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ARTICLE INFO ABSTRACT
Article history: The objectives of this study were (i) to compare the plasma concentration-time profiles for first-dose
Received 24 September 2009 and steady-state piperacillin administered by intermittent or continuous dosing to critically ill patients
Accepted 7 October 2009 with sepsis and (ii) to use population pharmacokinetics to perform Monte Carlo dosing simulations in
order to assess the probability of target attainment (PTA) by minimum inhibitory concentration (MIC)
Keywords: for different piperacillin dosing regimens against bacterial pathogens commonly encountered in critical
B-lactam . care units. Plasma samples were collected on Days 1 and 2 of therapy in 16 critically ill patients, with 8
Monte Carlo simulations . i . ; ; . ; ; p : o
Penicillin patients receiving intermittent bolus dosing and 8 patients receiving continuous infusion of piperacillin

(administered with tazobactam). A population pharmacokinetic model was developed using NONMEM®,
which found that a two-compartment population pharmacokinetic model best described the data. Total
body weight was found to be correlated with drug clearance and was included in the final model. In
addition, 2000 critically ill patients were simulated for pharmacodynamic evaluation of PTA by MIC [free
(unbound) concentration maintained above the MIC for 50% of the dosing interval (50% fr>mic)] and it was
found that continuous infusion maintained superior free piperacillin concentrations compared with bolus
administration across the dosing interval. Dosing simulations showed that administration of 16 g/day by
continuous infusion vs. bolus dosing (4 g every 6 h) provided superior achievement of the pharmacody-
namic endpoint (PTA by MIC) at 93% and 53%, respectively. These data suggest that administration of
piperacillin by continuous infusion, with a loading dose, both for first dose and for subsequent dosing
achieves superior pharmacodynamic targets compared with conventional bolus dosing.

© 2009 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Continuous infusion

Piperacillin is a time-dependent antibiotic, where antibacterial
activity is related to the time for which the free (unbound) concen-
tration is maintained above the minimum inhibitory concentration

1. Introduction

Piperacillin is an extended-spectrum penicillin frequently pre-

scribed for empirical treatment of hospital-acquired infections in
critically ill patients with sepsis or septic shock. Given the impor-
tance of early and appropriate antibiotic therapy for reducing
mortality in these patients [1-6], optimised dosing for piperacillin
in the initial phase of treatment is essential in order to maximise
its clinical efficacy.
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(MIC) during a dosing interval (fr-mic) [7]. Data on the fromic
required for optimal activity of penicillins have been obtained from
in vitro and in vivo animal models and suggest that frmic of 50% is
necessary [8]. Other in vitro data report that 3-lactam concentra-
tions four to five times the MIC may maximise bactericidal activity
[9]. Recent retrospective human data from critically ill patients
reported by McKinnon et al. [ 10] suggested that an 1> mc of 100% is
associated with superior bacteriological and clinical outcomes for
broad-spectrum cephalosporin antibiotics. It follows that to max-
imise the efficacy of penicillins such as piperacillin, fr-mic >50% is
essential and 100% fr-mic is preferable.

Achieving target concentrations in critically ill patients with
sepsis remains a challenging issue for clinicians. Pathophysio-
logical changes associated with the disease process can increase
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the drug volume of distribution (V) and drug clearance leading
to low plasma concentrations [5,11]. For time-dependent antibi-
otics, dosing by extended infusion [12] or continuous infusion
has been suggested to maximise drug exposure and to min-
imise the consequences of pharmacokinetic changes in critically
ill patients [13-17]. Whilst piperacillin has been studied in other
patient populations [18-22], little data exist comparing inter-
mittent and continuous administration in critically ill patients
[23,24], particularly potential variations in day-to-day pharma-
cokinetics. Importantly, very little data describing the potentially
different pharmacokinetics/pharmacodynamics of the first dose of
piperacillin for critically ill patients with sepsis exist. Knowledge of
pharmacokinetics/pharmacodynamics at this time, when obtaining
maximal antibiotic activity can define outcomes, is essential.

The current data set has, in part, been previously published and
analysed using a standard pharmacokinetic two-stage approach
[25]. This form of pharmacokinetic analysis has some limitations
[26] and it is now preferred that population pharmacokinetic
analysis is utilised to provide a more accurate estimation of
between-subject variability and this has become the basis for dos-
ing simulations that can compare different dosing strategies in this
difficult patient population [27].

