disperse preformed
biofilms

185–187

Inhibitors from random compound
screens

Prevent biofilm attachment and formation 188

Metal chelators EDTA Killing and dispersal of bacteria in biofilms 101
Electrical current Enhanced susceptibility of biofilm to biocides 104, 105
Mucolytic agent Ambroxol Decreased synthesis of alginate 189
Degradation of polysaccharide Alginate lyase Enhanced susceptibility of biofilm to

aminoglycosides
102, 103

Activation of endogenous dispersal
mechanisms

Nitric oxide Disruption of preformed biofilms 106

PA, Pseudomonas aeruginosa.
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infection. For example, such agents may
be administered alone to colonized pa-
tients undergoing mechanical ventilation
or as adjuncts to conventional antibiotics
in patients who have already developed
VAP. Although much additional work is
required, the utility of targeting PA viru-
lence factors is already being borne out
by such interventions as silver-coated en-
dotracheal tubes and the flagella vaccine.
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