The objectives of this study were: (i) to compare the observed
plasma concentration-time profiles for piperacillin administered
by intermittent or continuous dosing to critically ill patients
with sepsis at first dose and at steady state; (ii) to describe
the pharmacokinetic variability of piperacillin in these patients
with a population pharmacokinetic model; and (iii) to assess the
pharmacokinetic/pharmacodynamic profile of various piperacillin
dosing regimens and to assess the expected probability of target
attainment (PTA) by MIC against bacterial pathogens commonly
encountered in critical care units.

2. Methods
2.1. Patients

This study was performed in an 18-bed tertiary referral Critical
Care Unit. Consent to participate was obtained from the patient’s
legally authorised representative. Inclusion criteria were patients
admitted to the Critical Care Unit with known or suspected sep-
sis as defined previously [28] and with normal renal function
(defined as plasma creatinine <120 pwmol/L). Patients were ran-
domised to receive different doses of piperacillin by intermittent
bolus (16 g/day) or continuous infusion (12 g/day) using random
numbers selected from an opaque sealed envelope.

2.2. Drug administration and dosage

All patients received piperacillin/tazobactam (Tazocin®;
Wyeth, Sydney, Australia). Patients in the continuous infusion
group (n=8) were administered 12 g/day. A lower piperacillin
dosage was selected for the continuous infusion group in line
with previous comparative studies with (-lactam antibiotics
[18,24,29-31]. Patients received an initial loading dose of 4/0.5g
piperacillin/tazobactam in 50mL of 0.9% sodium chloride over
20 min via the central line, followed immediately by a continuous
24-h infusion (333 mg/h) of piperacillin, i.e. 8g piperacillin/1g
tazobactam in 500mL of 0.9% sodium chloride. From Day 2
onwards the patients were given 12/1.5 g piperacillin/tazobactam
administered by 24-h infusion in 500 mL of 0.9% sodium chlo-
ride (piperacillin 500 mg/h). Patients in the intermittent bolus
group (n=8) received 4/0.5 g piperacillin/tazobactam as a 20-min
infusion via the central line every 6h (q6h) or every 8 h (q8h) as
prescribed by the treating critical care physician. In both groups,

piperacillin/tazobactam was administered using a volumetric

“infusion pump controller (iMed Gemini PC-2®; Alaris Medical

Systems, San Diego, CA).

2.3. Blood sampling

For each sample, 5mL of blood was collected using the
indwelling arterial catheter for determination of plasma
piperacillin concentrations. For both groups, samples were
collected on Day 1 at ca. 0, 3, 6, 15 and 20 min during the bolus
infusion. Additional samples were collected for both groups after
the bolus infusion at 3, 6, 15, 20, 30, 45, 60, 90, 120, 210, 360
and 480 min. On Day 2 (fifth piperacillin/tazobactam bolus dose
or change of 24-h continuous infusion bag), steady-state blood
samples were taken immediately prior to (O min) and at 5, 10, 20,
30, 60, 120, 180, 240 and 480 min after commencement of the new
infusion (continuous infusion bag replacement or bolus infusion
dose). Specimens were centrifuged at 3000 rpm for 10 min and
then frozen at —20 ' C for subsequent analysis. As piperacillin is less
stable at —20°C than at —70°C (i.e. it undergoes 10% degradation
within 16 days at —20°C) [32,33] (data on file), samples were
assayed within 7 days of collection. In line with these data, no
allowance for possible sample degradation was included in the
data analysis as any degradation would be insignificant.

2.4. Drug assay

Plasma piperacillin concentrations were measured using high-
performance liquid chromatography (HPLC) with ultraviolet
detection (Waters HPLC system with 510 pump, 717 autosampler
and 486 Tunable Absorbance Detector setat218 nm A)usingan ace-
tonitrile phosphate buffer gradient based on a method by Ocampo
et al. [34]. The limit of quantification for piperacillin was 0.25 mg/L.
The coefficient of correlation for the assay was 0.994 over the range
of the standard curve of 0.25-400 mg/L. Linearity was also demon-
strated over this concentration range. The assay had intraday and
interday reproducibility of 2.2% and 6.4%, respectively.

2.5. Determination of the unbound piperacillin fraction in plasma

Five hundred microlitres of 100 pwg/mL piperacillin in plasma
from patients was ultracentrifuged (12 000 rpm for 20 min) through
3 kDa nominal cut-off membrane devices (Amicon® YM30; Milli-
pore Corp., Billerica, MA), giving an approximate filtrate yield of 25%
original volume. One hundred microlitres of filtrate plus 20 pL of
500 g/mL penicillin G (internal standard) were analysed by HPLC.

2.6. Statistical analysis

Statistical analysis was performed using SPSS 13.0 software
(SPSS Inc., Chicago, IL). Mann-Whitney U-test or Fisher's exact
test were used to compare demographic and clinical characteris-
tics between the intermittent and continuous treatment groups,
which were all considered non-normal distributions. P-values of
<0.05 were considered significant.

2.7. Pharmacokinetic/pharmacodynamic analysis

The concentration-time data for piperacillin in plasma were
analysed by a non-linear mixed-effects modelling approach [35]
using NONMEM version 6.1 (GloboMax LLC, Hanover, MD) with
double precision with the COMPAQ VISUAL FORTRAN compiler. The
NONMEM runs were executed using Wings for NONMEM (WFN
6.1.3). Data were analysed using the first-order conditional esti-
mation (FOCE) method with INTERACTION.
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For the population pharmacokinetic analysis, plasma
piperacillin concentrations were fitted to one-, two- or three-
compartment models using subroutines from the NONMEM
library [35]. The concentration-time profile can be described by
the equation:

Vi = Fi6, x5)e™ + £24, (1)
where y;; is the jth observed concentration at time points x;; for the
ith subject, 6; represents a fixed-effects parameter of the structural
model to be estimated, f;; is the function for the prediction of the
jth response for the ith subject, and ¢; denotes the jth measure-
ment error for the ith subject. In other words, &; is the difference
in the observed concentration from the predicted concentration.

It is assumed to be independent and identically distributed with a
normal distribution around the mean zero and variance o2,

2.7.1. Between-subject variability (BSV) and between-occasion

variability (BOV)
BSV was modelled using an exponential variability model:
6; = e, (2)

where 6; is the value of the parameter for the ith subject, ¢ is the
typical value of the parameter in the population, and finally ni is a
random vector with normal distribution, zero mean and variance-
covariance matrix of BSV 2 to be estimated.

BOV is the variability of a parameter within a subject dur-
ing treatment and includes between-occasion variability and
within-occasion variability. BOV was assumed to be log normally
distributed and modelled over the two pharmacokinetic study
occasions:

By = BTk, 3)

where 6; is the value of the parameter for the ith subject on the
kth occasion.

2.7.2. Model diagnostics

Statistical comparison of nested models was based ona x? test of
the difference in the objective function. A decrease in the objective
function of 3.84 units (P<0.05) was considered significant. Good-
ness of fit was evaluated by visual inspection.

2.7.3. Bootstrap

A non-parametric bootstrap method [36] (n=2000) was used to
study the uncertainty of all pharmacokinetic parameter estimates.
From the bootstrap empirical posterior distribution we were able
to obtain the 95% confidence interval (2.5-97.5% percentile) for the
parameters, as described previously [37].

2.7.4. Covariate screening

Various covariates were considered for analysis of lean body
weight and total body weight (TBW) as well as creatinine clearance
(CL¢,) measured by 8-h urine collection or via the Cockroft-Gault
equation [38]. The individual covariates were centred by the
median values. Individual empirical Bayesian (POSTHOC) parame-
ters were plotted against covariate values to assess relationships. If
a trend between covariates and a pharmacokinetic parameter was
observed, then it was considered for inclusion in the population
model.

2.7.5. Visual predictive checks

Using the final covariate model, a visual predictive check was
performed by simulating 2000 subjects to assess the predictive per-
formance of the model. The visual predictive checks were generated
using a Perl Script (version 1e) [39]. The visual checks and rep-
resentative percentiles [25th, 50th (median) and 75th percentile]

were visually assessed using Prism® 2005 version 4.03 (GraphPad
Software Inc., La Jolla, CA).

2.7.6. Dosing simulations

Four intermittent administration (IA), two extended infusion
(EI) and three continuous infusion (CI) dosing regimens were sim-
ulated using Monte Carlo simulations. The four IA bolus dose
regimens (infusion over 20 min) evaluated were 4g q6h, 4g q8h,
3¢ q6h and 3 g every 4 h. The two EI regimens were 4 g q6h (infu-
sion over 3 h) and 4 g q8h (infusion over 4 h). The three Cl regimens
evaluated were 8, 12 and 16 g piperacillin every 24 h including a
loading dose of 4 g on Day 1. Each Monte Carlo simulation gener-
ated free concentration-time profiles for 2000 subjects per dosing
regimen. A constant value of 30% protein binding was used in all
simulations [25]. From these data the fr-uc for the first dose (0 to
6h or 8h) was calculated for each simulated subject using linear
interpolation. The PTA was obtained by counting the subjects who
achieved free piperacillin concentrations greater than the MIC for
50% of the dosing interval [40].

2.8. Minimum inhibitory concentration distributions

MIC distributions of various nosocomial pathogens against
piperacillin/tazobactam from the 2003 US MYSTIC database pre-
viously reported by Sun et al. [41] were used to determine the
cumulative fraction of response (see below). The MYSTIC pro-
gramme is a global, multicentre surveillance study containing data
for nosocomial pathogens worldwide.

2.9. Probability of target attainment by minimum inhibitory
concentration

The PTA by MIC identifies the likely success of treatment by
comparing the pharmacodynamic exposure (PTA) against a MIC
distribution of likely pathogens. The PTA by MIC is calculated by
multiplying the PTA at each MIC by the fraction of organisms sus-
ceptible at that concentration of the respective MIC distribution.
The sum of those individual products is the PTA by MIC for the
respective MIC distribution. The PTA by MIC can be interpreted as
the probability of successful treatment of infections caused by bac-
teria with a specific susceptibility pattern (MIC distribution) in the
studied patient population.

3. Results
3.1. Patient demographics

Sixteen patients were enrolled, with eight patients randomised
to intermittent dosing and the eight patients randomised to con-
tinuous dosing. All patients except one in the intermittent group
received 6-hourly antibiotic dosing. All patients were ventilated
and fulfilled the criteria for sepsis, with four patients also receiving
vasopressor therapy (two in the bolus group and two in the infusion
group). No significant pharmacokinetic differences were observed
between patients receiving vasopressors and those not. Patients
were evenly matched with regard to demographic data and level
of sickness severity (see Table 1).

3.2. Drug concentrations

Observed plasma concentration-time profiles for piperacillin at
first dose and at steady state are depicted in Fig. 1. The compara-
tive peak concentrations (Cmax) and trough concentrations (Cpin)
in a dosing period are described in Table 1. Protein binding of
piperacillin was measured at 30% in this cohort of patients.
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Table 1
Demographic and clinical data.?.
Bolus infusion (N=8) Continuous infusion (N=8) P-value®

Gender (male/female) (n) 5/3 6/2 0.5
Age (years) 41 (22-65) 30 (23-40) 0.38
Height (cm) 174 (172-180) 176 (171-177) 0.88
TBW (kg) 80 (74-86) 73 (64-83) 0.44
BMI (kg/m?) 26.3 (24.9-28.8) 25.4(24.4-26.7) 0.33
Day 1 APACHE Il score 24(18-26) 20(16-22) 0.28
Day 2 APACHE Il score 23 (18-25) 19 (16-26) 0.72
Day 1 SOFA score 3(3-3) 4(3-6) 0.33
Day 2 SOFA score 3(3-4) 3(2-5) 0.88
CL¢r (L/h)S 5.3(3.2-6.06) 5.8(1.9-8.9) 0.72
Piperacillin dose (mg day/kg) 229 (204-254) 168 (160-188) 0.03
Outcome (no. of survivors/no. of non-survivors) 8/0 8/0 1.00
Cmax (mg/L) 266.6 (208.2-292.3) 144 (118-224) 0.04
Day 1 Ciin/Css (mg/L) 7.2(3.2-12.5) 7.1(3.8-26.4) 0.51
Day 2 Ciyin/Css (mg/L) 6.2(2.7-10.7) 21.2(15.9-30.6) 0.001

TBW, total body weight; BMI, body mass index; APACHE, Acute Physiology and Chronic Health Evaluation; SOFA, Sepsis Organ Failure Assessment; CLcr, creatinine clearance;
Cimax, Observed peak concentration; Cp,, observed lowest concentration in bolus dosing period; s, observed lowest steady-state concentration during continuous infusion

sampling period.

3 Data are presented as median (interquartile range) (except gender and outcome); all distributions were non-normal.
b p_values were calculated using Mann-Whitney U-test, except for gender which used the Fisher’s exact test.

¢ CL¢ calculated using Cockroft-Gault equation [38].

3.3. Model building

The best base model consisted of a two-compartment linear
model and a combined residual unknown variability with a lag time
to account for the time between when the infusion started and
when the drug reached the patient. No difference in drug clearance
could be supported between the intermittent and continuous treat-
ment groups. Correlation between parameters was evaluated using
the OMEGA BLOCK functionality in NONMEM for all parameters.
However, correlation could only be supported between clearance
(CL) and intercompartmental clearance (Q). BOV could only be sup-
ported on CL, Q and central volume of distribution (V1). The final
objective function for this model was 2477.653.

Table 2 shows the mean and 95% confidence interval for the
parameters computed from all the bootstrap runs. The only covari-
ate that could be justified for inclusion in the covariate model to
describe piperacillin clearance was total body weight (TBW), nor-
malised to 70kg. Addition of this parameter did not reduce the
objective function by a statistically significant 3.84 (reduced by
2.35), however we elected to include this in the final covariate
model as it reduced the BSV for clearance (6.2%) and is biologically

plausible. The final model was represented by Eq. (4):

TVCL = 6, (TB—W)

70 (4)

where TVCL is the typical value of clearance.

Goodness of fit plots were generated for the final model. The
weighted residual graphs showed no apparent visual or statistical
bias for the prediction. The visual predictive check with the final
covariate model for occasion 1 and occasion 2 confirmed the good-
ness of fit of the model to the observed data (Supplementary Figs.
1 and 2). All subsequent piperacillin Monte Carlo simulations were
then based on this model.

3.4. Dosing simulations

PTA vs. MIC profiles for dosing simulations for different inter-
mittent, extended and continuous infusions are depicted below
for piperacillin dosing of 12 g/day (Fig. 2a) and 16 g/day (Fig. 2b).
The manufacturer’s product information [42] recommends a dos-
ing regimen for patients with no renal dysfunction of 4g q6h or
g8h. When piperacillin is given 6-hourly the PTA is 79.2% for an
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Fig. 1. Observed (mean + standard deviation) concentrations of piperacillin administered to critically ill patients with sepsis by intermittent infusion over 20 min (4. ) and

by continuous infusion (-8-) on Day 1 (first dose) and at steady state (fifth dose).
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Fig. 2. Probability of target attainment (PTA) for piperacillin administered by bolus, extended or continuous dosing as (a) 12 g/day and (b) 16 g/day or 18 g/day. The chosen
target for analysis was 50% of the dosing interval for piperacillin plasma concentrations to be in excess of the minimum inhibitory concentration (MIC). Bol, bolus; q8h,
administered every 8 h; q6h, administered every 6 h; EI, extended infusion; CI, continuous infusion.

MIC of 0.25 mg/L, and when given 8-hourly the PTA is 59.4% during
first dose, which is below the accepted 90% target. Administration
of smaller and more frequent doses or administration by extended
or continuous infusion achieves a superior PTA. For example, when
16 g/day is dosed via extended or continuous infusions it achieves
at least 90% PTA at a MIC of 1 mg/L after the first dose.

3.5. Probability of target attainment by minimum inhibitory
concentration

The assessment of PTA by MIC for various dosing simulations
that achieved more than 50% fr-mic for the first dose is described
in Table 3. These data support the %fr. mic data from above that con-
tinuous infusion is superior to extended infusion and bolus dosing
at achieving 50% fr-mic for various MICs. This is evident even for
smaller continuous infusion doses.

Table 2
Bootstrap parameter final estimates of the final base model.
Parameter Mean 95% CI
Fixed effects
CL(L/h) 17.1 144 20.6
V1 (L) 7.2 5.4 9.9
V2 (L) 17.8 13.8 245
Q(L/h) 52.0 36.8 70.5
ALAG (h™!) 0.07 0.06 0.09
Random effects
Between-subject variability Qpsyv (CV%)
BSVq, 29.8 10.0 45.4
BSVy1 26.4 0.1 552
BSVq 50.2 16.7 78.8
BSVvy 73.2 28.0 105.8
BSVaiac 43.7 26.1 61.7
Between-occasion variability Qpoy (CV%)
BOVe 46.2 273 59.5
BOVy1 244 0.1 64.1
Random error
Residual unexplained variability (CV%) 253 22.0 29.1
S.D. (mg/L) 32 1.5 44

Cl, confidence interval; CL, clearance; V1, central volume of distribution; V2, periph-
eral volume of distribution; Q, intercompartmental clearance; ALAG, time lag from
dose infuser to patient; BSV, between-subject variability; BOV, between-occasion
variability; CV, coefficient of variation; $.D., standard deviation.

4. Discussion

This paper demonstrates that continuous infusion of piperacillin
maintains superior target concentrations compared with inter-
mittent bolus dosing in critically ill patients with sepsis at first
dose and at steady state. Using these data we have developed a
population pharmacokinetic model for piperacillin to identify the
large pharmacokinetic variability of piperacillin in this population.
Importantly, the dosing simulations undertaken demonstrate that
suboptimal piperacillin exposures can occur with standard bolus
dosing regimens and that other dosing strategies may be clini-
cally advantageous for critically ill patients with sepsis because of
the different pharmacokinetic parameters evident in this popula-
tion. In this cohort of critically ill patients with sepsis we identified
different values of volume of distribution (V) and clearance (CL)
compared with previous studies for piperacillin in other patient
populations.

The piperacillin V4 was significantly larger in the present patient
group with a calculated total V4 0f 25.0 L (0.33 L/kg) compared with
other studies in healthy volunteers (10.4L [19] and 7.4 L [43]), in
patients with intra-abdominal infections (22.3L [21]) and in cys-
tic fibrosis patients administered piperacillin by bolus dosing (9.5 L
[19] and 13.1 L [22]). The concept of increased Vy in sepsis is likely
to be related to the level of sickness severity [5] and has been
described previously for other antibiotics [44].

Drug clearance was also noticeably higher in this cohort of criti-
cally ill patients with sepsis (17.2 L/h) compared with other studies
in healthy volunteers (11.3L/h [19] and 8.1 L/h [43]), in patients
with intra-abdominal infections (13.8 L/h [21]) and in cystic fibro-
sis patients administered piperacillin by bolus dosing (11.3L/h
[19] and 13.1 L/h [22]). Vinks et al. [22] found very high clear-
ances (24.4 L/h) of piperacillin administered by continuous infusion
in patients with cystic fibrosis, but this is likely to be due to
increased systemic metabolism common to this population poten-
tially leading to increased renal tubular secretion. The increased
clearance that we observed in critically ill patients with sepsis and
no renal dysfunction is likely to be due to increased cardiac out-
put and consequent increased renal perfusion that results from
this disease process [11]. Such physiological changes support sug-
gestions for increased doses of renally cleared antibiotics in this
patient population [5,13,45]. Despite this, the only covariate that
we could statistically support in our model was TBW (normalised
to 70kg), which we found reduced the BSV of piperacillin clear-
ance.
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Table 3
Probability of target attainment by minimum inhibitory concentration (%) for various bolus, extended and continuous dosing strategies of piperacillin in critically ill patients
with sepsis. '
MIC (mg/L) % frequency from MYSTIC database [41] Bolus dosing Extended infusion Continuous Infusion
3gq4h 3gq6h 4g q8h 4gqbh 4gq8h 4gqbh 8 g/day 12 g/day 16 g/day
0.125 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 54.58 47.76 31.82 25.58 34.11 42.63 50.05 54.58 54.58 54.58
2 21.84 16.38 10.92 8.87 11.83 15.70 18.19 21.84 21.84 21.84
4 9.51 5.94 3.97 3.27 4.36 6.24 713 951 9.51 9.51
8 5.48 2.74 1.82 1.54 2.06 3.26 3.66 1.89 5.48 548
16 1.75 0.66 0.44 0.38 0.51 0.93 1.02 0.44 0.49 0.66
32 2.05 0.51 0.34 0.32 0.43 0.00 1.03 0.32 0.39 0.39
64 0.63 0.08 0.06 0.06 0.08 0.00 0.00 0.06 0.07 0.07
128 4.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CFR 74.07 49.37 40.03 53.38 68.75 81.08 88.64 9235 92,52

The target chosen was 50% fr-mic. Data for piperacillin susceptibility includes various pathogens isolated. MIC, minimum inhibitory concentration; q4h, every 4h; q6h, every

6h; q8h, every 8 h; CFR, cumulative fraction of response.

Unlike other studies, our population model was not able to sta-
tistically support CL¢, as a covariate to predict likely piperacillin
clearance. However, given the narrow range of renal function in
the group, the likelihood of estimating a renal covariate would be
low. Another contributing reason for the higher effect of TBW (nor-
malised to 70kg) on clearance, compared with CLc;, may be the
significant effect of rapid drug distribution into tissues resulting
from the capillary leak syndrome in these patients with sepsis. It
is likely that further pharmacokinetic sampling beyond the time
period of this study would have also shown an effect of CL¢,
on piperacillin clearance. These data suggest that in the initial
phase of dosing (Days 1-3), dosing regimens that account for
body weight should also be a primary consideration for the clin-
ician.

Most pharmacodynamic data on optimal (-lactam activity
have been generated in in vitro and animal in vivo studies
[7-9,40]. A recent retrospective analysis of the cephalosporin
antibiotics cefepime and ceftazidime is the first data correlating
pharmacokinetic/pharmacodynamic data with clinical and bacte-
riological outcome for patients [10]. The authors found significantly
improved clinical and bacteriological cure when 100% T>MIC was
maintained. Although cephalosporins are thought to require a
higher % fr-mic for optimal bactericidal activity than penicillins
(60-70% vs. 50-60%), a similar advantage could be argued for
maintaining 100% T>MIC is likely to exist for penicillins such
as piperacillin in critically ill patients. From our research and
that of others, it is clear that continuous infusions are far more
likely to enable achievement of 100% fr-mic whilst minimising
drug costs [46,47]. However, the lack of robust data supporting
the essential requirement of 100% fr-mic meant that we used
50% fr-mic as the pharmacodynamic target for piperacillin dos-
ing.

Our data show that current suggested dosing regimens (4g
g6h or g8h) are less likely to achieve pharmacodynamic targets
than alternate dosing regimens in this patient group. Dosing sim-
ulations suggest that dosing by extended or continuous infusion
will achieve pharmacodynamic targets more successfully in criti-
cally ill patients with sepsis. The apparent advantages in favour of
administration by continuous infusion (with a loading dose) were
evident for the first dose. Given the association between early and
appropriate antibiotic therapy and improved clinical outcomes for
critically ill patients [1-6], these data support the use of continuous
infusions early in the course of treatment. The wide pharmacoki-
netic variability observed in this sample also supports the possible
use of therapeutic drug monitoring of 3-lactam antibiotics such as
piperacillin in critically ill patients should administration be either
by bolus, extended or continuous infusion.

A small number of prospective randomised controlied clini-
cal trials have been conducted in critically ill patients comparing
continuous and bolus administration. Each of these has demon-
strated equivalence of effect between both modes of dosing
[17,24,29,30,48,49], although the lack of difference may be due to
the small sample sizes of each study. Two large retrospective cohort
studies using extended or continuous infusion of a 3-lactam antibi-
otic have provided data of superior clinical and bacteriological
outcomes compared with bolus administration [12,50]. Our dose
simulations support these conclusions by showing that extended
and continuous infusion both obtain superior PTAs, particularly
after the first administered dose.

Given the variable pharmacokinetics likely to be observed with
different levels of patient sickness severity that can affect patient
pharmacokinetics, alimitation of this study may be the small cohort
size (n=16). This may have prevented other covariates from being
shown to be significant.

5. Conclusion

This paper represents the first known data examining the popu-
lation pharmacokinetics of piperacillin in critically ill patients with
sepsis during first dose and at steady state. The data describe signif-
icantly different pharmacokinetic parameters than those observed
in other patient populations, including critically ill patients without
sepsis. The results of the Monte Carlo simulations suggest that the
likelihood of achieving pharmacodynamic targets improves with
an increased length of infusion. Dosing by extended or continuous
infusion would appear necessary for optimising first-dose pharma-
cokinetics, probably due to the increased V4 of piperacillin observed
in critically ill patients with sepsis.
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